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We report measurements of the exciton decay dynamics of a single self-assembled quantum dot following 

non-resonant excitation. The singly charged exciton, the trion, exhibits a simple one component exponen-

tial decay corresponding to radiative recombination. Conversely, the neutral exciton exhibits a two com-

ponent exponential decay. We argue that the secondary component arises from dark exciton creation and 

subsequent conversion to a bright exciton through a spin flip. The spin flip time is a strong function of the 

bias applied between a Fermi reservoir close to the dot and a Schottky gate electrode as a result of a 

Kondo-like spin swap process. 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1    Introduction 

The neutral exciton in a self-assembled quantum dot has a pronounced fine structure [1]. The bright 

exciton states with spin 1 lie a few hundred µeV above the dark states with spin 2 as a consequence of 

the spin-dependent electron–hole exchange interaction. Furthermore, the anisotropic part of this interac-

tion splits the bright states by tens of µeV. Conversely, recent experiments have demonstrated that the 

singly charged exciton, the trion, has no fine structure because the electron spin is zero [1–4]. We report 

here the consequences of the fine structure on the decay dynamics of an exciton following non-resonant 

excitation. 

2    Exciton decay dynamics 

The InGaAs quantum dots were fabricated by MBE exploiting a strain-driven self-assembly process. The 

dots are separated by a tunneling barrier from a Fermi sea of electrons. The tunnel barrier consists of 

25 nm undoped GaAs and the Fermi sea is a GaAs n+  layer. The dots are 150 nm below the surface of 

the heterostructure onto which a NiCr gate is evaporated. The gate forms a Schottky contact and by 

means of an applied voltage, the quantum dot energy levels can be tuned relative to the Fermi energy of 

the Fermi sea. The experiment involves measuring the photoluminescence (PL) from a single quantum 

dot at 5 K. The PL exhibits a pronounced Coulomb blockade, as shown in Fig. 1. At large negative volt-

ages the dot does not emit; at 0 42- .  V, the neutral exciton (X0) emerges, and then at 0 24- .  V the X0  is 
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Fig. 1    Gray-scale plot of the photoluminescence (PL) from a single quantum dot versus gate voltage 
g

V  

at 5 K. White corresponds to 0 counts, black to 1000 counts. The neutral exciton, X0 , exists between 

g 1V V=  and g 2V V= . At g 2V V= , the X0  emission is replaced by emission from the singly-charged exciton, 

the trion, X1- . At g 3V V= , the X 1-  is replaced by the X2- . 

 
replaced by the singly charged exciton, the trion (X1- ). The origin of the strong Coulomb blockade is the 

nanometer size of the dot which leads to large Coulomb energies [5]. 

 Time correlated single photon counting is used to measure the decay dynamics. We excite the sample 

non-resonantly with a linearly polarized pulsed laser diode which emits 100 ps pulses at a wavelength of 

826 nm. The excitation is absorbed predominantly in the wetting layer. The time response of the system 

is limited to about 400 ps by the detector, a Si avalanche photodiode, but by convoluting measured de-

cays with the known response of the system, we can determine decay times to an accuracy of about 

100 ps. The decay curves are measured in a spectral bandwidth of 0.5 meV, large compared to the Cou-

lomb renormalizations of the emission on charging. The excitation power is kept low enough that we 

observe no biexciton-related emissions, either in the PL spectra or decay curves. 

 The crucial experimental result is shown in Fig. 2 within the dynamic range of the experiment, the X0  

exhibits a two-component exponential decay whereas the X1-  decay is mono-exponential. The X1-  decay 

time is 0.7 ns, corresponding to the radiative lifetime. In other words, the X1-  decay corresponds to radia-

tive decay. The primary X0  decay has a very similar decay time, 0.5 ns for the dot in Fig. 2, and therefore 

also corresponds to radiative decay. The interesting question concerns the origin of the secondary X0  

decay. In the experiment on X0 , bright and dark excitons are generated equally as the electron spin is 

randomized by the electron reservoir during relaxation. When created, a dark exciton has to flip its spin  
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Fig. 2    PL decay curves corresponding to (a) X0  and (b) X1-  measured on the same quantum dot at 5 K. 

The excitation was a 100 ps pulse at 826 nm. The X1-  decay is reproduced well by a single exponential 

but the X0  decay requires a second exponential component to achieve a good fit to the data. 
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Fig. 3    PL decay curves at various voltages along the X0  plateau. 

 

in order to become bright and emit a photon. We therefore associate the secondary decay time with the 

dark exciton dynamics. The mono-exponential decay curves of the X1-  reinforce this statement as we can 

thereby rule out other effects such as minority carrier diffusion. 

 The secondary decay time, 
2

τ , varies with voltage as shown in Figs. 3 and 4. X0  exists between volt-

ages 
1

V  and 
2

V . Close to 
1

V , 
2

τ  increases from around 1 ns to a maximum of 20∼  ns. 
2

τ  remains at 20 ns 

before decreasing close to 
2

V . The behavior is symmetric with respect to 1

1 22
( )V V+  suggesting very 

strongly that the dynamics are related to the Coulomb blockade. However, in the plateau region, the 

secondary component has a much smaller intensity than the primary and there is also a net loss of signal 

implying that the decay in this region is dominated by a non-radiative mechanism, in all probability hole 

tunneling out of the quantum dot. 

 The decay time 
2

τ  is dominated by the spin flip time of the dark exciton close to 
1

V  and close to 
2

V . 

The strong voltage dependence rules out an intrinsic spin flip mechanism which would not have a strong 

voltage dependence. In fact, we can deduce from the present experiment that the intrinsic spin flip time is 

larger than 20 ns. 

 The mechanism we propose for the spin flip mechanism is illustrated in Fig. 5. The initial state, the 

dark exciton, flips its spin by exchanging a spin with an electron close to the Fermi energy in the Fermi 

sea, forming the bright exciton as final state in this process. The intermediate state has either both elec-

trons in the Fermi sea, dominant near 
1

V , or both electrons on the quantum dot, dominant near 
2

V . As we 

show, this mechanism has the correct voltage dependence and we find quantitative agreement with 

model calculations. 

3    Calculations based on the Anderson Hamiltonian 

The starting point of our calculations is the Anderson Hamiltonian which describes the interaction of a 

localized electron with a Fermi sea of continuum electrons [6]. The true eigenstates are admixtures of 

localized and continuum states. However, for voltages far enough away from 
1

V  and 
2

V , the states are 

predominantly either quantum dot-like or continuum-like. We therefore assume that the initial state fol- 
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Fig. 4    Lifetimes (a) and relative intensities (b) of the primary and secondary decay components plotted 

as filled and open symbols, respectively, as a function of 
g

V . The solid lines are the results of the model 

calculations taking, with symbols defined in the text, 0 07∆ = .  meV, 
r

1 8γ = .  ns 1- , 
nr

0 06γ = .  ns 1- , 

BD
0 3δ = .  meV and 

0
50Γ =  µeV. The components 1

r
γ

- , 1

nr
γ

-  and 1

DB
γ

-  are shown by the dashed lines. 
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Fig. 5    Schematic representation of the transition of a dark exciton d , initial state |iÒ , to a bright exciton 

b, final state | f Ò , through two possible intermediate states, |vÒ . The splitting between the dark and bright 

states is 
BD

δ , exaggerated for clarity. The spin swap process conserves energy such that the participating 

continuum states must be split by 
BD

δ . The hole spin is assumed to remain constant throughout the pro- 

cess, 3

2
+  in this particular example. Top: both electrons occupy continuum states in the intermediate state; 

bottom: both electrons occupy the quantum dot in the intermediate state. 

 
lowing photo-excitation is a localized quantum dot state. To calculate the spin-flip rate of a dark to bright 

exciton, we treat the tunneling term in the Hamiltonian as a perturbation, calculating the rate using Fer- 

mi’s golden rule. The tunneling term in the Hamiltonian is † †( )
k ks s s ks

k s

V c c c c

,

+Â  where 
k

V  is the tunneling 

matrix element, †
c  and c denote creation and annihilation operators, respectively, and s is either spin-≠  

or spin-Ø  in a standard notation [6]. In first order, perturbation theory gives a zero result for the spin flip 

rate as the individual terms in the tunneling Hamiltonian transfer an electron from a localized to a con-

tinuum state, or vice versa, maintaining spin. The first non-zero result arises in second order perturbation 

theory. An alternative approach is to transform the Hamiltonian with the Schrieffer–Wolf canonical 

transformation which removes terms first order in V . First order perturbation theory can then be used on 

the transformed Hamiltonian. We follow this approach as it allows a natural connection to be made be-

tween the results presented here and the Kondo effect. The transformed Hamiltonian contains several 

terms to second order in V , but the term responsible for the spin-flip through co-tunneling is 

 
† †1 1 1 1 1

2
k k k s k s s s

k k s k L k L L k L k

V V c c c c
U Uε ε ε ε ε ε ε ε

¢ ¢ - -

, ¢, ¢ ¢

Ê ˆ+ + + ,Á ˜Ë ¯- - + - + -Â  (1) 

where 
L

ε  is the energy of the localized state, 
k

ε  the energy of the continuum state with wave-vector k , 

and U  is the on-site Coulomb energy. The operators show that this term exchanges a spin between a 

localized and continuum electron. The amplitude contains two terms. The first two do not involve the on-
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site Coulomb interaction and can be associated with the process shown in the upper part of Fig. 5 where 

the intermediate state has an empty localized state. Conversely, the second two terms do involve the on-

site Coulomb interaction and can be associated with the process shown in the lower part of Fig. 5 where 

the intermediate state has a doubly occupied localized state. This particular operator in the transformed 

Hamiltonian ultimately leads to the Kondo effect when the tunneling is highly coherent. 

 The energy separations in the denominators in Eq. (1) are determined by the electrostatics of the de-

vice. Converting the applied voltage into an electrostatic energy with the lever arm model [5], the singly-

occupied quantum dot level lies g 1( )e V V λ- /  beneath the Fermi energy, and the doubly-occupied quan-

tum dot level lies 2 g( )e V V λ- /  above the Fermi energy (Fig. 5), where λ  is the lever arm, 7 for this par-

ticular device. 

 The individual terms in Eq. (1) involve two continuum states with wave vector k  and k ¢. They are 

separated in energy by the splitting between the dark and bright states as demanded by energy conserva-

tion as the hole spin is constant. Clearly, the total rate is determined by summing over all the continuum 

states, taking into account the occupation factors. We do this in the standard way with the density of 

states and Fermi–Dirac function. The product of two Fermi–Dirac functions, ( )f ε  and 
BD

[1 ( )]f ε δ- - , 

where ε  is the energy, and 
BD

δ  the splitting between the dark and bright states, with the Fermi energy fε  

defined to lie at zero energy, implies that only states within a few 
B
k T  of the Fermi energy contribute to 

the integral. This in turn means that over this range we can neglect the k -dependence of 
k

V  and also any 

energy dependence of the density of continuum states. The denominators in Eq. (1) result in singularities 

and potentially unphysical results. The singularities will disappear in a more complete treatment which 

includes the dephasing of the initial and final states. In our approximate account, we introduce the depha-

sing of the initial and final states through an imaginary term, motivated by the self energy. We finally 

arrive at the following result for 
DB

γ , the transition rate from the dark to bright exciton, 

 

2

2

DB BD

g 1 2

1 1
( ) [1 ( )] d

( ) ( )
2 2

g

f f
i ih

e V V e V Vε

∆
γ ε ε δ ε

ε λ Γ λ ε Γ

= + - - .

+ - / + - / - +

Ú  (2) 

Γ  is the energy broadening of the exciton states and ∆ is a tunnel energy, 22 | | ( )fV g∆ ε= p , ( )g ε  being 

the density of states. We describe the energy broadening Γ  by reference to the experiment. There is a 

voltage-independent term 
0

Γ  which arises from scattering with optically-excited carriers and phonons 

and there is also a tunneling related term which depends on voltage, 

 0 g 1 2 g2 [ ( ( ) ) ( ( ) )]f e V V f e V VΓ Γ ∆ λ λ= + - / + - / . (3) 

Strictly of course, the spin-flip process described by Eq. (2) contributes to Γ  but we find that in the volt-

age regime where the model is valid, the spin-flip process makes a very minor contribution to the line-

width. 

 A number of comments can be made from the result for 
DB

γ . First, the result for 
DB

γ  depends quadrati-

cally on the tunnel energy, exactly as expected for a two-particle co-tunneling process. Secondly, 
DB

γ  has 

a strong voltage dependence through the electrostatic energies, the largest energies in the problem. In 

fact the theoretical result is symmetric around 1
1 22

( )V V+ , exactly as in the experiment. Thirdly, 
DB

γ  has a 

temperature dependence through the Fermi–Dirac functions. 
DB

γ  increases as the temperature increases 

through a softening of the Fermi–Dirac functions. Conversely, when 
BD

T δ� , as 0T Æ , 
DB

0γ Æ  as in 

this case there is little overlap between ( )f ε  and 
BD

[1 ( )]f ε δ- - . Fourthly, the same mechanism, elec-

tron spin-swap with the Fermi sea, can convert a bright into a dark exciton and a similar result for 
BD

γ  

can be derived. In this case, the product of occupation factors becomes 
BD

( ) [1 ( )]f fε δ ε- - , resulting in 
BD B

BD DB
e

k Tδ
γ γ

/
� . In our experiment at 5 K, 

BD DB
γ γ�  but at lower temperature 

BD DB
γ γ> . As a final  

remark we note that 
DB

γ  depends on the product of 2
V| |  and ( )fg ε  and not on either term individually, 

facilitating a detailed comparison with the experiment. 
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 A significant strength of our experiment is that we can determine the parameters required to calculate 

DB
γ , equivalently 

BD
γ , from the PL spectra. 

BD
δ  can be measured even at zero magnetic field by measur-

ing the PL from more highly charged excitons for which the “dark” states become bright [7]. We find 

that 
BD

0 3δ = .  meV for the dot in Fig. 4. ∆ can be measured through the X1-  emission for voltages just 

larger than 
2

V . We have recently demonstrated that at this voltage the single electron in the final state 

tunnels out after recombination [8] such that the PL FWHM is 2∆ . This gives 0 07∆ = .  meV for the dot 

in Fig. 4. The corresponding tunneling time is 9
t

τ ∆= / =�  ps, considerably less than the radiative re-

combination time. We can also back up these measurements of the tunneling time with estimates based 

on the result in [9] for 0D–3D tunneling. For the dot in Fig. 4, we estimate the electron ionization energy 

to be 95 meV from the experimental Coulomb blockade (Fig. 1), and the tunnel barrier thickness is 

known to be 25 nm from the growth. The tunneling time depends exponentially on these parameters [9]. 

The tunneling time depends relatively weakly on the prefactor to the exponential which contains the 

vertical confinement, the height and the electron effective mass which we estimate as 220 meV, 3 nm 

(the approximate z -direction wave function extent of our nanostructures [10]) and 
0

0 07m.  (the mass 

determined from spectroscopy in a magnetic field [11]), respectively. The result is 12 ps, proving that the 

experimental value of 9 ps is very reasonable for our structure. 
0

Γ  is determined by the spectral linewidth 

of the X0  exciton around 1
g 1 22 ( )V V V+� . The linewidth is smaller than the spectral resolution in this 

particular experiment making it difficult to determine 
0

Γ  accurately. We estimate 
0

50Γ �  µeV. We note 

however that the results for 
DB

γ  are only weakly dependent on 
0

Γ  and within the error for 
0

Γ  they change 

only by a few %. The PL spectra show that the X0  linewidth is larger for voltages close to 
1

V  and 
2

V  than 

it is for voltages close to 1
1 22

( )V V+ , and this increase is compatible with broadening resulting from single 

electron tunneling, exactly the content of Eq. (3). 

 The decay curves depend on the radiative rate 
r

γ , the spin-flip rates 
DB

γ , 
BD

γ  and non-radiative decay 

through the hole tunneling rate 
nr

γ . To calculate the primary and secondary lifetimes and intensities we 

use a rate equation model, considering 3 levels, the vacuum state, the dark state with occupation 
D
n  and 

the bright state with occupation 
B
n , as illustrated in Fig. 6. The rate equations are 

 

B

B BD nr r D DB

D

D DB nr B BD

d
( )

d

d
( )

d

n
n n

t

n
n n

t

γ γ γ γ

γ γ γ

= - + + + ,

= - + + .

 (4) 

The solutions to the rate equations yield a bi-exponential decay, exactly as in the experiment, 
1 2

B 1 2
( ) e et t

n t a a
γ γ- -

= +  with 

 2 21 1

1 2 r nr DB BD r r BD DB DB BD2 2
( 2 ) 2 ( ) ( )γ γ γ γ γ γ γ γ γ γ γ

,

= + + + ± + - + + , 

 
r BD nr 2(1) DB

1 2 B D

1 2 1 2

(0) (0)a n n

γ γ γ γ γ

γ γ γ γ
,

+ + -
= ± .

- -
∓  (5) 

 

γnr

γnr

bright

vacuum

dark

nB

nD

γDB γBD

γr

 

Fig. 6    Three levels taken into account in the rate equations: the 

vacuum state, the dark exciton and bright exciton. The bright and 

dark states are connected by a spin-flip process; the bright exciton 

can decay radiatively; and both dark and bright excitons can decay 

non-radiatively by hole tunneling out of the dot. 
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These equations yield intuitive results in the limit 
r BD DB

γ γ γ,�  namely 
1 r BD nr

γ γ γ γ+ +�  and 

2 DB nr
γ γ γ+� . In other cases however, the relationship of the measured rates 

1 2
γ

,

 to the radiative, non-

radiative and spin flip rates is more complicated. We assume that the initial state populations of dark and 

bright excitons are equal, 
B D
(0) (0)n n= . This is a good approximation because, first, the highly non-

geminate capture processes following highly non-resonant excitation in our device imply a random exci-

ton spin, and second, our own results and also those of other groups [12] show that thermalization of the 

exciton spin takes much longer than a ns. 

 Figure 4 shows the final result of the calculation. The model accounts extremely well for the bias 

dependence of the lifetimes and relative intensities. The calculation makes it clear that we can tune 
DB

γ  to 

be both larger and much smaller than 
r

γ . The dependence on tunneling energy and temperature in Eq. (2) 

has also been experimentally verified [13]. 

4    Conclusions and outlook 

The exciton decay dynamics of a single self-assembled quantum dot clearly reveal components due to 

radiative recombination of the bright exciton and a spin flip of the dark exciton. We demonstrate that the 

most important spin flip mechanism in our device involves a spin flip with a Fermi sea, a reservoir of 

charge interacting with the quantum dot through a tunneling interaction. This imparts a strong voltage 

dependence to the spin flip time. This is a significant result: the exciton spin flip time can be manipulated 

to be smaller or much larger than the radiative recombination time simply with a small dc voltage. We 

demonstrate quantitative agreement with our results with a model based on the Anderson Hamiltonian, 

enabling us to interpret the spin flip mechanism as a Kondo-like interaction. Our results therefore sug-

gest that in a more coherent process, involving a smaller dark-bright exciton splitting, a lower tempera-

ture and perhaps a higher electron mobility in the Fermi sea, it will be possible to observe an optical 

Kondo effect. 
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