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Abstract. – We present measurements on spin blockade in a laterally integrated quantum
dot. The dot is tuned into the regime of strong Coulomb blockade, confining ∼ 50 electrons. At
certain electronic states we find an additional mechanism suppressing electron transport. This
we identify as spin blockade at zero bias, possibly accompanied by a change in orbital momen-
tum in subsequent dot ground states. We support this by probing the bias, magnetic field and
temperature dependence of the transport spectrum. Weak violation of the blockade is modelled
by detailed calculations of non-linear transport taking into account forbidden transitions.

Conventional electronics relies on controlling charge in semiconductor transistors. The
ultimate limit of integration is reached when these transistors, termed quantum dots, are
operated by exchanging single electrons only. The mechanism governing electron transport
through dots is known as Coulomb blockade (CB) [1, 2]. Apart from this, electrons naturally
possess a spin degree of freedom, which recently attracted considerable interest regarding the
combination of spintronics and quantum information processing [3]. Hence, studies on the
interplay of spin and charge quantum states in quantum dots form an integral contribution
for defining and controlling electron spin quantum bits.

One of the key techniques applied to study electronic structure in quantum dots is transport
spectroscopy: Defining the dots by locally depleting a two-dimensional electron gas enables
this direct monitoring of ground and excited states of the artificial atoms [4]. In contrast
to Kondo physics [5] in the limit of transparent tunneling barriers between the quantum dot
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Fig. 1 – (a) SEM micrograph of the gate electrodes defining the quantum dot (top view). Approximate
dot area (circle), source (S) and drain (D) contacts are marked schematically. (b) Conductance
measurement on the quantum dot (B = 0T; white denotes −0.1µS (NDC), grey (large areas) 0µS,
black ≥ 2.0µS). (c) Conductance trace at Vsd = 0V; an exponential fit through the conductance
peak maxima has been added (dashed line). Conductance peak three is suppressed by spin blockade.

and the reservoirs, we are focusing on the regime of opaque barriers and Coulomb blockade.
In other words, the strong hybridization with electronic reservoir states found for the dot
electrons in Kondo physics is suppressed and both electron spin and orbital quantum numbers
remain well defined.

Inspired by an early experiment of Weis et al. [6], it was suggested by Weinmann et al. [7]
that transport through single quantum dots can be blocked due to spin effects. Spin selection
rules particularly prohibit single-electron tunneling (SET) transitions between N and N + 1
electron ground states of the dot which differ in total spin by ∆S > 1/2. This phenomenon
was termed spin blockade (SB) (type-II), occurring in addition to conventional CB and leading
to a suppression of the corresponding conductance peak in linear transport [7].

Here, we demonstrate a spin blockade effect in the many-electron (N ∼ 50) limit in a
two-dimensional quantum dot, in contrast to earlier measurements by Rokhinson et al. [8] on
a small three-dimensional silicon quantum dot with only a few electrons. In particular, we
present detailed measurements on the bias and magnetic field dependence of the transport
spectrum of our laterally gated quantum dot. Weak violation of spin blockade due to spin
orbit coupling is found. Modelling the system by numerical calculations taking into account
type-II spin blockade and weak spin relaxation, we observe qualitative agreement with the
transport spectrum.

The quantum dot we use is shown in fig. 1: A number of split gates is defined by electron
beam lithography on top of an AlGaAs/GaAs heterostructure. When applying negative gate
voltages V1, V2, V3, and Vg, a single nearly circular quantum dot is formed in the two-
dimensional electron system (2DES) 120 nm below the surface. At 4.2 K, the carrier density of
the 2DES is ns = 1.8×1015 m−2 and the electron mobility is 75 m2/Vs. For the measurements
presented here a dot with an electronic radius of approximately 90 nm was defined. The 2DES
was cooled to a bath temperature of 23 mK and an electron temperature of Tel = 95 mK in
a 3He/4He dilution refrigerator. Using an excitation voltage of 12 µV at 18 Hz, the noise in
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the CB regime is lower than 50 nS. Electronic radius and mean level spacing both lead to an
estimate of N ∼ 50 electrons on the dot.

In fig. 1(b) the conductance is plotted as a function of gate voltage Vg and source/drain bias
Vsd. Near Vg = −290 mV, a capacitance ratio of α = Cg/CΣ = 0.059 has been obtained from
this measurement, leading to a total dot capacitance of CΣ = 83 aF. Therefore the Coulomb
charging energy EC = e2/CΣ of around 1.9 meV, giving the electrostatic energy required to
add an electron to the quantum dot, is dominant compared to the spatial quantization energy
ε. Nevertheless, a rich spectrum of excited state resonances in all SET regions is revealed. In
addition, multiple lines of negative differential conductance (NDC) are visible, as predicted
in ref. [7]. Hence, we can conclude that in these regions spin-polarized excited states lead to
a reduction of current via spin blockade type-I.

As a striking feature, the conductance at peak three in fig. 1 is, for small |Vsd|, significantly
below the expected value as compared to peaks two and four. Only for |Vsd| ≥ 300 µV
transport via an excited state becomes possible, and the conductance increases. Such strong
suppression of ground-state tunneling is caused by spin blockade of type-II. This phenomenon
involves ground-state transitions only. An electron is blocked from entering the dot, since the
transition involves two levels with total spin difference ∆S > 1/2.

Figure 1(c) shows the conductance trace at Vsd = 0 in logarithmic scale. As the width
of the tunneling barriers increases at higher |Vg|, the maximum current approaches zero in
the case of complete pinch-off. In a simple quantum-mechanical picture, the maximum peak
conductance is assumed to decrease exponentially with −Vg. Again, the amplitude of peak
three is considerably below the most general maximum/minimum bounds (dotted lines in
fig. 1(c)). An exponential fit through the peak maxima (dashed line) allows us to estimate a
lifetime of the spin state causing spin blockade. We assume that the tunneling rates ΓL/R/h
of the left and right barrier defining the dot are equal —which appears reasonable because of
the high degree of symmetry shown in the diamond conductance structure of fig. 1(b).

In our case of weak coupling to the reservoirs, where Γ � kBT � ε < EC, the maximum
conductance through the quantum dot is given by [9]

σmax =
e2

h

1
4kBTel

Γ
2

.

The dwell time for an electron in the system is estimated with τb = h/Γb = 9.5 ns in the case
of transport blockade compared to τe = h/Γe = 0.8 ns as extrapolated value without any spin
effects [10]. Therefore, coupling of the long-lived state to its environment corresponds to a
time scale of ∆τ = τb − τe ≈ 8.7 ns, i.e. the high-spin state survives for several nanoseconds.

Additional information on spin blockade is given by the temperature dependence of the
current peaks at the SET resonances, taken from a measurement at Vsd = 20 µV (dc) and
displayed in fig. 2(a). In the present case of CB (EC > ε � kBT ), a decrease of the current at
higher temperatures is expected [9], while peak three shows an increase above Te ∼ 400 mK.
This gives rise to the assumption that via the broadening of the Fermi-Dirac distribution in
the leads a non-blocked transport channel becomes accessible at an energy scale comparable
to kBTe ≈ 35 µeV above eVsd [7], by order of magnitude consistent with a change in spin
configuration at B = 0 T [11].

In fig. 2(b), we observe the change in electron addition energy ∆E = EC + ∆ε with
increasing magnetic field, which is proportional to the gate voltage SET peak spacing (see inset
of fig. 2(b)). Whereas a magnetic field parallel to the 2DES couples primarily to the electron
spin via the Zeeman energy term, the perpendicular field applied here strongly influences the
orbital states as well. Most observed peaks display a weak field dependence. Strikingly, the
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Fig. 2 – (a) Relative temperature dependence of the CB peak height (dc measurement at Vsd = 20µV),
including fit errors; only peak three increases with temperature above Te ∼ 400mK, in every other
case the decay characteristic for CB is apparent. (b) B-dependence of the single-electron addition
energy ∆EN−(N+1) = α(Vg)|Vg,N − Vg,(N+1)|. For small B, peak spacings around peak three vary
rapidly with respect to a magnetic field perpendicular to the 2DES.

spin-blocked resonance is shifting strongly at low magnetic fields, as can be seen at hand of
the high slopes of charging energy 2-3 and 3-4 in fig. 2(b).

Different explanations for this phenomenon are possible. On the one hand, recent mea-
surements by Pallecchi et al. [12] indicate the possibility of greatly enhanced g-factors in 2D
quantum dots; values of up to g ∼ 20 have been observed in AlGaAs/GaAs quantum wires.
As an example, at g ≈ 5.4 line shifts can be approximated solely by the Zeeman shift caused
by a spin difference ∆S = 5/2 of subsequent electron number ground states (cf. ref. [13]),
thus explaining spin blockade. At nearby, non-blocked resonances, the peak shift is then con-
sistent with a spin change in the dot of ∆S = 1/2, i.e. the addition of a single-electron spin.
Theoretical predictions [14] support a g-factor deviation in case of unusually large spin-orbit
interaction.

However, orbital states are modified by the magnetic field perpendicular to the 2DES as
well. Hence, on the other hand, a change in orbital quantum numbers, particularly ground-
state angular momentum, is an alternative explanation for the peak shift. Since momentum
and angular momentum of an electron are not preserved when traversing the quantum point
contacts [15], a misalignment of spatial quantum numbers alone will not lead to a total blocking
of transport. Therefore, a change in both L and S between subsequent electron number ground
states leads to a scenario explaining the data.

In addition, nonlinear conductance measurements at finite magnetic field perpendicular
to the 2DES have been taken. In fig. 3(a) to (c) the transport-blocked SET resonance is
shown at 0 mT, 150 mT, and 450 mT. At a field strength of only 300 mT, the quantum levels
in the dot are already shifted sufficiently to re-enable ground-state transport. This is also
demonstrated in fig. 3(d), which shows the conductance at Vsd = 0 V and the blockade gap
energy EG as a function of B. At B = 300 mT, a strong increase in conductance is seen.
Here, one quantum ground state participating in SET changes because of a level crossing; for
higher B, |∆S| = 1/2 for the N and N + 1 electron ground state and SET transport takes
place. This assumption is directly supported by the data of fig. 2(b), B = 300 mT being the
field strength where the B-dependence of addition energies around peak three adapts to the
one around nearby peaks. For high B the overall conductance through the quantum dot is
decreasing because of a gradual compression of the dot states by the magnetic field [16].
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Fig. 3 – (a) to (c): Effect of an external perpendicular magnetic field on the spin blocked SET
resonance three. (a) Detail from fig. 1(b). (b) At B = 150mT the gap has partly closed. Conductance
is still suppressed for |Vsd| < 200µV. (c) Blockade phenomena disappear completely at 450mT.
Simultaneously, regions of NDC are evolving. (d) Magnetic-field dependence of the transport blockade
gap as indicated in (a) and the maximum conductance at Vsd = 0V. At approximately 300mT the
gap is quenched.

The data indicate strong electronic correlations in the quantum dot involving both spin
and orbit of the wave function. The expected impact of correlation effects can be estimated
by the conventional parameter rs = 1/

√
πnsaB [17] with aB as the Bohr radius in GaAs. In

our sample, it is given by rs = 1.2, thus even assuming a somewhat lower electron density
in the dot, it remains still far below critical values of rs ∼ 8 to 36. Taking into account the
high number of electrons present (N ≈ 50), the measurement presents an unusually strong
deviation from the constant interaction model [2].

A spin blockade level scenario and results from numerical transport calculations are de-
picted in fig. 4. The calculations were performed using a master equation approach, describing
the regime of sequential tunneling, as in ref. [7]. The transition rates between the many-body
states of the dot include a Clebsch-Gordon factor which accounts for the spin selection rules.
Spin values of S = 2 and 3 have been assumed in the model for the ground and excited N -
electron states, 7/2 and 5/2 for the (N + 1)-electron states, respectively. Given the blockade
condition, similar spin values may lead to the same qualitative results; the model retains a high
degree of generality. If one assumes perfect spin conservation in tunneling processes as well
as for the electrons confined in the dot, the theory yields transport spectra which are qualita-
tively different from the experimental ones (see fig. 4(a)). This comparison of the theory and
the measurements indicates that spin blockade is weakly violated, possibly due to spin-orbit
coupling. Such a state mixing mechanism in the quantum dot leads to a violation of both spin
and angular-momentum conservation. The couplings might differ considerably in our case
from previous observations [8]; possible reasons include the material system (AlGaAs/GaAs
instead of Si), the potential shape of the dot, and their effect on the details of the spin-orbit
Hamiltonian.

We take this effect into account by including a phenomenological spin-independent tran-
sition rate between many-body states in our model, allowing for electron tunneling processes
from and into the dot in which the spin selection rules are violated. Using the small value of
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Fig. 4 – Model calculation of nonlinear transport for spin blockade type-II. (a) Transport spectrum
in the case of perfect spin conservation, differing considerably from measured data. (b) Schematic
representation of the quantum levels assumed for the calculation. (c) When taking into account a
weak violation of spin transition rules, the characteristic blockade situation at B = 0T (cf. fig. 1(b))
emerges. In (d) spin blockade is lifted by a magnetic field B = δ/gµB, with δ being the excitation
energy of the N electron system: because of a level crossing, the blockade condition |∆S| > 1/2 is
not fulfilled anymore (cf. fig. 3).

1% of the spin-allowed transition rates, and assuming quantum levels as displayed in fig. 4(b),
good qualitative agreement of theory and experiment is found in fig. 4(c) and (d). The mag-
netic field was introduced as a Zeeman-like shift of the levels, leading to a level crossing in
the N -electron spectrum when gµBB equals the N -electron excitation energy δ. The actual
mechanism of the level shift observed in the experiment may be more complex; however, our
findings explain that the spin blockade is lifted at stronger magnetic field, in agreement with
the experimental observations.

In conclusion, we have demonstrated transport blockade in a quantum dot containing
approximately 50 electrons, caused by spin selection rules: electronic correlations lead to
a discontinuity in ground-state spin quantum numbers and possibly in addition in spatial
quantum numbers for subsequent electron counts. As a result, ground-state transport blockade
caused by spin selection rules is found.

We observe the properties predicted for such a system: Spin blockade can be lifted by
raising the temperature, or applying a source/drain voltage. Shifting the quantum levels via
a magnetic field leads to a change in ground-state spin, lifting spin blockade as well. Two
alternative mechanisms for the observed level shift are proposed: firstly, a large Zeeman shift
via g-factor enhancement, secondly, a combined change of both spin and orbital quantum
numbers.

In the measurement, spin blockade is weakly violated. A likely candidate for this conduc-
tion process is given by the spin-orbit interaction-induced spin state mixing in the quantum
dot, being consistent with both proposed mechanisms of level shifting. Taking a correspond-
ing weak violation of selection rules into account, numerical calculations of a straightforward
spin blockade model lead to good qualitative agreement of theory and experiment, and the
properties of the nonlinear transport spectrum at zero and large B are accurately reproduced.
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