
Nonlinear switching dynamics in a nanomechanical resonator

Quirin P. Unterreithmeier,* Thomas Faust, and Jörg P. Kotthaus
Fakultät für Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1,

D-80539 München, Germany
�Received 26 April 2010; published 7 June 2010�

We report studies on the nonadiabatic time evolution of a nonlinear resonator subject to short and intense
resonant RF actuation. We are able to quantitatively model the experimental data using a Duffing oscillator.
Applying suitably chosen RF pulses, we demonstrate active switching between the two stable states of a
Duffing oscillator on short time scales, well below the relaxation time.
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The oscillatory response of nonlinear systems exhibits
characteristic phenomena such as multistability,1 discontinu-
ous jumps,2,3 and hysteresis.3 These can be utilized in appli-
cations leading, e.g., to precise frequency measurement,4

mixing,5 memory elements,6,7 reduced noise characteristics
in an oscillator,8 or signal amplification.9–12 Approaching the
quantum regime,13 concepts have been proposed that enable
low backaction measurement techniques11 or facilitate the
visualization of quantum mechanical effects.14

Nanoelectromechanical systems �NEMS� have been es-
tablished as excellent devices to explore nonlinear dynamical
behavior, as they exhibit high mechanical quality �Q�
factors,15,16 fast response times,17 and fairly low drift,1 and
can be easily excited into the nonlinear regime.1 Here we
study the time-dependent response of NEMS resonators in
the nonlinear regime aiming at a more detailed understand-
ing of the dynamics. Complementary to previous investiga-
tions that concentrated on phenomena arising near the onset
of bistability,1,4,9 we present experiments that yield insight
into the time evolution of the mechanical system. As we
apply strong pulses, the system moves away from a station-
ary state and we study its response to this nonadiabatic ac-
tuation. The system is thereby highly excited into the non-
linear regime up to ten times the critical amplitude. Please
note that the influence of the actuation on the lattice tempera-
ture of the beam is negligible.4 We employ our extended
knowledge to perform fast switchings between the stable
states no longer bound by relaxation times.

The employed resonator consists of a doubly clamped sili-
con nitride string of dimensions 35 �m�250 nm
�100 nm �length, width, and height, respectively� under
high tensile stress, leading to high mechanical Q factors.18 In
vacuum and at room temperature, we electrically excite the
resonator at RF frequencies employing dielectric gradient
forces provided by suitably located and biased
electrodes.18,19 Illuminating the resonator with a light emit-
ting diode, we detect the resonant motion by a small on-chip
Schottky diode fabricated close to the resonator and serving
as a photodetector for the oscillating component of the opti-
cal near field as discussed in detail elsewhere.20 As this
scheme enables the detection of the resonator’s Brownian
motion at room temperature we are able to convert the mea-
sured signal into absolute displacement. The nonlinear reso-
nator is continuously actuated by the RF output of a network
analyzer as depicted in Fig. 1�a�.

Applying sufficiently strong excitation amplitudes, the

mechanical response around resonance tends to bend toward
higher frequencies as depicted in Fig. 1�b�, corresponding to
string hardening. This behavior can be quantitatively mod-
eled by solving the so-called Duffing equation,21 an exten-
sion of the simple harmonic oscillator by a nonlinear term of
third order.

ẍ�t� +
2�f0

Q
ẋ�t� + �2�f0�2x�t� + �3x�t�3 = k cos�2��f0 + ��t� .

�1�

Here, x�t� designates resonator displacement, f0=8 MHz,
Q=1.2�105 its resonance frequency and quality factor; and
�3 is the cubic correction to the linear restoring force. The
excitation amplitude is k and its frequency detuning from the
mechanical resonance is �= f − f0. We apply a perturbation
calculation using the ansatz x�t�=a�t�cos�2��f0+��t+��t��,
with time-dependent displacement amplitude a�t� and phase
��t�. This leads to the two coupled equations21

ȧ�t� = −
2�f0a�t�

2Q
+

k sin���t��
4�f0

,

�̇�t� = 2�� −
3�3a�t�2

16�f0
+

k cos���t��
4�f0a�t�

. �2�

By setting ȧ�t�=0, �̇�t�=0, one arrives at the quasistatic so-
lution a=a�f�. This curve can be excellently fitted to the
measured data �see Fig. 1�b��, thereby obtaining �3=9
�1026 �ms�−2 as the only additional numerically adjusted
parameter. The onset of bistability, at which the first and
second derivative of the amplitude with respect to f diverge
��a /�f =	 ,�2a / ��f�2=	� is called critical displacement.
Throughout this work, all displacements a�t� are given in
units normalized to this critical displacement, it applies ac

=4�2�f0 / �33/4��3Q�=6 nm �half peak-to-peak�, the corre-
sponding critical actuation amplitude is kc=150 ms−2.

Figure 1�c� shows the calculated displacement response of
the resonator when actuated with an excitation amplitude
that is ten times larger than the critical actuation leading to
the critical displacement ac. In the following, we always con-
tinuously excite our system �=1 kHz above resonance, well
in the bistable regime. The two stable oscillatory amplitudes
are marked as blue dots in Fig. 1�c�.
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To gain insight into the dynamical behavior of our system,
we measure the relaxation toward one of these stable points
of the continuously driven string after additional pulsed ex-
citation. The pulsed excitation is provided by the output of a
frequency generator that is phase-locked to the network ana-
lyzer and operates at the same frequency f as the continuous
drive. The phase of the frequency generator’s signal can be
adjusted to any phase 
 with respect to the continuous drive
as sketched in Fig. 1�a�. To avoid confusion, we always
specify the two phases with their respective symbol � or 
 in
the ongoing text. An RF switch serves to define RF pulses of
adjustable duration.

Any nonstationary resonator state �defined by its displace-
ment amplitude a and phase � referred to the continuous
drive; or equivalently by its in-phase �a cos���� and out-of-
phase �a sin���� amplitude component� will converge toward
either of the two stable states. This convergence divides the
resonator’s phase space into two basins of attraction,1,21 as
depicted in Fig. 2�a� as black and white regions, obtained by
numerically integrating Eqs. �2�. To test this simulated be-
havior experimentally, we apply the described short and in-
tense RF pulse that excites the oscillator away from the
stable state. Immediately after switching off this pulse, we
start recording the resonator state with a sampling rate of 100
kHz. Depending on amplitude, duration, and phase 
 of the
pulsed excitation, the resonator’s dynamic state starts in ei-
ther the white or black region of phase space directly after
excitation and relaxes in a spiraling motion toward either of

the stable states staying within the respective region of phase
space as theoretically predicted. In Fig. 2�a� two measured
traces of such a relaxation differing in the phase 
 of the
previously applied RF pulse are plotted in phase space and
show excellent agreement with theory. Figures 2�b� and 2�c�
display the evolution with time, showing fast dynamics for
high amplitudes. Eventually, the state oscillates around either
of the stable points with constant frequency.

We intend to utilize the pulses to controllably switch be-
tween the stable points, therefore we apply an indirect mea-
surement scheme to explore the nonadiabatic time evolution
during strong pulse excitation. Such an indirect scheme is
needed because electric crosstalk prevents a direct measure-
ment of the resonator’s state during the strong RF pulses. To
predict the action of the RF pulse excitation in addition to the
continuous drive, the green curves shown in Fig. 2�a� display
the calculated mechanical response to a pulse excitation am-
plitude of kPulse�27�103 ms−2 corresponding to 18 times
the continuous drive. Both curves start in the lower stable
state, they differ in the phase 
 of the applied pulse and are
obtained by numerically time integrating Eqs. �2�. As can be
inferred from Fig. 2�a�, we consecutively cross the two ba-
sins of attraction. Thereby, any resonator state with an am-
plitude lower then �10ac can be addressed by suitably
choosing the pulse phase and duration with the given pulse
amplitude.

In the experiment, the oscillator is prepared in its lower
stable state by subsequently switching off and on the con-
tinuous actuation. We then apply a short RF pulse with the
same excitation amplitude as in the above calculation. After

Network-Analyzer

Phase-
lock

RF
switch

Frequency [MHz]

Frequency [MHz]

A
m

p
lit

u
d

e
[a

/a
]

C
Power
combiner

A
m

p
lit

u
d

e
[a

/a
]

C

1kHz

φ
Phase
Shifter

Frequency
Generator

(b)

(c)

(a)

FIG. 1. �Color online� Setup and quasistatic response: �a� sche-
matic setup, a nanomechanical resonator is continuously actuated in
the nonlinear regime using the RF output of a network analyzer;
additional RF pulses of the same frequency are provided by a fre-
quency generator that is phase-locked to the network analyzer; the
output of the frequency generator can be adjusted to any phase 

with respect to the continuous actuation; an RF switch defines short
RF pulses. The resonator’s oscillatory state, given by its displace-
ment amplitude a and phase �, is recorded by a nearby photodiode
and the network analyzer. �b� Quasistatic response to continuous
actuation near the onset of bistability, measurement �black� and fit
�red/gray� using a solution of the Duffing equation; the displace-
ment amplitude a is given in units of the critical displacement ac,
marking the onset of bistability. �c� Calculated response when ac-
tuating ten times the critical driving amplitude. At an actuation
frequency f 1 kHz above resonance f0, two stable oscillation am-
plitudes exist, marked with blue/dark gray dots; this actuation is
used for all following measurements.
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FIG. 2. �Color online� Time evolution of the resonator state: �a�
the resonator’s phase space is shown parametrized by the in
�a cos���� and out-of-phase �a sin���� components of the oscilla-
tory displacement. Because of the nonlinear actuation, two stable
points exist �blue/dark gray dots�, each having its �calculated� basin
of attraction �black/white: high/low displacement amplitude�. The
displayed traces �red/gray and blue/dark gray lines� show the mea-
sured relaxation of an oscillatory state after being excited to an
amplitude a�8ac for two different excitation phase 
 settings. �b�
and �c� display the same relaxation process versus time, the trace
color corresponds to �a�. The smooth green curves in a show the
calculated time evolution during the application of an RF pulse of
phases 
=262° , 172° �light and dark curve, respectively� and an
amplitude 18-fold larger than the continuous actuation starting from
the lower stable state; the displayed time values are given in �s.

UNTERREITHMEIER, FAUST, AND KOTTHAUS PHYSICAL REVIEW B 81, 241405�R� �2010�

RAPID COMMUNICATIONS

241405-2



waiting several relaxation times given by Q / �2�f0�, the at-
tained stable state is recorded in displacement amplitude a
and phase �. We repeat this sequence, restore the lower
stable state and systematically vary the length of the RF
pulse and its phase 
; the excitation amplitude is always the
same. Thereby we implicitly map the end point of the green
traces as shown in Fig. 2�a� and obtain the spirals in Fig.
3�a�. This measured result is in excellent agreement with the
calculation shown in Fig. 3�b�, employing no fit parameters.
The range of achieved displacement amplitudes extends
those of previous measurements1 to values of ten times the
critical amplitude ac. We can deduce that the perturbation
solution describing the time evolution Eqs. �2� remains ac-
curate at least up to displacements that correspond to ten
times the critical amplitude ac. This demonstrates that the
dynamics of a strongly driven nanomechanical resonator can
still be accurately described by a perturbation solution of the
Duffing equation, therefore serving as model system to study
nonlinear dynamics22,23 well in the nonadiabatic regime.

Our quantitative understanding of the experiment enables
us to numerically calculate the parameters needed in order to
access any desired resonator state. In particular we are able
to switch directly between the two stable states. We thus
extend previous concepts6,7 of switching limited by the re-
laxation time scale Q / �2�f0� to active switching via RF
pulses suitably chosen in amplitude, phase, and length. Fig-
ure 4�a� shows two consecutive switching events; during the
80-�s-long RF pulses electric crosstalk produces overshoots
partially exceeding the displayed range of displacement am-
plitudes. The nearly constant amplitude values highlighted
by gray areas reflect the respective stable state of the bistable
system. Note that the approach toward these constant ampli-
tudes occurs on a time scale of less than 1 ms and only
reflects the limited dynamics of the electronic measurement
setup in contrast to the mechanical relaxation behavior stud-
ied in Figs. 2�b� and 2�c�.

Since we can pulse toward either of the targeted stable
states with high precision in phase space, we can switch
between the stable states with a high repetition rate. Any
systematic deviation would add up, eventually preventing
controllable switching. Figure 4�b� shows ten consecutive

switching events within ten milliseconds each going back
and forth between the two stable states. This corresponds to
a demonstrated operating speed of 2 kHz. The applied pulse
duration of 80 �s of a single pulse allows operation speeds
of approximately 11 kHz. In Fig. 4�c�, we plot the same
switching sequence in phase space. The image shows some
systematic deviation of the measured traces with respect to
the predicted stable states occurring immediately after the
application of an RF pulse. This deviation is a result of the
electric crosstalk and the finite bandwidth of the measure-
ment setup. The experimentally chosen pulse durations devi-
ate by less than 4% from the ones that were predicted theo-
retically.

The duration of the switching pulses corresponds here to
approximately 1000 cycles of oscillation. This is signifi-
cantly less than the number of oscillations required for the
relaxation from an excited to a stable state corresponding to
several times the quality factor of here Q=1.2�105. Al-
though being advantageous in terms of power consumption,
a high-quality factor prevents fast switching in passive
schemes, such as a sudden parameter change7 or the intro-
duction of a weak external perturbation.6 Our scheme over-
comes this limitation and achieves a four orders of magni-
tude improvement in speed when compared to these previous
results.

It remains to be shown whether any logic or memory
based on nanomechanical elements will play a significant
role in the future. To achieve an operating speed of 100
MHz, another improvement of switching duration of 104 is
required. As resonators with GHz resonance frequencies17

and high-quality factors16 have been demonstrated, this goal
is not principally out of reach.

In conclusion, we quantitatively study the dynamical os-
cillatory response of a nonlinear nanomechanical resonator
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FIG. 3. Time evolution during the application of an RF pulse:
�a� measured final state �black/white: high/low displacement ampli-
tude� after the application of RF pulses causing a nonadiabatic re-
sponse as shown in Fig. 2, systematically varied in duration and
phase 
 and plotted in polar coordinates. �b� Simulation of the
measurement employing no fit parameters.

A
m

p
lit

u
d

e
[a

/a
]

C
A

m
p

lit
u

d
e

[a
/a

]
C

Elapsed time [ms]

A
m

p
lit

u
d

e
o

u
t-

o
f-

p
h

a
s
e

-c
o

m
p

o
n

e
n

t
[a

/a
]

C

Amplitude in-phase-component [a/a ]C

6420-2-4

(b)

(a)

(c)

FIG. 4. �Color online� Switching between the stable points: �a�
Out-of-phase component of the measured resonator displacement
a sin���; the part of nearly constant amplitude �highlighted by the
gray background� corresponds to the stable points; the spikes are a
result of electric crosstalk when applying short RF pulses suitably
chosen to directly switch between these states and do not corre-
spond to displacement amplitudes. �b� Consecutive switching; ten
pairs of switching events are shown; the duration of one pulse is
approximately 80 �s, the repetition rate of the pairs is 1 kHz. Be-
cause of the finite measurement bandwidth and electric crosstalk
there is a systematic deviation compared to �a�. �c� The same mea-
surement displayed in phase space.
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in bistable configuration. The application of short RF pulses
allows us to modify the resonator state at will. We utilize
these pulses to highly excite the resonator. The measured
results can be excellently modeled using a combination of
perturbation calculation and numerical integration. We
thereby directly confirm the accuracy of this model calcula-
tion to describe nonlinear dynamics.14,23 Our quantitative un-
derstanding allows us to predict and generate RF pulse

parameters that directly switch between the two stable states
repeatedly.
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