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Abstract. We investigate both the spin dynamics and the magnetotransport
properties of two-dimensional (2D) n-InGaAs channels as a function of the
channel width. We find that the electron spin scattering in the channels is
limited by a dimensionally constrained D’yakonov–Perel’ mechanism, while the
magnetotransport reveals purely 2D behaviour. For submicron channels the spin
relaxation times increase for decreasing widths, while the magnetotransport data
exhibit no band bending effects for the investigated samples. Temperature and
photon energy dependent measurements rule out dissipative effects and further
corroborate the experimental observation of a dimensionally constrained spin
relaxation.

Semiconductor spintronics seeks extra functionality compared with conventional electronics by
exploiting the carrier spin degree of freedom [1]–[4]. For a potential information processing
scheme which combines quantum mechanical and classical data, it is of particular interest to
manipulate and to control carrier spin dynamics in non-magnetic materials by utilizing the
spin–orbit interaction [5]–[8]. In three- and two-dimensional (3D and 2D) carrier systems,
spin–orbit coupling creates a randomizing momentum-dependent effective magnetic field;
the corresponding relaxation process is known as the D’yakonov–Perel’ (DP) mechanism [9].
In an ideal 1D system, a complete suppression of the DP spin relaxation has been predicted,

3 Author to whom any correspondence should be addressed.

New Journal of Physics 9 (2007) 342 PII: S1367-2630(07)47415-8
1367-2630/07/010342+12$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:awsch@physics.ucsb.edu
http://www.njp.org/


2 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

if the lateral width of a 2D channel is reduced to be on the order of the electron mean free path
[10]–[13]. The predictions are made for semiconductor heterostructures, such as InGaAs quantum
wells, in which the spin–orbit interactions are dominated by structural inversion asymmetry
(SIA) [14]–[19]. Such solid-state systems have been proposed as candidates for spintronic
devices, including spin transistors [7], due to their potential scalability and compatibility with
existing semiconductor technology [20]–[23]. For the regime approaching the 1D limit, we
recently reported a progressive slowing of the spin relaxation in InGaAs channels, which is
in agreement with a dimensionally constrained DP mechanism [24]. A similar dimensional
crossover has been observed by means of a weak antilocalization analysis of magnetotransport
studies on InAs channels [25]. The dimensional crossover can be understood in terms of an
interplay between the channel width, the spin precession length over which the electrons remain
spin polarized [26, 27], and the effect of spin scattering at the boundaries of the channels [28].

Here, we present additional magnetotransport measurements on the same 2D, n-doped
InGaAs quantum well channels previously measured. The magnetotransport measurements
reveal that the electron gases can be considered to be 2D for channel widths w larger than
500 nm, while the time-resolved Faraday rotation (TRFR) data on the spin dynamics can be
understood in terms of a dimensionally constrained DP mechanism for w < 5 µm. Temperature
and photon energy dependent measurements demonstrate that energy dissipative effects play
only a minor role to the spin dynamics in the channels. We further find that channels along
the crystallographic directions [100] and [010] show longer spin relaxation times than channels
along [110] and [−110]. We interpret the anisotropy such that the cubic spin-orbit coupling terms
due to bulk inversion asymmetry (BIA) start to dominate the spin relaxation in the narrowest
channels [27], [29]–[32]. For the narrowest channels, the spin relaxation process due to the
Elliott–Yafet (EY) mechanism becomes important due to increased impurity scattering [33].

The spin splitting in a 2D quantum well due to SIA can be expressed in the form of an
effective angular frequency vector as

�(k) = (1/lSP)[v(k) × ẑ], (1)

with k the momentum vector and v(k) the velocity of an electron [3]. ẑ is the unit vector
perpendicular to the quantum well, and lSP is the spin precession length, over which the electrons
remain spin polarized. In the case of motional narrowing [34], the corresponding spin relaxation
rate can be described as

τ−1
SP = |�(k)|2 τM/2, (2)

with τM the momentum scattering time. Given a system with a fixed mean free path, a larger
effective angular frequency induces faster spin rotations and, in turn, a shorter spin relaxation
time. Figure 1(a) depicts the orientation of the spin eigenfunctions for two spin-split subbands E+

and E− of a zincblende quantum well in the presence of SIA (E+ and E− are defined as in [29]).
For SIA, the spin eigenfunctions are always oriented perpendicular to k, and in turn, a constant
value of |�(k)| is expected that only depends on the magnitude of k. Figure 1(b) shows the
orientation for the spin eigenfunctions in the case of BIA. Here, both the direction of the spin
eigenfunctions and the absolute value of |�(k)| depend significantly on the vector k [29]. The
directions along [100] and [010] show similar behaviour, distinct from the directions [110] and
[−110]. Therefore, we expect a k-vector anisotropy in spin systems where the DP spin relaxation
due to BIA dominates the spin relaxation [35]. In particular, linear-in-k terms due to pure BIA
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Figure 1. Schematic vector map of the spin eigenfunctions in a quantum well
with (a) SIA and (b) BIA. (c) Scanning electron micrograph of sample A along
the [−110] cleaving direction. Both channels along [100] and [110] have a width
of (1.02 ± 0.04) µm. (d) Scanning electron micrograph of dry-etched InGaAs
channels, which are patterned along the four crystallographic directions [100],
[110], [010] and [−110]. The channel widths are varied between 420 nm and
20 µm, while their separation is fixed at 1 µm. The figure is partly adapted
from [24].

shown in figure 1 result in an anisotropy of direction of the effective angular frequency vector
but its strength remains isotropic. The anisotropy of the effective angular frequency vector due
to k-linear terms, and, consequently, of DP relaxation for spins oriented normal to the QW plane,
may be caused by the interference of BIA and SIA i.e. for BIA∼SIA [35]. The cubic in k BIA
terms are essentially anisotropic and should result in the anisotropy of DP spin relaxation in the
case of dominating BIA. The cubic in k terms vanish for [100]- and [010]-directions and the DP
spin relaxation time increases.

In order to probe the spin dynamics for different electron k-vectors, magnetotransport and
spin coherence experiments are performed on a set of n-doped InGaAs channels (see figures 1(c)
and (d)). The channels are patterned along the crystallographic directions [100], [110], [010]
and [−110], while the spins are optically oriented along the growth direction [001]. Structures
are fabricated by e-beam lithography and reactive ion etching out of three modulation-doped
n-In0.2Ga0.8As/GaAs quantum wells, the same as used in [24]. The unpatterned quantum wells
A, B and C have the following sheet densities nS and mobilities at a temperature of T = 5 K:
(A) 5.4 × 1011 cm−2 and 3.8 × 104 cm2 (V s)−1, (B) 6.6 × 1011 cm−2 and 3.1 × 104 cm2 (V s)−1,
and (C) 7.0 × 1011 cm−2 and 2.4 × 104 cm2 (V s)−1 [24], [36]. The quantum wells are situated
100 nm below the surface of the heterostructures, and the quantum well width is �z = 7.5 nm.
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Figure 2. (a) TRFR: a circularly-polarized pump pulse excites spin carriers in
the channels, while a time-delayed linearly-polarized probe pulse detects the
orientation of the spins. (b) TRFR signal of channels with a width of 750 nm-
channels patterned along [010] on sample A at zero magnetic field. (c) TRFR at
5 K for sample A (open circles) and 750 nm channels patterned along [010] (open
squares) and [110] (filled squares) in logarithmic scale. (d) Similar TRFR data at
5 K for sample B (open circles) and 750 nm channels patterned along [100] (open
squares) and [110] (filled squares). Black lines are guides to the eye, and the data
are off-set for clarity. The figure is partly adapted from [24].

The widths of the channels w range between 420 nm and 20 µm, and the height of the channels
is chosen to be 150 nm. After patterning, nS is reduced by about (17 ± 1) %, and the mobility
is lowered by about (5 ± 5) %. The magnetotransport experiments are performed on single
channels (figure 1(c)). For the optical experiments, the channels are arranged in arrays with
the dimension of 200 × 200 µm2 (figure 1(d)), while the diameter of the laser spot is about
50 µm. In order to provide constant etching parameters for all widths and directions of the
channels, the distance between adjacent channels is set to be 1 µm for all of the arrays.
Generally, we utilize InGaAs quantum wells with a relatively low indium concentration. The
corresponding spin precession length lSP

∼= (0.9 − 1.1) µm yields a Rashba spin coupling
constant of α ≡ h̄2/(2lSPm

∗) ∼= (0.5 − 0.7) × 10−12 eVm (with m∗ the effective electron mass
in the InGaAs quantum wells) [3, 12, 24]. These values are in good agreement with previous
results on InGaAs quantum wells [15]. Most importantly, the set of parameters ensures that
the spin precession length is in the range of the channel widths of the samples, and that the
quantum wells are in the ‘motional narrowing’ regime. Both are important preconditions to
detect the dimensionally-constrained DP mechanism in submicron channels as presented here
[10]–[13], [27, 28].

As sketched in figure 2(a), the electron spin dynamics are probed with the TRFR technique,
using 150 fs pulse trains from a mode-locked Ti:sapphire laser tuned to the absorption edge of the
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Figure 3. (a) Energy dependence of the TRFR signal for channels formed in
sample B with a width of 1.25 µm and a direction along [100] at 5 K. The
Faraday rotation signal can be fitted to a single exponential decay curve; here for
a wavelength range between 903 and 912 nm. (b) Spin relaxation time deduced
from the data in (a) as a function of the photon energy.

quantum wells (e.g. ELASER = 1.37 eV for sample B). To this end, a circularly-polarized pump
pulse excites the spin polarization in the channels, while a linearly-polarized probe pulse detects
the spin dynamics as a function of the time-delay �t between both laser pulses. A typical TRFR
curve is depicted in figure 2(b) for channels with a width of 750 nm patterned on sample A.
The evolution of the Faraday rotation angle can be described by a single exponential decay
θF = A1e−�t/τSP , where A1 and τSP are the amplitude and the relaxation time of the electron-spin
polarization. In figures 2(c) and (d), TRFR data are presented for sample A (B) in the case of
the unpatterned quantum well (open circles) and channels. The channels have a width of 750 nm
and crystallographic directions along [010] and [110] (open and filled squares in (c)) and [100]
and [110] (open and filled squares in (d)). As shown with solid lines, the exponential behaviour
of the data is described by a single longitudinal spin relaxation time τSP for both the unpatterned
quantum well and for the channels aligned along different crystallographic directions. The fact
that the data scale to exponential curves suggests that a single spin species is observed, i.e.
electron spins and not hole spins.

In principle, the TRFR-technique is sensitive to a variation of the spin relaxation times at
ELASER ∼ 1.36 eV, since the upper limit of the full-width at half-maximum of the laser is about
12 meV (for 150 fs pulses). As a function of the photon energy, figure 3(a) depicts data taken for
channels processed on sample B with a width of 1.25 µm and a crystallographic direction of [010].
We find a single exponential decay curve for all photon energies. In figure 3(a) the photon energy
is varied in the range of 1.358 eV <ELASER < 1.372 eV (912 nm >λLASER > 903 nm), while the
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Figure 4. (a) Width dependence of spin relaxation times for channels fabricated
from sample C. Open and filled squares represent data of channels along [100] and
[110], while the dotted line depicts the spin relaxation time of the unstructured
quantum well. (b) Magnetic field dependence of spin relaxation times in the
unprocessed sample. The magnetic field is applied perpendicular to the surface
of the sample. The figure is partly adapted from [24].

absorption edge and the Fermi energy of sample B are E ∼ 1.36 eV and EFERMI = 22 meV. As
can be seen in figure 3(b), the spin relaxation time varies only slightly throughout the range
of photon energies investigated. We conclude from figure 3 that the optically measured spin
relaxation time coincides with the electron spin relaxation time at the Fermi energy of the
quantum wells within a certain experimental error. Most importantly, the present variation in
spin relaxation time is less than the increase of the spin lifetime which we find for narrow
channels as presented below in figure 4(a).

Figure 4(a) presents the major result of the paper: for all samples and widths narrower than
∼10 µm, the spin relaxation times in the channels are longer than in the unpatterned quantum
wells. In addition, we find that channels aligned along [100] and [010] show equivalent spin
relaxation times, which are generally longer than the spin relaxation times of channels patterned
along [110] and [−110] (for clarity, only the data for the directions [100] and [110] are shown).
The observations can already be seen in the original data of figures 2(c) and (d). In order to
demonstrate that the increase of the spin relaxation time is due to a dimensionally constrained
DP mechanism, we first verify that the spin dynamics in the measured structures is dominated by
the DP mechanism. Generally, the precession axis of the electron spin can be fixed independently
of the scattered momentum vector, if an external magnetic field is applied. In the case that the
DP mechanism is the dominant relaxation process, the following magnetic field dependence of
the spin relaxation time has been predicted (for ωCτ < 1) [37]:

τSP(B) = τSP(0)[1 + (ωCτ)2], (3)

where ωC = eB/m∗ is the cyclotron frequency of an electron with charge e, m∗ = 0.064 me is the
effective electron mass [36], and τ represents the intrinsic electron scattering time. The magnetic
field dependence of the spin relaxation time for the unpatterned quantum wells is well fit by this
prediction (for B < 1.25 T in figure 4(b)). We find τ ∼ 1 ps, in agreement with the measured
momentum scattering time τM in these quantum wells. In contrast, the EY mechanism should
not exhibit this dependence on magnetic field. As a result, the spin dynamics of the samples can

New Journal of Physics 9 (2007) 342 (http://www.njp.org/)

http://www.njp.org/


7 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

 

 B (T )

ρ(
kΩ

)

–3 3

0.5

2.0

 

10 µm

5 µm

1 µm

675 nm
T = 4.2 K

 

(a)

ν

 

 

 

B–1 (1/T)
0.0 0.8

0

10

B–1 (1//T)
0.0 0.6

0

8(b)

(d)

(c)

 

 

 [100]
 [110]

Width (µm)

n s
(m

–2
)

0 10

6.0

5.6

Figure 5. (a) Magnetoresistance for individual channels of sample C with a width
of 10 µm, 5 µm, 1 µm, and 675 nm oriented along [110] at 4.2 K. The data are
off-set for clarity. (b) and (c) Landau filling factors as function of the inverse
magnetic flux measured for individual channels. The graph in (b) represents a
channel with a width 5 µm and an orientation along [100] and (c) depicts data of
a channel with a width 675 nm and an orientation [110]. (d) Sheet density of the
channels as a function of the channel width.

be described by equation (2), which is the DP mechanism (the magnetic field dependent data for
the channel is not shown).

To examine the 2D character of the electron gases, magnetotransport measurements are
performed on single channels in a four point geometry at 4.2 K. Figure 5(a) depicts the
corresponding magnetotransport data for single channels patterned on sample C. For all channel
widths and directions, we detect Shubnikov–de Haas oscillations, which are characteristic of the
2D electron systems in the quantum wells. In figures 5(b) and (c), the Landau filling factors of
the 2D electron gases are plotted versus the inverse of the applied magnetic flux for two different
channels. Such fan diagrams give a sensitive measure of band bending at the boundaries of
the InGaAs channels. Only a deviation from a linear dependence for large filling factors would
indicate that the band bending at the boundaries of the channels influences the 2D electron
dynamics [38]. However, we find that band bending effects are absent for any channel with a
width larger than ∼500 nm. Furthermore, the 2D electron density nS in the channels is deduced
from the linear regression lines in figures 5(b) and (c), since the slope of the fan diagrams is
given by nSh/e, with h Planck’s constant. Within the experimental error the 2D electron density
nS in the channels shows no dependence on the channel width and direction down to about
w ∼ 500 nm (figure 5(d)). The latter observation suggests that the spin relaxation mechanism
proposed by Bir et al [39] which depends on the carrier density, is only of minor importance to
the spin dynamics in the InGaAs channels.

The magnetotransport data also give insight into the intrinsic scattering times in a 2D
electron system: namely, the momentum scattering time and the electron quantum lifetime.
The momentum scattering time τM is given by the conductivity σ at zero magnetic field via
σ = nSτMe2/m∗, where nS is the electron density of the electron gas and e the electron charge.
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Figure 6. Momentum scattering time (circles) and quantum lifetime (squares)
versus channel width for the directions [100] (open symbols) and [110] (filled
symbols), respectively. The dotted lines are guides to the eye. The figure is partly
adapted from [24].

An estimate of the quantum lifetime τQM is gained by plotting the Shubnikov–de Haas oscillations
in a Dingle plot (data not shown) [40]. The ratio between the momentum scattering time and
the quantum lifetime gives a measure for the relative contribution of the large and small angle
scattering mechanisms [41]. Figure 6 shows the dependence of τM and τQM on the channel
width. Both scattering times show a rapid decrease for the narrowest channels. We would like
to note a few points. Since the spin relaxation times greatly exceed the charge scattering times,
the quantum wells can be considered to be in the ‘motional narrowing’ regime, and in turn,
equation (2) can be assumed to be valid [34]. Figure 6 further demonstrates that τM is constant
for channels with w � 1.2 µm, independent of the crystallographic direction (the value of the
momentum scattering time corresponds to a mean free path le = (275 ± 5) nm). In figure 4(a),
we find an enhanced spin coherence for channels with w � 5 µm. The combination of both
results implies that for 1.2 µm � w � 5 µm the effective angular frequency |�(k)| is reduced,
according to equation (2). Such a slowing of the spin relaxation is a precursor of the dimensionally
constrained DP mechanism [10]–[13], [27, 28]. In principle, a greater inversion asymmetry may
be introduced by the edges in the in-plane direction perpendicular to the channels; an effect
which should be detectable especially for the narrowest channels. The Fermi wavelength in the
channels would be the relevant length scale for such an effect. However, the Fermi wavelength
of the channels λF = 30–35 nm is a factor of about twenty times smaller than the narrowest
channel widths. At the same time, a greater inversion asymmetry induced at the channel edges
should give shorter spin relaxation times. Our results for 1.2 µm � w � 5 µm show longer spin
relaxation times for a decreasing channel width. Hereby, we assume that band bending effects
at the boundaries of the channels are negligible for w � 1.2 µm; the range of widths where we
draw our main conclusions. In addition, for micron sized channels the magnetotransport data
show that the electron systems are still 2D (figure 5).

Recently, we reported that the quantum lifetime τQM (as in figure 6) correlates to the DP
spin relaxation time in narrow channels for w < 10 µm [24]. The observation is in agreement
with measurements by Brand et al [42]. which demonstrated that in the ‘motional narrowing
regime’ the electron scattering time which correlates to the spin relaxation time via equation (2)
is shorter than the momentum scattering time. Brand et al further showed that a decrease of the
scattering time due to heating results in an increase of the spin relaxation time [42]. However,
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Figure 7. (a) Temperature dependence of the spin relaxation time for channels
formed in sample C with a width of 1.5 µm. Open and filled squares represent
data of channels along [100] and [110], while the open circles depict the spin
relaxation time of the unstructured quantum well. (b) Pump power dependence
for channels formed in sample A with a width of 750 nm at 10 K.

we can exclude such dissipation effects in the channels, since the data in figure 7(a) for sample
C demonstrates that a temperature rise results in a decrease of the spin relaxation time in the
channels. In addition, our conclusions about a dimensionally constrained DP mechanism are
drawn in the case that the momentum scattering time and the quantum lifetime are constant as a
function of the channel width (1.2 µm < w < 5 µm).

Generally, the optical measurements are performed at low excitation power. Typical values
of the excitation power are 400 µW for the pump pulse and 60 µW for the probe pulse. At
least 40% of the pump pulse is transmitted and not absorbed within the samples, since the
photon energy ELASER ∼ (1.3–1.4) eV is much smaller than the band gap of the GaAs substrates
EGaAs = 1.52 eV. Figure 7(b) presents the spin relaxation times as a function of the pump power
for channels with w = 750 nm patterned on sample A at T = 10 K. We find that the variation
of the spin lifetime, which is due to a varying power, is less than the difference between the
spin lifetime of channels patterned along [100] ([110]) and [110] ([−110]) (the spin relaxation
time for the unpatterned quantum well is τSP = (13.3 ± 1.3) ps). This result further corrobates
the interpretation that the spin relaxation mechanism proposed by Bir et al [39] is only of minor
importance to the spin dynamics in the InGaAs channels.

We calculated the energy dispersion for an InGaAs quantum well along in-plane k-
vectors [100] and [110] in an 8 × 8 k.p perturbation theory model with parameters which refer
to sample A4. All samples exhibit typical Fermi-wavevectors of about 0.018 to 0.021 Å−1.
Figure 8(a) demonstrates that for such k-vectors the energy dispersion is rather isotropic for
the electron state e1, and the first two hole states h1 and h2 of the quantum well. Only for
|k| > 0.025 1 Å−1 does the energy dispersion start to be anisotropic. In the magnetotransport
measurements we find that the electron density of channels larger than 675 nm is constant within

4 For the simulations the software package of nextnano3 is used, online at http://www.nextnano.de
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In0.2Ga0.8As QW. The data are results of a 8 × 8 k.p simulation for a temperature
of 5 K [43]. (a) For |k‖| < 0.025 the energy dispersion is similar for directions
[100] and [110]. (b) Only for larger in-plane vectors does the energy dispersion
become anisotropic.

the experimental error. Therefore, the Fermi-wavevectors can be assumed to be constant for all
channel widths which are relevant for the main conclusion of the paper (1.2 µm � w � 5 µm).
As a consequence from the k.p simulation and the transport data, the g-factor can be assumed to
vary only negligibly for all channel widths and directions. In addition, the Fermi-wavelength is
rather small compared to the channel width. Therefore, we assume that the effect of the channel
width on the Lande g-factor can be neglected. Most importantly, all conclusions of the paper are
drawn for the case that no external magnetic field is applied. Therefore, the Zeeman splitting
is zero. Only figure 4(b) of the paper depicts data taken at a finite magnetic field, in order
to demonstrate that the DP mechanism is the dominant spin relaxation mechanism in the 2D
channels at zero field.

So far, we have demonstrated that the increase of the spin relaxation time in the InGaAs
channels for decreasing widths can be understood as a dimensionally constrained DP mechanism,
while the electron dynamics are still 2D as far as the magnetotransport is concerned. We further
have shown that the anisotropy between channels patterned along [100] ([010]) and [110]
([−110]) cannot be explained by the discussed effects as hitherto. We observe from the images
shown in figure 1(c) that the channels are homogeneously etched. Consequently, strain relaxation
in the quantum wells via dislocation nucleation is unlikely for channels with 1.2 µm � w � 5 µm
and a quantum well width of �z = 7.5 nm [43]. However, an anisotropy in the spin-splitting
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and, thus, in |�(k)| has been predicted for InGaAs quantum wells assuming cubic BIA terms
and Fermi-wavevectors which are comparable to kF = √

2π nS
∼= (0.018 − 0.021) A−1 of the

discussed samples [29]. Since the spin-splitting due to BIA is anisotropic and since it can even
vanish for cubic in k BIA terms along the directions [100] and [010] (figure 1(b)), the magnitude
of |�(k)| depends sensitively on the momentum vector. Given a constant scattering time and
equation (2), this anisotropy can explain why spin lifetimes are similar for channels oriented along
[100] and [010], but are different for channels patterned along the [110] and [−110] directions.
In such narrow 2D electron systems the DP spin relaxation, which is caused by k-linear terms
due to BIA and SIA, is suppressed by a dimensionally constrained DP mechanism, while the
cubic in k terms still influence the DP spin relaxation. Since the cubic in k terms can even vanish
for [100]- and [010]-directions, the DP spin relaxation time in channels along these directions is
longer than for channels along the [110] and the [−110] direction. We would like to note that the
temperature dependence of the spin relaxation time as presented in figure 7(a) is in agreement
with the interpretation that the cubic in k terms of the BIA dominate the spin dynamics in the
narrowest channels. In figure 7(a) we find that the difference in spin relaxation times for channels
along [100] and [110] decrease for an increasing temperature; a result which has been recently
predicted by reason of electron–electron and electron–phonon scattering [35]. For the narrowest
channels, the spin relaxation mechanism proposed by Elliot andYafet [33] is likely to be present,
since scattering processes at impurities eventually dominate the charge carrier dynamics.

In summary, an effective slowing of the DP spin relaxation mechanism is observed in
unexpectedly wide n-InGaAs quantum channels. The magnetotransport data demonstrate that
the electron systems can be considered to be 2D. The results on the spin dynamics are consistent
with a dimensionally-constrained DP mechanism as recently predicted for narrow 2D quantum
wells exhibiting SIA. For the narrowest channels, the spin relaxation due to the cubic terms of
the BIA dominates the spin relaxation.
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