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The optomechanics of deformable optical cavities has seen a 
recent surge of interest. Research in this field, which started  
about 40 years ago, was and still largely remains driven by 

questions relating to the physics of measurements at the quantum 
fundamental limit. Good examples of this are the theoretical 
proposals formulated in the 1990s to perform quantum non-
demolition measurements of the electromagnetic energy contained in 
a Fabry–Perot resonator by measuring the cavity elastic deformation 
under the effect of photon pressure. At that time, Braginsky, who 
pioneered the field, wrote that such a photon pressure probe, owing 
to “severe technical problems in its realization, is more a thought 
experiment than a foundation for a real measuring device”1. But now, 
technological advances in making deformable cavities, including 
nanofabrication techniques and high-quality optical coatings, are on 
the verge of allowing such a gedanken experiment to be practically 
explored in the laboratory. Here we present a brief overview of this 
rapidly evolving field of research.

Optical interferometers are ubiquitously used in length 
measurements requiring very high precision. When an  
interferometer is designed in such a way as to deform under the 
external action of an applied stress, the system is a precision force 
detector. Such force sensors are used in atomic force microscopy 
in the form of a deformable miniature Fabry–Perot interferometer2, 
and are also at the heart of gravity-wave detectors3 in the form of a 
deformable Michelson interferometer for detecting remote cosmic 
cataclysmic events. A schematic view of a deformable Fabry–Perot 
force sensor is shown in Fig. 1a: the two mirrors are attached to each 
other by a spring and the cavity is probed by a laser. In the simplest 
point of view, a force applied to one of the mirrors modifies the cavity 
length, which in turn modifies the cavity’s optical transmission and 
reflectivity. A change of optical intensity at the detector, measuring 
for instance the transmission, is converted into force information. 
In the lowest level of approximation, light is just used to probe 
the cavity length changes and acts as a passive spectator. But to 
appreciate fully the fundamental detection limit of such an idealized 
force sensor, one needs to include the force added by the photons 
introduced into the cavity to perform the measurement in the first 
place. In the next level of approximation, the photons filling the 
cavity exert a pressure on the mirrors, causing them to displace 
and in turn detune the cavity with the result of modifying the very 
density of photons that were pressing against the mirrors to begin 
with. The mechanics and optics of the cavity are in fact coupled 
through the back-action of the photons on the mirror position. The 
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theoretical and experimental investigation of this apparently simple 
problem has recently flared into a number of rich and sometimes 
unsuspected new results.

the ‘photon-spring’
Braginsky and co-workers published in 1970 a paper in which 
they investigated the effect of microwave power on a cavity with 
a deformable wall4. They provided a pioneering model in which 
a simple harmonic oscillator describes the mechanics of the 
deformable wall, laying the foundations of the optomechanics of 
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Figure 1 | Generic schematics of optomechanical sensors. a, Fabry–Perot 
interferometer force sensor. A force F acts on the right mirror (the 
mechanical system) of mass m, which is mounted on a mechanical spring 
K, while the laser probes the changes in cavity transmission. b, Feedback 
mechanism in an optomechanical sensor. The mechanical system 
moves under radiation pressure and fundamental fluctuations, and this 
displacement x modifies the density of light stored in the optical measuring 
device (the interferometer), leading to a change in the photo-induced force 
acting back on the mechanical system. This back-action is intrinsic to the 
deformable interferometer dynamics (‘natural’ self-cooling), but can also be 
externally implemented and amplified (‘artificial’ cold damping).
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deformable cavities5. Their analysis using Newtonian dynamics 
predicts that under the back-action of radiation pressure the 
mechanical oscillator displays an electromagnetically modified 
elastic spring constant K and a modified damping rate Γ. In short, 
the presence of radiation in a slightly detuned cavity introduces 
an added rigidity F (that is, ‘photon-spring’) because the 
radiation density in the cavity, and consequently the radiation 
force F, depends on the oscillator’s position. There is one subtlety, 
however: the photon back-action force acting on the cavity walls is 
not instantaneous, but is delayed with respect to sudden changes 
in the cavity size, and this is because the building of a new steady-
state radiation density in the cavity requires a finite time-constant 
τ which is typically the electromagnetic energy storage time for 
the cavity. Like all retarded effects in dynamics, its contribution 
is to modify the amount of irreversible energy losses, namely 
the damping in the mechanics of the system. The net effect of 
introducing photon back-action is that the mechanical oscillator 
seems to be described by a shifted resonance frequency with a 
modified damping rate. In analogy, and in the spirit of modern 
quantum-optical language, one might say that the mechanical 
oscillator is ‘photon-dressed’. In the limit of a rigid mechanical 
harmonic oscillator, for which the spring constant K dominates 
over the photon back-action spring (that is, ∇F << K), the 
‘dressed’ resonance ω and the damping Γ both have approximate 
analytical expressions in relation to their ‘bare’ counterparts ω0 
and Γ0 (ref. 6):

    (1)

  (2) 

where Q = ω0/Γ is the bare mechanical quality factor, which is usually 
large (that is, Q >> 1). The peculiarity of such an optomechanical 
system is that these contributions to the mechanical resonance and 
the damping can be tuned to be positive or negative, by choosing the 
sign of the cavity detuning (that is, the photon-spring constant ∇F 
can be adjusted to be positive or negative).

The 1970 experimental results of Braginsky and co-workers 
showed, in the microwave domain, a hint of radiation-induced 
changes of the mechanical damping4. Shortly afterwards, they 
demonstrated in a beautiful experiment5,7 that, still in agreement with 
their prediction5,8, the resonance frequency of a torsion mechanical 
oscillator could also be shifted under the effect of radiation pressure 
in the visible domain. They dubbed their effect “light-rigidity”5, but 
it is now better known as the optical spring effect. In 1983, Dorsel 
and co-workers investigated the strict analogue of Braginsky’s 

microwave deformable cavity; they conducted an experiment 
using a deformable optical Fabry–Perot interferometer operating 
this time in the visible range9. Their measurements showed that 
under intense laser illumination the mechanical rigidity of the 
interferometer could be optically modified to the point of complete 
cancellation, leading to sudden mechanical instability in the mirror 
position. This seminal experiment was followed by a number of 
theoretical studies relating to gravity-wave antenna from which it 
emerged that the Braginsky effect was apparently detrimental to 
optimal gravity-wave sensing, so schemes were essentially proposed 
to counteract the effect.

The photon back-action in the deformable cavity can be 
described as a feedback element linking the output to the input of 
a mechanical system (Fig. 1b). Today, deformable optical cavities 
exist in various forms of devices, as shown in Fig. 2. In the world 
of engineering, systems with feedback are very well understood 
in electronics, as well as in mechanical and electromechanical 
circuits, and, as is the case for the optomechanical effects 
investigated by Braginsky5, the response function of a closed-loop 
system is generally very different from its open-loop counterpart. 
Closed-loop circuits involving a mechanical resonator and an 
optical feedback are, however, less known in device engineering. 
A nice system of an optomechanical circuit with a light-induced 
force external feedback was first used in a force detection scheme 
in atomic force microscopes (AFM)10 to increase the mechanical 
damping artificially by optical means.

laser cooling towards the quantum regime
Not only rigidity and damping but also fluctuations such as 
Brownian fluctuations are modified by back-action in a closed-
loop circuit. In other words, the circuit effective temperature 
characterizing the system fluctuations can be controlled through 
back-action. 

As early as 1953, the Brownian noise of an electrometer based 
on a torsion mirror galvanometer was greatly reduced by using 
a time-delayed electrical feedback acting on the mechanical 
system11 prompting the authors to conclude with the visionary 
words that they had achieved “artificial cold damping to 
cryogenic temperature level usually only realizable in cryogenic 
laboratories”. The idea of cold damping of fluctuations in the 
mechanics of a deformable Fabry–Perot cavity using an artificial 
optical feedback through radiation pressure was proposed and 
investigated theoretically in 1998 by Mancini and co-workers12, 
and soon after was demonstrated in a beautiful experiment by 
Cohadon and co-workers13. In 2002, Braginsky and Vyatchanin14 
proposed to use the photon back-action damping intrinsic to a 
deformable cavity as a natural feedback mechanism to suppress 
the Brownian fluctuations in the mirror dynamics. Such a 
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‘natural cold damping’ (better known as self-cooling) turns out 
to be based on the same physical principles that lie behind laser 
cooling of ions15 or vibration modes localized around impurities 
in semiconductors16. In 2004, optical self-cooling of a deformable 
Fabry–Perot cavity was demonstrated for the first time6 under 
the effect of photothermal pressure. The effect showed that the 
Brownian fluctuations of a silicon microlever mirror could be 
cooled from 300 K down to 18 K. The prerequisite for self-cooling 
was first for the researchers to show that under the effect of optical 
back-action, deformable optical cavities displayed the expected 
optical control of rigidity and damping17,18 as well as self-induced 
mechanical oscillation19,20, which is the converse effect of self-
cooling when the sign of the feedback is reversed. Soon after 
this, self-cooling of deformable cavities by radiation pressure was 
demonstrated almost simultaneously in various laboratories21–24, 
triggering the race to extend self-cooling down to the quantum 
limit. An example of such cooling is shown in Fig. 3. Around the 
same time, there was a resurgence of interest in the method of 
artificial cold damping. Temperatures in the millikelvin range 
were achieved25-27 by using externally amplified feedback, with 
record temperatures even down to the microkelvin range, in this 
case using electromechanical feedback28.

Figure 3 shows the Brownian fluctuation noise spectrum 
for a few selected examples of cavity self-cooling. Clearly the 
effect of light back-action is to shift the resonance frequency, a 
very large modification of the linewidth (that is, damping rate) 
accompanied by a large change in the area covered under the 
Brownian resonance peak which provides a direct measurement 
of the vibrational temperature. For a rigid (∇F << K) mechanical 
harmonic oscillator the effective vibrational temperature reached 
with self-cooling is given6,14,29 by Teff = T(Γ0/Γ) which is minimized 
for a maximum increase of the ‘dressed’ damping Γ. What is the 
lowest temperature that a mechanical harmonic oscillator can 
reach by optical self-cooling? According to equation (2), the 
optical back-action on damping is optimized for ω0τ = 1, that 
is, when the delay time constant τ becomes of the order of the 
mechanical oscillation period at resonance. For such a rigid 
oscillator, the minimum effective temperature Tmin reachable 
by self-cooling is directly related to the bath temperature T,  
the bare mechanical quality factor Q and the relative shift in 

resonance frequency Δω/ω0 induced by radiation pressure 
back-action directly measured in the Brownian noise spectrum:  
  
 

  (3)

This formula is valid in a classical approximation of self-cooling 
in that it neglects photons quantum fluctuations and is expressed 
in the rigid harmonic oscillator limit (that is, Δω << ω0), which is 
the usual limit in experiments. It allows a simple and convenient 
evaluation of the minimal expected reachable temperature by 
optical self-cooling given the bath temperature T, the mechanical 
oscillator’s ‘bare’ resonance frequency and the quality factor Q, 
while the cavity parameters and light intensity are all included in 
the negative frequency shift Δω induced by the optical back-action. 
The quantum limit for the mechanical fluctuation is reached when 
the average number of vibrational quanta N = kBTmin/ħω0 becomes 
close to or even less than unity. For such a rigid oscillator with 
ω0τ = 1 and in the limit of Q >> 1, the conditions to be fulfilled for 
the bath temperature and the related number of initial vibrational 
quanta NT are, respectively, kBT < 2QħΔω and NT < 2QΔω/ω.

In the rigid approximation Δω << ω0, we see that using a very 
large mechanical quality factor Q is central to self-cooling towards 
the quantum limit. Let us illustrate the point quantitatively. In Fig. 3b 
and c, a mechanical oscillator of high Q ≈ 106 is placed in a high-
finesse optical cavity30. The effect of photon back-action shifts the 
vibrational resonance up to Δω/2π ≈ 3 kHz for a bare resonance of 
ω/2π ≈ 130 kHz while reducing the effective vibrational temperature 
down to ~7 mK from room temperature. Using the relations above, 
one would need to start ideally with a bath temperature of T = 50 mK 
in order to reach the quantum regime by self-cooling down to an 
effective temperature of Tmin ≈ 22 μK. This assumes, of course, that 
the light is not turned into heat by absorption in the mechanical 
resonator and that the condition ω0τ = 1 is fulfilled.

Reaching the quantum limit for the vibrational mode of a 
harmonic mechanical oscillator means that it becomes decoupled 
from the incoherent thermal fluctuations present in its mass, and the 
result would be a purely coherent macroscopic state of the mechanical 
vibration. Its observation would be a good starting-point for studies 
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of quantum decoherence of massive mechanical systems31–33, with 
expected new understanding of the boundary between quantum 
and classical physics34. At the time of writing and to the best of our 
knowledge, deformable optical cavities have not yet been cooled 
to their vibrational quantum ground state, but this goal seems in 
reach. Should they come closer to this limit, a full quantum theory 
of the optomechanical coupling governing their dynamics and their 
fluctuations is required, especially as the classical approach leading 
to equation (3) does not include quantum noise of the radiation, 
which can counteract self-cooling. In 1995, Law35 provided a 
Hamiltonian description of radiation pressure on a moving mirror. 
This work was the basis for a quantum theory of optomechanical 
self-cooling in the case of radiation pressure coupling36,37 as well as a 
description of optomechanical instability in the quantum regime38. 
The quantum theory of self-cooling by radiation pressure predicts36,37 
that the final vibrational occupation number will become lower 
than one only when ω0τ > 1. The maximum cooling ratio is still 
obtained for ω0τ = 1, but for this case it turns out that the photon 
fluctuation noise limits optical cooling to a vibrational occupation 

number of unity at best36,37. In the case of optomechanical systems 
coupled through other optical induced forces such as photothermal 
effects, the interaction involves a much larger number of degrees 
of freedom (phonons, electrons) and a Hamiltonian description 
is not yet available. This also applies to cooling through artificial 
cold damping, because the optomechanical interaction is mediated 
through a physical apparatus in the laboratory, which so far involves 
a quasi-infinite degree of freedom.

trends
Efforts are currently being devoted to overcoming technical  
barriers to reaching the quantum regime. One of the challenges is still 
to design a system that minimizes both optical and mechanical losses. 
A possible strategy is to separate the functions of the mechanical 
oscillator from the optical one, allowing independent optimization 
of each. Thompson and co-workers30, for instance, introduced a very 
high-Q thin flexible silicon nitride membrane into an otherwise stiff 
Fabry–Perot cavity of high finesse39-40. Figure 3b and c shows that this 
approach allows a reduction of the effective temperature down to 
7 mK from room temperature. A related approach that has recently 
been proposed41 would eventually allow researchers to venture below 
the diffraction barrier that usually limits optomechanical settings42 
and open the route to the use of nanomechanical objects for which the 
quantum limit could be reached close to the millikelvin range. In the 
visible and near-infrared range, subwavelength-sized nanostructures 
acting as the mechanical resonator introduced into a high-finesse 
optical cavity forming a coupled nano-optomechanical oscillator41, 
are expected to show increased photon back-action. In the same 
spirit but in very different experiments, cooling of nanostructures 
by cavity perturbation was recently demonstrated in the microwave 
regime43. Another alternative approach proposed recently was to use 
the wavelength dependency of periodic structures near their band-
stop to amplify laser Doppler cooling of a photonic crystal mounted 
on a flexible structure44. Such a nanophotonic device would also 
profit from photon back-action if its photonic band structure was 
tailored  appropriately.

Finally, besides self-cooling and artificial cold damping, the 
strong coupling between optics and mechanics also leads to 
interesting nonlinear dynamics of the deformable cavity, still 
comparatively little investigated. Such a regime, first explored by 
Marquardt and co-workers45 who predicted a rich phase diagram 
involving multistability parameter regions, has recently been 
observed46, as seen in Fig. 4. Chaotic behaviour was also recently 
reported in high-finesse micro-toroid cavities47. Reducing the size, 
nano-optomechanical systems integrating extremely low-mass 
nanomechanical oscillators in a small optical volume should increase 
the coupling strength and allow exploration of these complex 
dynamical behaviours more deeply. Hybridized with high-Q optical 
micro or nanocavities, they could serve as a new platform in future 
optomechanics experiments.

In conclusion, the technology of optomechanical force sensors 
has evolved to the point where they are becoming a topic of research 
to explore their own fundamental quantum limit. They are, for 
example, viewed as ideal systems in which to verify theories in 
quantum measurement1,48,49. The quantum limit of an optomechanical 
system has not been reached yet, but the goal seems not too distant, 
thanks to recent advances in optical cooling methods. Such progress 
increases the prospect of applications in the field of quantum sensing 
devices. As yet, we barely know what to expect from such devices, 
and surprises are probably in store.
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