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Abstract

A novel magnetic interference e&ect is proposed for a neutral, but polarizable exciton in a quantum ring with a 4nite
width. The magnetic interference e&ect originates from the nonzero dipole moment in the exciton. The ground state of
exciton acquires a nonzero angular momentum with increasing normal magnetic 4eld. This leads to the suppression of the
photoluminescence in de4ned windows of the magnetic 4eld. ? 2002 Elsevier Science B.V. All rights reserved.
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When a quantum particle moves along a closed
trajectory in external electric and magnetic 4elds,
the Aharonov–Bohm and Aharonov–Casher e&ects
can occur, caused by quantum interference between
paths with di&erent phases. As is well known, the
Aharonov–Bohm (AB) e&ect is related to a charged
particle trajectory enclosing a magnetic Bux. Here
we present a novel magnetic interference e&ect for a
neutral, but polarizable quasi-particle. In particular,
we show here theoretically that the wave function
of a neutral polarizable exciton acquires a nonzero
phase when it moves in a quantum ring pierced by
a magnetic Bux. The neutral exciton wave function
becomes sensitive to the magnetic Bux because of a
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net radial electric-dipole moment induced by asymme-
tries in the nanostructure potential. The transition to a
4nite phase and corresponding orbital momentum in
the polarized exciton state strongly changes the pho-
toluminescence (PL) spectrum of the system due to
the optical selection rules for interband transitions.
We demonstrate this novel magneto-interference

e&ect using a model of InAs self-organized quantum
rings (QRs) [1]. The calculated single-particle wave
functions of electrons and holes are peaked at dif-
ferent radii due to the potential asymmetries and the
di&erence in e&ective mass of the particles; mean-
while, their mutual interaction correlates their motion
around the ring. The dipole polarization of the exci-
ton can be strongly enhanced due to a point=impurity
charge in the ring center, or by a voltage applied to
a metal nano-gate in the middle of a ring. In that
case, the potential minimum for the electron is shifted
from that for the hole, and the ground state of the
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Fig. 1. The energy spectrum and PL intensity of excitons con4ned
in a quantum ring as a function of the normal magnetic 4eld
for the strong-Coulomb-interaction limit; here, me = 0:07m0 and
mh = 0:2m0. Inset: a sketch of the quantum ring system.

exciton acquires a 4nite polarization. To qualitatively
demonstrate the e&ect, we use a model of two nested
one-dimensional (1D) rings with di&erent radii, one
for the electron and one for the hole (inset of Fig. 1).
For rings with relatively large radii, the motion of
particles is strongly correlated, whereas, in a small
system, the state is nearly single-particle-like, as the
relative weight of the Coulomb interaction decreases
with respect to the con4nement energies.
Since the vertical size of a QR is typically much

smaller than the lateral one, we will discuss only
the in-plane motion. The electron and hole in-plane
potentials are approximated byUe(h)(�)=me(h)�2

e(h)(�−
Re(h))2=2, where � is the in-plane distance to the
ring center, and me(h), �e(h), and Re(h) are e&ective
masses, characteristic frequencies, and ring radius,
respectively; the indices e and h indicate the electron
and hole quantities. In the vertical, z-direction, the
motion is strongly quantized.
In a magnetic 4eld, the Hamiltonian of an exciton

con4ned in a quantum ring reads Ĥ = T̂ e + T̂ h +
Ue + Uh + UC(|re − rh|), where re(h) are the in-plane
coordinates, T̂ e(h) are the kinetic energies in the
presence of a normal magnetic 4eld, and UC is the

Coulomb potential. Now we assume that the quantiza-
tion in the radial direction is stronger than that in the
azimuthal direction. It allows us to separate variables
in the wave function,�(re; rh)=fe(�e)fh(�h) (�e; �h).
Here r = (�; �). The radial wave functions fe(h) are
strongly localized near the radii, Re(h). The Hamilto-
nian describing the wave function  (�e; �h) is (up to
a B-independent constant term),
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+ uC(|�e − �h|); (1)

where !e(h) = |e|B=[me(h)c] are the cyclotron frequen-
cies of the particles, B is the normal magnetic 4eld,
and uC is the Coulomb potential averaged over the
coordinate � involving the radial wave functions. By
introducing new variables, we can rewrite Eq. (1) as
ĥ=ĥ0(�0)+ĥ1(O�), where O�=�e−�h, �0=(a�e+
b�h)=(a+ b), and a=meR2

e and b=mhR2
h. Then, the

eigenfunctions and eigenvalues can be found in the
form of  (�e; �h)=  0(�0) 1(O�) and E=E0 +E1,
respectively. Here, the ĥ0 operator is given by

ĥ0(�0) = �0

[
−i

@
@�0

+
�OR

�0

]2
; (2)

where M = (meR2
e + mhR2

h)=R
2
0, R0 = (Re + Rh)=2,

�0=˜2=(2R2
0M), �0=hc=e, and �OR=�(R2

e−R2
h)B=

2�ORR0B is the magnetic Bux penetrating the area
between the electron and hole trajectories (inset of
Fig. 1); and OR=Re −Rh. The eigenvalues of ĥ0 are
E0(l) = �0[l+�OR=�0]2, where l is an integer which
represents the total angular momentum of the exciton.
The relative motion in the exciton is described by

the operator ĥ1(O�), which involves the Coulomb
potential. The limit of strong Coulomb interaction
implies the condition R0 � a∗0 , where a∗0 is the
exciton Bohr radius. In this limit, the wave function
 1(O�) is strongly localized near the point O� = 0
and the ground-state energy for l = 0 can be written
as E1(n = 0) = Eb − 2V cos[2��e& =�0], where V is
the amplitude of tunneling from O�=0 to O�=2�,
�e& � �R2

0B, and Eb is the energy of a state localized
near the angle O� = 0; n is the index of a quantum
state [2]. In the strong-interaction limit, the tunneling
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Fig. 2. The energy spectrum and PL intensity of excitons con4ned
in a quantum ring as a function of the normal magnetic 4eld in
the limit of weak Coulomb interaction.

amplitude V becomes exponentially small, and the
magnetic 4eld dispersion of the exciton energy comes
mostly from the motion of a dipole. The lowest energy
branches are E(l; n=0)=E1(0)+E0(l) � Eb+E0(l).

In the opposite case of R0�a∗0 , we can neglect the
Coulomb interaction and solve Eq. (1) using the orig-
inal variables. The energy spectrum reads

E(le; lh) =
˜2

2meR2
e

[
le +
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]2
+

˜2

2mhR2
h
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�0

]2
;

(3)

where �e(h) = �R2
e(h)B, and le(h) are electron (hole)

angular momenta.
In Figs. 1 and 2 we show the energy spectra and

the PL intensity of an exciton in a QR (notice that
Eexc = Egap + E, where Egap is the semiconductor gap
energy). For the strong-Coulomb-interaction limit
(Fig. 1), we show the lowest states with n = 0 and
l = 0;±1;±2; : : : ; where l is the total angular mo-
mentum of the exciton. We see that the ground-state
momentum changes with increasing magnetic 4eld
from l = 0 to l = −1;−2; : : : ; according to the
equation for E0(l). This arises as the electron and
hole acquire di&erent magnetic phases when they
move along di&erent closed trajectories (inset of

Fig. 1). In the case of weak Coulomb interaction, the
character of ground-state transitions in a magnetic
4eld is a bit more complicated. The ground state
(le; lh)=(0; 0) changes to the states (−1; 0), (−1;+1),
(−2;+1), etc., as the 4eld increases. The total
momentum of the ground state, l = le + lh, changes
correspondingly.
According to the selection rules for optical tran-

sitions between the conduction and valence bands,
only the zero-momentum excitons can emit a pho-
ton. At low temperatures, a photo-generated exciton
relaxes within a short time to its ground state. Thus,
in many cases the PL spectrum demonstrates mostly
the line related to the ground state of an exciton. With
increasing magnetic 4eld, the exciton in its ground
state acquires nonzero momentum and cannot longer
radiate. The darkness of the exciton in the ground
state is seen as a suppression of the calculated PL
in the magnetic-4eld intervals with the ground-state
total momentum l=le+lh �=0. The PL intensity shown
in Fig. 2 was calculated from the relation IPL(B) ˙
P(l=0; T ), where P(l=0; T ) is the probability to 4nd
an exciton in the states with l=0 at 4nite temperature
T . 1 For the spacing OR we have chosen ∼ 20–30 PA.
As an example, an impurity charge +|e| in the mid-
dle of a ring having R0 = 85 PA, ˜�e = 35 meV, and
˜�h =25 meV, induces a shift OR ∼ 20 PA. A similar
OR is obtained for the ring parameters of the system
studied in Ref. [1].
A similar AB e&ect for a neutral exciton can occur

in (spatially indirect) type-II quantum dot embedded
in a 2D quantum well [3]. In such a system, the elec-
tron can move in a quantum-ring potential due to the
joint action of the Coulomb force and the quantum-dot
potential. This type-II geometry would correspond to
that of GaSb=GaAs quantum dots, for example [4].
Similarly, con4nement asymmetries in a ring arising
from mass di&erences or e&ective potential pro4les
could also give rise to a 4nite polarization of the ex-
citon ground state. The details of the system would
determine the strength of the magnetic 4eld sensitivity
such as shown in the 4gures.

1 The PL intensity includes also the overlap factor A(B)2 =
[
∫
d��fe(�)fh(�)]2, which decreases slowly with magnetic 4eld.

For typical system parameters, the B-4eld e&ect on A is weak,
since even at B=30 T the magnetic length is larger than OR=20 ∼
30 PA.
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It is important to emphasize that the predicted
e&ect depends on the magnetic Bux �OR through the
area between the electron and hole trajectories (inset
of Fig. 1) and does not include an exponentially-small
factor due to electron-to-hole tunneling along the
ring. This is in contrast to the AB e&ect for excitons
in a 1D ring described recently in the literature [2].
This di&erence would make the experimental detec-
tion of the e&ect discussed here much more likely. As
single-dot spectroscopy [5] permits one to observe the
PL energies with very high accuracy, it would be a
suitable method to study the predicted magnetic-4eld
interference e&ects.
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