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Abstract

We study theoretically the magnetic-#eld e1ect on a neutral, but polarizable exciton con#ned in quantum-ring structures.
For excitons with a nonzero dipole moment, a novel magnetic interference e1ect occurs: The ground state of an exciton
con#ned in a #nite-width quantum ring possesses a nonzero angular momentum with increasing normal magnetic #eld. This
e1ect is accompanied by a suppression of the photoluminescence in well-de#ned magnetic-#eld intervals. The magnetic
interference e1ect is calculated for type-II quantum dots and quantum rings.? 2002 Elsevier Science B.V. All rights reserved.
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The growth of ring-shaped semiconductor quantum
dots with nm-scale radii has triggered much interest in
the theoretical and experimental investigation of their
electronic and optical properties [1–5]. Here, we con-
sider the e1ect of static high magnetic #elds on the
optical spectra of excitons con#ned in semiconduc-
tor quantum rings. The joint action of the Coulomb
forces and the shape of the nano-structure potential on
electrons and holes make this problem interesting and
challenging. At high enough magnetic #elds, we found
that the ground state of a neutral magneto-exciton
con#ned in a #nite-width quantum ring possesses a
nonzero angular momentum. This e1ect can be ob-
served as a suppression of the photoluminescence (PL)
in well-de#ned intervals of the magnetic #eld. Re-
cent predictions show that the binding energy of a
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neutral exciton con#ned in a one-dimensional (1D)
ring oscillates with increasing magnetic #eld [3]. This
Aharonov–Bohm (AB) e1ect for a neutral exciton oc-
curs due to electron-to-hole tunneling around the ring
[3]. However, the amplitude of the predicted AB oscil-
lations in the exciton-binding energy is very sensitive
to a #nite width of a quantum ring [4] and includes an
exponentially small tunneling amplitude. Here, we de-
scribe a di1erent magnetic interference e1ect, which
relates to the polarized exciton in a quantum ring with
a #nite width and does not include an exponentially
small tunneling factor.
Usually, the con#ning potentials in ring-shaped

semiconductor quantum dots are di1erent for elec-
trons and holes [2]. As a result of this, the potential
can polarize a quantum-ring exciton in the radial
direction. When a dipole moves along a closed tra-
jectory in a ring, its wave function acquires a nonzero
magnetic phase and the quantum interference occurs.
In order to demonstrate the magnetic-#eld e1ect,
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Fig. 1. The low-energy spectrum (a) and PL intensity (b) of
excitons con#ned in a type-II quantum dot as a function of the
normal magnetic #eld for the lowest radial quantum number ne=0.
Inset: Sketch and band diagram for type-II GaSb–GaAs quantum
dot.

we present two models. The #rst model relates to
a type-II quantum dot embedded in a 2D quantum
well [5,6]. This type-II potential would correspond
to that of GaSb=GaAs quantum dots [7]. The second
model describes the exciton spectrum in the InAs
self-organized quantum rings [1,2].
Type-II quantum dots. In a type-II electron–hole

system, the potential of a quantum dot localizes a
hole near the center whereas an electron moves in a
quantum-ring potential due to the joint action of the
Coulomb force and the quantum-dot potential (inset
of Fig. 1). Here we model a GaSb–GaAs quantum
dot as a GaSb cylinder embedded into a 2D quan-
tum well. In contrast to our previous calculations on
magneto-excitons in type-II QDs, here we include the
e1ect of smooth interfaces and calculate the PL in-
tensity at di1erent temperatures. In such a model, the
motion in the normal z-direction is strongly quan-
tized and can be separated from the in-plane motion.
Another convenient simpli#cation occurs in the case
of a strong con#nement of a hole: the electron–hole
Coulomb potential weakly perturbs the hole motion.
At the same time, the Coulomb potential is very im-
portant in the description of the electron motion, since

it results in electron localization around a ring-like po-
tential near the quantum dot (inset of Fig. 1). Also, we
assume that the electron (hole) potentials, Ue(h)(�),
have cylindrical symmetry. Here � is the distance to
the quantum-dot center. By using the above condi-
tions, we can write the in-plane wave function of ex-
citon in the form �=eiLe	e eiLh	hfe(�e)fh(�h), where
(	e(h); �e(h)) are the in-plane electron (hole) coordi-
nates, fe(h) are the radial wave functions, and Le(h)

are the angular momenta. This wave function includes
correlations between the radial motions of the parti-
cles [8], as we now explain. The in-plane radial elec-
tron motion is given by the Hamiltonian:
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where me is the electron e1ective mass, !ce is the
electron cyclotron frequency, and UC is the Coulomb
potential due to the localized hole. The hole wave
function is mostly determined by the nano-structure
potential Uh(�) and weakly depends on the magnetic
#eld because of strong localization. In the following,
we consider only the ground state of the hole with
Lh = 0. For the electron states, the wave function
has two quantum numbers: Le and the radial number
ne=0; 1; 2; : : : . Then, the exciton energies can be writ-
ten in the form Eexc(L; ne)=Ee(Le; ne)+Eh+Eg, where
L= Lh + Le is the total angular momentum, Ee is the
electron energy given by operator (1), Eh is the hole
energy, and Eg is the band gap energy for the indi-
rect heterojunction GaAs–GaSb. To include the e1ect
of atomic interdi1usion at the GaAs–GaSb interface,
we introduce a smoothing function for the in-plane
band mismatch with a characteristic length rd. The
QD diameter is assumed to be d = 2R = 10 nm. For
the calculations, we used rd = 0:55 nm, the quantum
well width a= 10 nm, and band-structure parameters
of the GaAs–GaSb system.
Our calculations show that the ground state mo-

mentum of an exciton changes from L = 0 to
L = −1;−2;−3; : : : as the magnetic #eld B increases
(Fig. 1a). This is due to the ring-like motion of the
electron in the polarized exciton con#ned in a type-II
QD. According to the selection rules for optical
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inter-band transitions, only the exciton with L = 0
can emit a photon. Also, at low temperatures, the PL
comes mostly from the exciton ground state due to
fast exciton relaxation. This means that the PL signal
from the type-II QD becomes suppressed when the
magnetic #eld induces the transition L=0 → L=−1.
Such a behavior is clearly seen in the calculated PL
intensity IPL at low temperature (Fig. 1b). For our
calculations we used the relation: IPL˙A2Pl=0(T ),
where Pl=0(T ) is the probability of exciton being in
the state with L= 0 and ne = 0 at temperature T , and
A is the electron–hole overlap integral. In our model,
the integral A #rst slowly increases with magnetic
#eld when the #eld is relatively weak. This is due
to additional localization of the electron around the
type-II QD. At very high magnetic #elds, however,
when the hole becomes strongly localized in the cen-
ter of a dot, the overlap integral starts to decrease with
magnetic #eld. The calculated magnetic-#eld depen-
dence of IPL comes mainly from the probability factor
Pl=0 and has a peculiar T dependence: with decreas-
ing temperature the PL intensity IPL(B) approaches a
step-like function. Such T -dependence can be used to
recognize the magnetic-#eld-interference mechanism
described here.
Quantum rings (QRs). In self-organized QR struc-

tures, the electron and hole potentials for the in-
plane motion can be locally approximated by Ue(h) =
me(h)�2

e(h)(� − Re(h))2=2 [1], where �e(h) represent
the characteristic radial oscillation frequencies and
Re(h) are the ring radii for electron and hole. Here,
we would like to note that the potentials Ue(h) are not
harmonic as they are de#ned for �¿ 0. In the verti-
cal, z-direction, the motion is assumed to be strongly
quantized. First, we analyze single-particle wave
functions for the case Re = Rh. Since in most cases
me�e �=mh�h [2] and the potentials are essentially an-
harmonic, the single-particle electron and hole wave
functions do not coincide. This means that even for
the case Re = Rh the asymmetry in e1ective masses
and potentials results in di1erent magnetic-#eld dis-
persions for the electron and hole single-particle
energies, Esp

e(h)(B). By calculating the wave functions
for realistic parameters from Refs. [1,2], we #nd that
the electron and hole wave functions are peaked at
di1erent radii and, thus, the exciton has nonzero po-
larization in the radial direction. The latter results
in ground-state transitions with increasing magnetic
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Fig. 2. The low-energy spectrum (a) and magnetic moment (b) of
excitons con#ned in a quantum ring as a function of the normal
magnetic #eld in the limit of strong Coulomb interaction. Inset:
Sketch of the quantum-ring system.

#eld. In the following, we will demonstrate this e1ect
using a model of two 1D rings with Re �=Rh, one for
the electron and one for the hole (inset of Fig. 2).
The electron–hole asymmetry in a QR can be

strongly enhanced in the presence of an impurity
charge in the ring center or due to a metal nano-gate
with an applied voltage in the center, resulting in
quite di1erent e1ective radii for the electron and
hole, Re �=Rh. The problem is analytically solved in
the case of strong quantization in the radial direc-
tion [9]. This allows us to separate variables in the
exciton wave function: � = fe(�e)fh(�h) (	e; 	h),
where the functions fe(h)(�) describe radial motions.
The azimuthal motion along the ring is given by the
Hamiltonian: Ĥ exc = T̂ e(	e)+ T̂ h(	h)+uC(	e−	h),
where T̂ e(h) are the kinetic energy operators in
the presence of the magnetic #eld, and uC is the
Coulomb potential averaged over the coordinate �
involving the functions fe(h)(�). By introducing
new variables in the operator Ĥ exc, we can sep-
arate the “center-of-mass” motion in the exciton
from the motion related to the internal coordinate
	e − 	h. Details of the calculation can be found in
Ref. [9].



300 A.O. Govorov et al. / Physica E 13 (2002) 297–300

The limit of strong Coulomb interaction in the ex-
citon implies the condition R0�a0, where a0 is the
e1ective Bohr radius in the semiconductor and R0 =
(Re+Rh)=2. In this case, the electron and hole motions
are strongly correlated and the electron–hole pair ro-
tates along the ring as a whole quasi-particle with
energy E0 = ˜2=(2MR2

0)[L + O�=�0]2, where �0 =
hc=e and O� = "(R2

e − R2
h)B is the magnetic Pux

penetrating the area between the electron and hole
trajectories; M = (meR2

e + mhR2
h)=R

2
0 and me(h) are

e1ective masses. This rotation energy is responsible
for the magnetic-#eld dependence of the total exci-
ton energy. With increasing magnetic #eld, the ground
state is successively changed from a state with L= 0
to states with L = −1;−2; : : : ; like in type-II QD’s
(Fig. 2). The PL intensity also behaves similarly to
the case of type-II QDs [9].
Another physical quantity, which oscillates due

to the ground-state transitions, is the magnetization
associated with the persistent current in an exciton
(Fig. 2b). For the magnetic moment of the exciton we
obtain: # =−9E0=9B =−2#max(L+O�=�0), where
#max = #B(me=M)(R2

e − R2
h)=2R

2
0 and #B is the Bohr

magneton.
The limit of weak Coulomb interaction corresponds

to the case of relatively small rings with R0�a0. The
single-particle rotation energy of exciton in this case
has the form: Esp

0 =$e(Le+�e=�0)2+$h(Lh−�h=�0)2,
where $e(h) =˜2=2me(h)R2

e(h) and �e(h) = "R2
e(h)B.

For this regime, the character of transitions is a bit
more complicated: The ground state (Le; Lh) = (0; 0)
for the ring with Re ¿Rh is changed to the states
(−1; 0); (−1; 1); (−2; 1), etc. with increasing mag-
netic #eld [9]. Correspondingly, the total momen-
tum is changed from L = 0 to −1; 0;−1; : : : . In
the magnetic-#eld windows when the momentum of
the ground state L = Le + Lh becomes nonzero, the
low-temperature PL intensity becomes strongly sup-
pressed [9]. By comparing the limits of strong and
weak Coulomb interactions, we see that the character
of ground-state transitions depends on the strength of
electron–hole correlations.

To conclude, we have studied the magnetic in-
terference e1ects for a neutral exciton localized
in quantum-ring systems which originate from the
nonzero magnetic Pux O� through the area between
the electron and hole trajectories (inset of Fig. 2).
The signature of the predicted ground-state transitions
and persistent currents in an exciton is darkness of
the PL in well-de#ned intervals of the magnetic #eld.
Single-dot spectroscopy can be a suitable method to
observe this e1ect [2,10].
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