Nanophotonics Group


Nanoscale materials and systems in the focus of our research

Atomically thin materials

Atomically Thin Materials
Monolayer transition metal dichalcogenide semiconductors exhibit strong interaction with light and therefore have great potential for optoelectronic applications. In such materials (MoS2, MoSe2, WS2, WSe2) near band-edge electrons can be excited with polarized light. The excitation process maps the angular momentum of circularly polarized photons onto left- or right-handed circular motion of charge carriers at the conduction and valence band edges. The associated angular momentum is quantized and described by the so-called valley index which can be used just like spin to encode quantum information. Our collaboration partners for CVD-grown layered semiconductors are H. Yamaguchi and A. D. Mohite, Los Alamos National Laboratory, USA.
  1. Opto-valleytronic imaging of atomically thin semiconductors
    A. Neumann, J. Lindlau, L. Colombier, M. Nutz, S. Najmaei, J. Lou, A. D. Mohite, H. Yamaguchi, A. Högele
    Nature Nanotech., Advance Online Publication, DOI:10.1038/nnano.2016.282 — PDF
  2. Excitonic properties of semiconducting monolayer and bilayer MoTe2
    C. Robert, R. Picard, D. Lagarde, G. Wang, J. P. Echeverry, F. Cadiz, P. Renucci, A. Högele, T. Amand, X. Marie, I. C. Gerber, B. Urbaszek
    Phys. Rev. B 94, 155425 (2016)

Carbon nanotubes

Carbon nanotubes
Optical emission from semiconducting single-wall carbon nanotubes covers a broad spectral window from the visible to the infrared. When cooled down to low temperatures, single carbon nanotubes show photon emission statistics that are characteristic of quantum emitters: they emit merely one photon at a time. This feature – ensured by exciton localization as a generic feature of cryogenic nanotubes – can be exploited in single-photon emission devices for quantum communication in the telecom band. Our collaboration partners for carbon nanotube materials are J.A. Fagan, National Institute of Standards and Technology (NIST), USA and and Y. Wang, University of Maryland University, USA.
  1. Cavity-enhanced Raman microscopy of individual carbon nanotubes
    T. Hümmer, J. Noé, M. S. Hofmann, T. W. Hänsch, A. Högele, D. Hunger
    Nat. Commun. 7, 12155 (2016)
  2. Ubiquity of exciton localization in cryogenic carbon nanotubes
    M. S. Hofmann, J. Noé, A. Kneer, J. J. Crochet, A. Högele
    Nano Lett. 16, 2958–2962 (2016)
  3. Bright, long-lived and coherent excitons in carbon nanotube quantum dots
    M. S. Hofmann, J. T. Glückert, J. Noé, C. Bourjau, R. Dehmel, A. Högele
    Nature Nanotech. 8, 502-505 (2013)

Bottom-up hybrid photofunctional nanosystems

Bottom-up hybrid photofunctional nanosystems
This interdisciplinary research project aims at exploring the potential of DNA-assembly for the construction of complex networks with photonic functionality. It merges recent achievements in biophysics and solid state nanosciences for DNA-guided fabrication of functional components based on colloidal quantum dots and metal nanoparticles. The goal of the project is to establish fundamental tools for bottom-up nanometer-precise assembly of rudimentary photonic systems and complex photoactive networks. Our collaboration partners in the project are the groups of T. Liedl, LMU, A. O. Govorov, Ohio University, Athens, USA, and E. Lifshitz, Technion, Haifa, Israel.
  1. Plasmon–Exciton Coupling Using DNA Templates
    E.-M. Roller, C. Argyropoulos, A. Högele, T. Liedl, M. Pilo-Pais
    Nano Lett. 16, 5962–5966 (2016)
  2. DNA-based self-assembly of fluorescent nanodiamonds
    T. Zhang, A. Neumann, J. Lindlau, Y. Wu, G. Pramanik, B. Naydenov, F. Jelezko, F. Schüder, S. Huber, M. Huber, F. Stehr, A. Högele, T. Weil, T. Liedl
    J. Am. Chem. Soc. 137, 9776-9779 (2015)
  3. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response
    A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl
    Nature 483, 311 - 314 (2012)