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Abstract. In this paper, we demonstrate the formation of confinement potentials
in suspended nanostructures induced by the geometry of the devices. We then
propose a set-up to measure the resulting geometric-phase change in electronic
wave functions in these mechanical nanostructures. The device consists of a
suspended loop through which a phase-coherent current is driven. A combination
of two and more geometrically induced potentials can be applied for creating
mechanical-quantum-bit states.

Quantum mechanics in curved-linear manifolds has been elaborated previously [1]. The
propagation of waves in curved waveguides can be ‘translated’ for quantum particles into a
Hamiltonian consisting of the kinetic energy operator and a resulting potential energy, which
is of pure geometric origin. The ability to build nanostructures with a three-dimensional (3D)
relief allows the realization of low-dimensional electronic systems possessing a mechanical
degree of freedom [2]. This is exemplified in recent works by Prinz et al [3] and Schmidt and
Eberl [4], who demonstrated how to realize rolled-up semiconductor films with a radius of
curvature R ∼ 100 nm. Thus it is worthwhile studying the influence of geometric potentials on
phase-coherently propagating particles in curved low-dimensional electron systems. This will
induce a phase shift in the electronic wave function corresponding to Berry’s phase [5].

In the case of a 2D electron gas, flexing the gas leads to a geometric potential of the form

U = − h̄2
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Figure 1. (a) Sketch of a single wire and the resulting geometrically induced
confinement potentials. The parameter α represents the degree of bending and
E0 represents a bound electronic state in the resulting potential. This geometric
potential can be represented as a rectangular potential well having a width αR
and a depth −h̄2/8mR2. (b) For α = π and π/2, square well potentials with
different binding energies are obtained.

where m is the effective mass and R1, R2 are the principal curvature radii of the surface at the
point where the electron resides. The geometric potential is always attractive and is independent
of the electric charge of a particle, similar to gravitation. Furthermore, it is of purely quantum
origin, i.e. it vanishes for the limit h̄ → 0.

If one of the radii tends to infinity, we obtain a cylindrical surface. Particularly, this is
the case when electrons are confined to a quantum wire having the shape of a plane curve.
The Schrödinger equation for such a curved-linear 1D system reads (see figure 1(a))

Ĥψ = −
[

h̄2

2m

d2

ds2
+

h̄2

8mR2(s)

]
ψ = Eψ, (2)

where s is the length of the arc of the wire counted from an arbitrary origin and 1/R(s) is the
local curvature. A straightforward derivation of equation (2) is given in [6].3 We have further

3 In this specific case, the kinetic energy operator has the conventional form of a 1D Schrödinger equation,
obtained by replacing ‘x’ with ‘s’. A curve does not possess an internal geometry, in contrast with the 2D case
and manifolds of higher dimension.
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shown in this paper that a wire having the shape of an Archimedes spiral gives the geometric
potential with an asymptotic behaviour resulting in Coulomb’s law

1/R2(s) ∼ 1/s. (3)

Hence, there is an infinite set of bound states corresponding to the localization of electrons at
the origin of the spiral.

If one starts with a quantum wire consisting of two straight lines conjugated by an arc
of a circumference (‘open book’ shape), the corresponding geometric potential is a rectangular
potential well (see figure 1(b)) with a width αR and a depth − h̄2/8mR2, where R is the radius
of the circumference and α is the conjugating arc (the angle between two rectilinear parts of the
wire). There exists one and only one bound state for α < π in such a system and its energy is
given by

E0 = − h̄2

8mR2

(
1 − 16z2

α2

)
, (4)

where z(α) is the root of cos z = 4z/α between 0 and π/2 (see figure 1(b)). For example,
for a U-shaped wire (α = π) with R = 100 Å and an electron mass m = 0.07m0 in GaAs, we
find a binding energy of E0 = 4 K, whereas for the conjugation of two perpendicular straight
lines, i.e. α = π/2, we obtain E0 = 3 K. The phase of the wave function in the quasiclassical
regime is then given by the integral

1

h̄

∫ S

0
P ds′ = 1

h̄

∫ S

0

√
2m(EF − U(s′)) ds′. (5)

For a wire with a small curvature, the relation for the Fermi energy and the geometric
potential is EF � h̄2/8mR2. Then, the total phase shift, �φ, after passing through the
conjugation, is given as �φ ∼= α/8kFR, where kFR � 1 with kF = PF/h̄. In the opposite
limit kFR � 1, the integral in equation (5) gives �φ = α/2.

The most realistic case, of course, is given by the limit kFR � 1. A mechanically
deformable quantum interferometer will be able to sense such a deformation if its sensitivity
to the phase shifts exceeds the value α/8kFR. Such a mechanical quantum interferometer
(MQUI) can be realized by suspending a 2D electron gas in a thin membrane. While the electron
gas usually is 10 nm thin, the total membrane thickness will be about 90 nm. This leaves the
minimal radius of curvature at R ∼ 500 nm, giving a confinement potential for the lowest state
of E0 ∼ 1.6 mK. Prinz et al [3] have shown that smaller curvature radii can be achieved. In
particular, considering surface-bound 2D electron gases in InAs, heterostructures should allow
reaching the regime R ∼ 10 nm, effectively leading to temperatures in the range of ∼4 K.

An MQUI is shown in figure 2: the interferometer basically consists of a ring-shaped
suspended membrane containing a 2D electron gas. This geometry first allows to measure
the interference induced by a magnetic field applied perpendicular to the plane of the ring,
i.e. ‘classical’ Aharonov–Bohm oscillations (see figure 2(a)). The interferometer has to be
calibrated in the following manner: the diameter of the ring should be smaller compared with
the phase coherence length Lφ; hence, in this case, a diameter of 5µm as found for 2D electron
gases will be sufficient. To facilitate deformation of the arms of the ring, gating electrodes
are used beneath the ring, as shown in figure 2(b). To prevent depletion of the electron

New Journal of Physics 6 (2004) 33 (http://www.njp.org/)

http://www.njp.org/


4 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 2. Mechanical quantum interferometer: (a) electrons propagate phase-
coherently through the ring similar to an Aharonov–Bohm geometry. By flexing
the arms of the ring (α, α′), a geometric potential is formed, which leads to an
effective phase shift of the electronic wave function within the interferometer.
(b) Two flexing modes can be distinguished, (i) and (ii), both of which lead to an
identical phase shift.

gas, the suspended heterostructure contains a highly n-doped GaAs back-layer. By gating the
arms of the interferometer individually, two flexing modes can be supported. Both modes are
shown in figure 2(b). Since the potential shows a dependence of ∼R−2, both modes will lead to
the same wave function shift. Another technique for mechanically modulating the suspended
electron ring involves the use of surface acoustic waves [7]. The modulation amplitude is
considerably increased in suspended membranes [8].

Intriguingly, the combination of two curved sections connected by a thin wire w—denoted
as a �-shaped element—will lead to a double-quantum well potential, as demonstrated in
figure 3(a). Depending onR(s) andw, the two discrete states in the wellsEA,B0 can communicate,
i.e. a tunnel splitting of the order of 2δE0 will occur. Thus this system represents a mechanical
quantum bit (mqubit), whose communication is given by the exchange of phonons at an energy
2δE0 = hfph = hca/w, where ca is the velocity of sound in the heterostructure and w the length
of the connecting element. Naturally, this scheme can be extended to a chain with N elements
forming N/2 �-wire mqubits, as shown in figure 3(b). A variety of different modes is available
for exchange of information between two mqubits (figure 3(b), (ii)). Stretching and contracting
the wire elements individually allows us to steer inter- and intra-mqubit communications. The
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Figure 3. (a) A �-wire forming a double-quantum well potential: the discrete
states in the two wells can interact depending on the length of the connecting
wire element,w. In the case of tunnelling, a mqubit is formed, i.e. the two discrete
states are tunnel-split by δE0. (b) Chain of �-wire elements defining a circuit of
10 coupled mqubits (i). Communication between two mqubits is achieved by
a variety of local deformations of the wires (ii). Parallel addressing of mqubit
chains is possible through acoustic phonons propagating along the wire with the
velocity of sound (iii), but at lower frequencies (indicated by dashed lines).

overall information exchange is performed through low-frequency phonon modes (indicated by
dashed lines in (iii)). The energy of these modes is determined from ca and the chain length.
By sectioning into subchains, the interaction of the mqubits is organized in a hierarchy.

As another example, we would illuminate the U-shaped wires for generating electron–hole
pairs that form excitons. The electrons, holes and, hence, the excitons will be attracted to the
bottom of the U-wires’ geometric potentials. Since excitons do not obey the Pauli-exclusion
principle, the probability of capturing more and more excitons is high.
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