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Abstract
Nanomechanics features three-dimensional nanostructuring, which allows full
exploitation of the mechanical degree of freedom on the nanometre scale. In
this work a number of exemplifying experiments on nano-electromechanical
systems realized in silicon materials will be presented. First an introduction to
the underlying mechanics will be given and finite element methods required for
simulations will be discussed. Further topics presented include measurement
methods for probing the mechanical properties of free standing nanowires,
sensor applications and nonlinear properties of nanomechanical resonators.
Other applications such as parametric frequency tuning are demonstrated and
the major sources of dissipation are discussed. Finally, an outlook over the
fundamental limits of nanoresonators is given.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

The use of mechanical devices dates back quite some time considering for example the plough2.
Tools like that are now reinvented on the nanometre scale, e.g. the so-called nanoplough, being
used for ‘mechanical’ lithography [1]. Of course mechanics on the nanometre scale is very
different to the macroscopic version. The difficulties arising are mostly caused by the different
forces of importance on this scale: gravity is not dominant when considering its influence on
a ‘bridge’ with a width of only 20 nm. The much more relevant forces are clearly found in
surface tension or the van der Waals interaction.

Apart from the interest in basic research to gain control of the nanometre world, the
development of the appropriate nano-electromechanical tools is indeed important for industry,
a clear advantage being the convergence of processing techniques for integrated silicon circuits
and semiconductor nano-electromechanical systems (NEMS). The key element of all NEMS is
the doubly clamped string resonator. Hence, this rather simple device was chosen to elucidate
the basic physics of NEMS. The first aim in designing and building such resonators is complete
control of the mechanical quality factor Q. In the following the straightforward definition
Q = f0/ fb is used, where f0 is the eigenfrequency and fb the full width at half maximum at
resonance. Controlling Q, pushing eigenfrequencies above the GHz barrier, understanding the
dissipative mechanisms and eventually reaching the realm of quantum mechanical mechanics
are the essential goals in developing NEMS circuits.

The different sources of dissipation are to be studied in detail, starting from internal
dissipation mechanisms due to dislocation and impurities over to external sources such as
losses due to clamping points and adsorbed layers of water or chemicals. So far, only the very
basic properties have been addressed. At the same time another important technical factor has
to be brought into the discussion, namely the control of bandwidth of the mechanical device
under study. The tunability of both Q and bandwidth, the eigenfrequency f0 and the degree of
coupling of such nanomechanical systems are of prime importance. Apart from the regime of
linear response, nanomechanical resonators are the perfect tool for investigating mechanical
nanosystems in the chaotic regime.

2. Modelling nanomechanical systems

The simplest mechanical resonator usually considered is a doubly clamped beam, comparable
to a violin or guitar string [2]. In the following the governing equation for such a beam—the
Duffing equation—is considered in some detail, since from this most of the basic properties of
a mechanical resonator can be derived. Moreover, trying to model the mechanical properties of
more complex resonator geometries is hardly possible analytically. This can be accomplished

2 The first ploughs are depicted on small clay plaques found at Uruk IV in Iraq, dated around 3200 BC.
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using finite element methods (FEMs) as will be described below in section 2.2. For a more
detailed description of the mathematics involved the textbooks by Landau and Lifshitz [3] and
by Kinsler et al [4] are recommended.

2.1. The Duffing equation

The differential equation for the deflection u(z) is found to be

E�
d4u(z)

dz4
= −F(z), (1)

where E is Young’s modulus, � the moment of inertia, F the applied force and z gives the
distance to the clamping points. As an example a force W is considered, acting at the point
z = L, while the bar is clamped at z = 0: F(z) = Wδ(z − L). From equation (1) it is found
after integration that

E�
d3u(z)

dz3
= W, 0 < z < L . (2)

Another integration and using the fact that the torque d2u(z)/dz2 = 0 at z = L leads to

E�
d2u(z)

dz2
= W (z − L). (3)

Another two integrations and considering z = 0 and du/dz = 0 we find

E�
du(z)

dz
= 1

2
W z2 − W Lz, (4)

and

E�u(z) = 1
6 W z3 − 1

2 W Lz2. (5)

The deflection at z = L is u(L) = −W L3/(3E I ) and the angle is

θ = du(z)

dz

∥∥∥∥
z=L

= 3

2

u(L)

L
. (6)

Extending now equation (1) by applying an external force and using Newton’s second law, the
equation of motion of the beam is

E�
d4u(z, t)

dz4
= −ρS

d2u(z, t)

dt2
, (7)

where ρ is the density of the material and the strain is defined by S = �F with stress � and
force F . For sinusoidal vibrations, u(z, t) = u(z) cos(ωt + α), the equation can be written in
the form

E�
d4u(z, t)

dz4
= −ρSω2u(z). (8)

Introducing κ4 = (ω2ρS)/(E�) the general solution is

u(z) = A cos κz + B sin κz + C cosh κz + D sinh κz, (9)

with A, B, C, D as parameters. If one end of the beam is clamped and the other one is free to
move the boundary conditions at z = 0 are u = 0 and du/dz = 0, and at the free end z = L
the vertical force and torque vanish, d2u/dz2 = 0 and d3u/dz3 = 0. This finally gives

cos κ L cosh κ L + 1 = 0, (10)



R908 Topical Review

with which the lowest mechanical mode is found to be at κ L ∼= 1.87 with a frequency of

f = 0.56

L2

√
E�

ρS
. (11)

Considering now a harmonic wave equation to model a one-dimensional resonator by
including a term of third order. This yields the Duffing equation (see [5]):

ẍ + 2µẋ + ω2
0x + k3x3 = F cos ωt, (12)

where µ is the attenuation constant, ω0 the eigenfrequency and F the strength of the driving
force. The constant k3 determines the degree of nonlinearity. In the limit of small displacement
the nonlinear term can be omitted and we obtain the differential equation of a harmonic
oscillator:

ẍ + 2µẋ + ω2
0x = F cos ωt . (13)

The solution for this equation is given by

x(t) = a exp(−µt) cos

[√
ω2

0 − 4µ2t + β

]
+

F√
(ω2

0 − ω2)2 + 4µ2ω2
cos(ωt + ϕ). (14)

The first term gives the homogeneous solution, while for t � µ−1 only the second term of
equation (14) remains with the stationary solution

x(t) = F√
(ω2

0 − ω2)2 + 4µ2ω2
cos(ωt + ϕ). (15)

The phase difference ϕ of excitation and response is given by

ϕ = arctan

(
2µω

ω2 − ω2
0

)
, (16)

while the maximal amplitude x0,max is

x0,max = F

2µω0
. (17)

A possible way to solve equation (12) is obtained by the harmonic balance method (see [7]).
This implies that the stationary solutions can be approximated by

x(t) = x0 cos(ωt + ϕ). (18)

The nonlinear term is then replaced by a linear one depending on the amplitude k3x3 �→
k∗(x0)x . Starting with

x(t)3 = [x0 cos(ωt + ϕ)]3 = x3
0 [ 3

4 cos(ωt + ϕ) + 1
4 cos 3(ωt + ϕ)]

= 3x2
0

4
x(t) +

x3
0

4
cos 3(ωt + ϕ) (19)

and neglecting the term x3
0
4 cos 3(ωt + ϕ), a linear equation is found,

ẍ + 2µẋ +

(
ω2

0 +
3k3

4
x2

0

)
x = F cos ωt . (20)

Amplitude and phase of the stationary solution (equation (18)) follow with equations (15)
and (16)

x0 = F√
(ω2

0 + 3k3
4 x2

0 − ω2)2 + 4µ2ω2
(21)
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and

ϕ = arctan

(
2µω

ω2 − (ω2
0 + 3k3

4 x2
0)

)
. (22)

Equation (21) allows determination of the resonance amplitude x0. The square value of
equation (21) leads to an algebraic expression of third order in x2

0

x2
0

[(
ω2

0 − ω2 +
3k3

4
x2

0

)2

+ 4µ2ω2

]
= F2, (23)

where the real part of the solution yields the resonance amplitudes. Focusing on the interval
of the resonance, i.e. |ω − ω0| � ω0, the following approximation in equation (23) is valid:
ω2

0 − ω2 = (ω0 − ω)(ω0 + ω) ≈ 2ω0(ω0 − ω) and ω2 ≈ ω2
0. This finally gives the desired

equation

x2
0

[(
ω0 − ω +

3k3

8ω0
x2

0

)2

+ µ2

]
≈

(
F

2ω0

)2

. (24)

Solving for ω − ω0 results in

ω − ω0 = 3k3

8ω0
x2

0 ±
√(

F

2ω0

)2 1

x2
0

− µ2. (25)

This equation assigns each value x0 a specific number of frequencies depending on

x0 � F

2µω0
. (26)

This relation allows us to find the deviation of the resonance frequency from the regime of
linear response

x0,max = F

2µω0
(27)

and

ωmax − ω0 = 3k3

8ω0

(
F

2µω0

)2

. (28)

The maximal amplitude is identical to the linear case, see equation (17). In figure 1 resonance
traces are given following equation (25) for a variety of values for F . The parameters were
taken from the samples measured.

From figure 1 it is seen that at certain amplitudes F of the external excitation, regions of
multiply defined frequencies are found. The transition into this regime occurs at the so-called
critical amplitude Fc of the driving force,corresponding to a critical displacement amplitude xc.
The relation connecting the displacement xc with the resonator’s geometry is [6]

xc = 2b√
1
2 Q(1 − ν2)

, (29)

where Q is the mechanical quality factor of the resonator, b is the width and ν is the lateral
extension coefficient of the material. Usage of this critical point is extremely important for
application of NEMS in sensor technology (see section 5). In the bistable region beyond the
critical frequency three different solutions of the wave equation are found and the resonator
shows a pronounced hysteresis.
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Figure 1. Nonlinear resonance trace for increasing values of F in equation (25), indicated by the
power level P .

Figure 2. Modes of a doubly clamped nanobeam: (a) basic and (b) excited mode.

2.2. Finite element simulations

In order to gain a deeper understanding of the mechanical and electro-magnetic properties of
the nanoresonators, FEMs have to be employed, since only simple geometries can be modelled
analytically [8]. The underpinning idea of these simulations is to achieve a quantitative
comparison with the nanoscale mechanical device. However, it turned out that the accuracy
with which a predicted eigenfrequency is obtained in the measurement is of the order of
10%. The electro-magnetic problem solvers on the other hand give quite reliable values
regarding impedance matching of the whole circuit. Hence, the design process of a resonator
is determined by a close inspection of its properties first in the simulators and a number of
iterative steps ensuring the best match to the specifications [9].

The program used for simulations of the mechanical properties3, Solvia©, allows
determination of the effective strain caused by an external stress in three dimensions. A
metallic top layer can be included as well as different geometries of the structural clamping
points. In figure 2(a) the simplest λ/2-mode is shown in a three-dimensional representation,
while in figure 2(b) a more complex excited mode of the system is depicted. Moreover,
harmonics, sub- and ultra-harmonics of the mechanical oscillation can be reproduced. The

3 Solvia, finite element solver for mechanical modelling, v. 95.2.
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Figure 3. Torsional resonator with a drive and a detection metal loop on top.
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Figure 4. Calculated mode spectrum of a singly clamped nanobeam in a plot of amplitude versus
frequency (from [10]).

modes in these simple beam resonators are finally used to gather information for the comparison
to more complex resonators like the torsional cradle (see figure 3). In addition to calculating
the individual mode shapes the program also allows us to obtain the frequency dependence of
the displacement amplitude as shown for one of the singly clamped resonators in figure 4.

For sensor applications active Q-tuning is highly desirable. For such purposes different
geometries can be investigated as shown in figure 5, which support a number of gating
electrodes similar to quantum dots for biasing the resonator. In this way the potential can
be changed strongly, depending on the specific mechanical mode and on gate geometry.
Additionally, such a layout with a number of electrodes enables us to parametrically pump
either the central part of the resonator or the fins on the left and right. In this way the whole
setup is much more versatile and the mechanical spectrum is controllable.
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Figure 5. Advanced resonator layout, including multiple tuning gates and ‘quality fins’ for active
Q-tuning [9].

In a similar fashion the electromagnetic environment of the resonators is determined by
numerical methods. The programs applied here are4 Sonnet© and5 MAFIA©. While Sonnet
gives reliable results in the range of 10 MHz–500 GHz, MAFIA covers the whole frequency
range from dc on to the far infrared. In figure 6 a top view of a singly clamped beam is shown
calculated: the electric field distribution between a gating electrode and the tip of the clapper
is calculated by MAFIA© when a voltage of Vg = 1 V is applied according to E = CV 2

g /2,
where E is the electric field strength. The capacitance between gate and tip for the case of
interest is found to be C = 21 aF.

3. Sample fabrication

Fabrication of the devices presented in this work is performed in clean rooms by semiconductor
processing techniques. The materials used are silicon-on-insulator (SOI) wafers. The
overwhelming strength of semiconductors is the ultimate purity and precision with which
samples can be processed on a large scale. The standard tool for semiconductor structuring is
optical lithography.

The two-dimensional patterning and structuring of semiconductors can be extended to
build nanostructures in three dimensions. A variety of etching methods is applied to effectively
suspend nanostructures, which introduces the mechanical degree of freedom. For three-
dimensional nanostructures a specific sacrificial layer has to be added to the layer sequence. For
silicon we use commercially available SOI substrates with thicknesses of the Si layer and the
SiO2 sacrificial layer of 50–200 and 100–400 nm [11], respectively (Smart-Cut wafers) [12].
After definition of a nanomechanical resonator by electron beam lithography, the masked
sample is dry etched in a reactive-ion etcher in order to obtain the desired mesa structure with
clear-cut walls [13]. Finally, a hydrofluoric wet etch is performed removing the SiO2 sacrificial
layer below the resonators and the metallic etch mask leading to a suspended bridge as shown
in figure 7 [14, 15]. Apparently the whole top layer can also be suspended and attached to a
material of choice [17].

4 Sonnet, electromagnetic finite element solver, v. 6.0.
5 MAFIA, electromagnetic finite element program, v. 3.20.
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Figure 6. Electric field distribution between a gate electrode and the tip of a nanomechanical
resonator (from [10]).

Figure 7. Scanning electron beam micrograph of one of the electromechanical resonators used.
The silicon beam is covered by a thin Au sheet of 50 nm, which allows for impedance matching
to the circuitry and coupling of the driving frequency f to the mechanical eigenfrequency f0. The
electrodes on the left and right enable application of an additional dc bias and/or ac modulation at
a pump frequency f p. The inset shows a magnification of the nanobridge.

4. Experimental techniques

In this section a brief survey is given of the techniques at hand for probing the mechanical
properties of nanomechanical systems. The common aim of the various probing mechanisms
is to achieve high speed operation and a high sensitivity in displacement detection. In all
setups probing nano-electromechanical circuits it has to be considered that excitation as well
as detection always require electronic coupling. Most common are two techniques as electronic
excitation mechanisms: magneto-motive and capacitive excitation.
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Figure 8. Experimental setup for sampling the properties of mechanical nanoresonators: a circuit
diagram of the spectrum/network analyser is employed scanning the frequency range of interest
and the reflected signal is measured directly (α), while mechanical mixing can be analysed by
combining two synthesizers ( f1, f2) and detecting the reflected power (β).

The simplest one is magneto-motive excitation, where a Lorentz force is generated by
placing the metallized nanobeam in an external dc magnetic field and sending an alternating
current along the length of the conducting beam [18–20]. The motion in the magnetic field
in turn induces an electromagnetic force in the suspended wire, which can be read out. This
mechanism is very reliable and has been extensively used throughout this work. A certain
disadvantage for applications obviously is the need to apply magnetic fields of the order of
B > 2 T. Also, heating by the excitation current influences the mechanical properties of the
nanobeam, since dissipation on this size scale is strongly altered.

A typical setup for magneto-motive excitation is shown in figure 8: the displacement
of the oscillating motion causes a change in the amplitude dependent impedance Ẑ res of the
resonator. The total impedance of the beam resonator in a magnetic field is given as

Ẑ res(ω) = R + iωA(ω)
L2 B2

meff
exp (iφ), (30)

where meff is the effective mass of the beam and the length of the beam l is connected via
L = lπ/2, while A(ω) gives the absolute value of the dynamic susceptibility and φ the
corresponding phase. This can be simplified under a harmonic excitation at the eigenfrequency
ω0 = 2π f0 to

Ẑ res(ω = ω0) = R +
L2 B2

2µmeff
, (31)

where µ is the attenuation constant. Commonly the total dc resistance of the samples is of the
order of R ∼ 40–50 �. The change in impedance is detected by tracing the reflected power
using a spectrum/network analyser (setup α). For further experiments regarding mechanical
mixing, harmonic generation, and parametric amplification additional synthesizers can be
integrated (setup β).

Most measurements are conducted at 4.2 K in a sample holder with a residual 4He-gas
pressure of about 10 mbar. This ensures thermal coupling, while it naturally reduces the
Q. The sample is mounted between interconnecting microstrip lines, designed to feed the
circuit with frequencies up to 10 GHz, and a magnetic field is applied perpendicular to the
beam. For excitation and final amplification we use either a spectrum or a network analyser.
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The hysteresis of the mechanical resonator is probed with an additional synthesizer, which can
be ramped from lower to higher frequencies and vice versa. Capacitive excitation relies on
sufficiently large coupling of the gate electrodes to the nanomechanical resonator under test.
The main limitation is given by the large electric field strength of the order of 105–108 V m−1

across two contacts. This eventually leads to field emission and a degradation of the gates.
On the detector side several methods can be realized for highly sensitive displacement

detection. The method featured in this work is a capacitive transducer. Moreover, optical
detection can also be used [21], which is not pursued in this work. As mentioned above the
change in impedance can either be detected directly by tracing the reflected power using a
network analyser in combination with a scattering parameter testset or by capacitive coupling
of the aforementioned sidegates. The preamplifier employed is a low-noise broad-band (UHF-
to L-band) JS amplifier (MITEQ Corp.) with a specified noise figure of NF = 0.6 dB and gain
of G = 30 dB.

Local on-chip detection of the small voltage signal via the coupling capacitance δCres ∝
δVres is desirable, therefore an on-chip preamplifier is used (Fujitsu FHX35X) [22]. The
transistor in this configuration serves as an impedance converter. An aerial view of the setup
and the amplifier is depicted in figure 9. The magnetic field orientation was chosen to be
parallel to the surface of the transistor. As seen the large input impedance has to be adjusted
by placing in parallel a resistor of 10 M�, a capacitor on the supply line of 47 nF and an
additional resistor of 1.5 k� on the output. Clearly, a limitation of this setup is given by the
low gain and the still large input capacitance Cin � Cres of the transistor.

The quantity of interest representing the sensitivity of mechanical cantilevers is typically
given by the minimum detectable force. This force of rectangular cantilevers is limited by
vibrational noise and is proportional to

Fmin ≈
√

wt2

l Q
, (32)

where w, t and l are the width, thickness and length of the beam. Similar equations are found for
other types of micromechanical resonator. Obviously, the aim is to achieve a considerable size
reduction of the structures leading to increased eigenfrequencies of the mechanical systems.
The capacitive coupling between the gate electrode and the metallized resonator is estimated to
be ∼200 aF (see footnote 5), which translates, at an excitation power of −42 dBm, into a force
sensitivity of only 9.4 × 10−14 N (Hz) −1/2. Using this setup as an electrometer yields a charge
sensitivity of 1.3 × 10−3 e (Hz) −1/2, which is three orders of magnitude better than previously
measured [23]. Since the network analyser records amplitude and phase of the reflected signal
it is also possible to implement a more sensitive lock-in technique for detection [24, 25].

5. Sensor applications

The ability to build mechanical devices on the nanometre scale allows us to reach a new
regime for sensor applications. The already possible speed of operation, radiation hardness, the
compatibility with standard silicon processing and the intrinsic sensitivity to their environment
creates an increasing industrial demand [27].

The application which will be described in the following is focused on electrometry, since
this scheme in principle is easily adopted to the detection of minimal quantities of mass, gas
or magnetic materials. As will be seen, we achieve an extremely high sensitivity for charge
detection. The setup is shown in figure 8: the resonator is probed by a network analyser
and capacitive coupling of the side gates; i.e., the addition of charge δq onto the electrode
is analysed. From numerical evaluation a capacitive coupling between gate and beam in the
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Figure 9. On-chip amplifier: one of the gates is coupled to the amplifier enabling capacitive
detection of the beam’s displacement. A magnified view of one of these is depicted in the inset.

linear regime of Cgb
∼= 220 aF is obtained. The frequency shift δ f of the mechanical resonance

results from the capacitive coupling given by the electrostatic energy E = q2/2C , where q is
the accumulated charge and C the capacitance between resonator and gate. This term can be
expanded with regard to the displacement amplitude u = u(t) of the suspended beam, which
yields for the electrostatic energy with C = C(u) via a truncated Taylor expansion

E(u) = 1

2

q2

C
∼= 1

2

q2

C + 1
2 C ′′u2

∼= 1

2

q2

C

(
1 − 1

2

C ′′

C
u2

)
= E − 1

4

q2

C2
C ′′u2, (33)

where C ′′ = ∂2C(u)

∂u2 |u=0 represents the second derivative of the capacitance with respect to the
spatial coordinate u at u = 0. This gives with q = CV a frequency shift of the mechanical
resonance of the order of

δ f =
√

f 2 − C ′′

2meff
V 2 − f ∼= − C ′′

4meff f
V 2, (34)

where meff is the beam’s effective mass (in our case ∼4.3 × 10−16 kg) and V the applied gate
voltage. In figure 10(a) the radio frequency (RF) response of the beam is depicted: applying
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(a) (b)

Figure 10. (a) Mechanical resonance at the f = 37.26 MHz: excitation level is fixed at −66 dBm
with peak amplitude increasing as B2 (see inset). (b) Beam response driven into the nonlinear
regime at B = 12 T with power levels increasing as indicated from −70 to −50 dBm [20].

a magnetic field in plane, an increase of the peak amplitude proportional to B2 is found as
plotted in the inset. The driving amplitude of the RF is −66 dBm, ensuring linear response
of the suspended beam. The FWHM of the resonance is δ f = (16 ± 0.2) kHz, resulting in
a mechanical quality factor at resonance of Q = 2330 ± 30. A large discrepancy compared
to macroscopic mechanical oscillators with Q ∼ 105 is obtained. This is explained by the
coupling gas in the sample holder and the fact that the surface tension in these small devices
naturally has a larger influence than in macroscopic systems.

In figure 10(b) the power coupled into the resonator is increased from −70 to −50 dBm
where a strong nonlinear response is observed. In the present case the nonlinear response is
identified by the distorted peak shape. Above a critical value of the excitation voltage the curve
finally shows a bistability accompanied by a pronounced hysteresis. The transition occurs at
about −53 dBm, although an asymmetry of the peak structure is found at −59 dBm. The
nonlinearity is caused by the variation of the restoring force at the clamping points and can be
modelled by adding a cubic term in the equation of motion of the beam [28]. Comparing our
data with a model derived earlier in [29] excellent agreement is found (see section 2.1).

A closer inspection of the nonlinear response seen in figure 10 can be obtained with an
external frequency source, while monitoring the absorption on the spectrum analyser. This
allows approaching the hysteretic region around f = 37.287 and 37.294 MHz from larger
and lower frequencies. In figure 11 such a measurement is shown: the inverted triangle (
)
corresponds to an increasing frequency, while the triangle (�) represents the lowering branch.
The applied power is Pexc = −49 dBm and the magnetic field B = 12 T. Within this bistable
region (width � fhys ∼ 7 kHz) the resonator is very sensitive to charge fluctuations on the
nearby gate. Following this idea the suspended beam is a prime candidate to study stochastic
resonance in a nanomechanical resonator at RF.

Optimum operating conditions are obtained by fixing the driving amplitude at the critical
point with maximum slope as discussed in section 2.1 (traces in figure 12). The excitation power
is set to −52.8 dBm and the magnetic field at 12 T. As seen in the inset the peak position varies
as the square of the gate voltage applied. The slope at the critical point d A/d f | f = fc → ∞
diverges, resulting in extremely sensitive amplification. It is important to note the enhancement
of sensitivity with increasing gate voltage (see the inset of figure 12). The accuracy of the
measurement can be further enhanced by determining the phase shift of the resonator. With
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Figure 11. Hysteretic response of the excited beam [20]: the inverted triangle (
) indicates
the signal with rising frequency, while the triangle (�) represents lowering of the frequency
(Pexc = −49 dBm and B = 12 T).

Figure 12. Operating the resonator in the transition region at −52.8 dBm with maximum signal
sensitivity. Resonance traces are shifted by an applied gate voltage [20]. Note the shift of the
critical point when the gate voltage is varied (inset).

such a setup it was possible to obtain a sensitivity of ∼1.0 × 10−1 e (Hz)−1/2. As before, the
operating point is adjusted in the transition region at the critical point (as indicated in figure 12).
Biasing the resonator to V = ±4 V, a charge resolution of δq = ne = 70 e is derived.

As seen nanomechanical resonators lend themselves to straightforward sensor applications
at high frequencies, e.g. sensors using the internal strain of MBE-grown layers seem to be
promising [30], also cantilevers made from polymer materials are coming into focus [31].
The measurement scheme discussed in this section for electrometry is easily altered to allow,
e.g., mass sensing with high sensitivity. Apart from speed and resolution, the main advantage
of the presented techniques is the compatibility regarding processing. Another application for
NEMS is found in communication technology, where mechanical oscillators can be applied
for signal transduction, filtering and mixing, as shown in the following section.
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6. NEMS in the nonlinear regime

The physics of nonlinear dynamics has been studied widely in macroscopic mechanical systems
like the classical driven pendulum. With the advances in nanostructuring it is possible to build
mechanical devices on the nanometre scale with eigenfrequencies of the order of several
hundred MHz. Furthermore, the small dimensions offer the unique possibility to investigate
nonlinear properties of a driven mechanical system approaching the quantum limit. In this
section operation of NEMS in the nonlinear regime is demonstrated in order to investigate
higher order mechanical mixing at RFs. These mixing properties are also of great importance
for signal processing and exemplify nonlinear dynamics on the nanometre scale. The nonlinear
response then is compared to nth order perturbation theory and nonperturbative numerical
calculations.

The Duffing equation describes a deterministic system which can be brought into the
chaotic regime by choosing a specific set of parameters. The system then is very sensitive to
the boundary conditions and shows irregular orbits. In reality dissipation leads to a convergence
of the chaotic trajectories onto attractors A of dimension n − 1, where n is the phase space
dimension. The hysteresis found for the nanomechanical resonators is a good example for an
attractor, since several distinct points in phase space are stable conditions for the resonator.

Analysing chaotic motion is possible by tracing the Fourier transform X (ω) of a time
evolution X (t):

X (ω) = lim
T →∞

1

T

∫ T

0
x(t)e−iωt dt, (35)

which leads to the spectrum recorded by the spectrum/network analyser

R(ω) = |X (ω)|2. (36)

In the case of mechanical resonators excited at around 10–100 MHz sampling rates > 10 GHz
are required to record at least 100 data points, which is very difficult to achieve [24]. On the
other hand a periodic oscillation is characterized by its line spectra, i.e. during the transition
into chaos in these spectra subharmonics will emerge. Hard chaos is finally identified by a
continuous background and a number of discrete resonances.

Following Feigenbaum’s analysis a driven nonlinear system shows a universal period
doubling, which is characterized by the Feigenbaum constant δ = 4.669 2016 . . .; i.e., given
that Fn is the amplitude of the external excitation with a period Tn = 2n T0, we find for the
modulation parameter F

Fn+1 − Fn

Fn+2 − Fn+1
= δ. (37)

Writing the Duffing equation in the form of a double-well potential as shown in figure 13

ẍ + 2µẋ − βx + k3x3 = F cos ωt, (38)

with β, k3 > 0; if β > 0, this implies a positive back-action force. This can only be countered
by a sufficiently large restoring force, given by the nonlinear term k3x3(y). Following [7] the
minimal amplitude of the external force F for which chaos appears can be estimated,

F >
4
√

2µ 3
√

β

3πω
√

k3
cosh

(
πω

2
√

β

)
. (39)

For a certain choice of parameters 2µ = 0.1, β = 1, k3 = 1 and ω = 1, equation (38) reads

ẍ + 0.1ẋ − x + x3 = F cos t . (40)
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The potential for these parameters is

u(x) = − x2

2
+

x4

4
(41)

as seen in figure 13. The excitation amplitude at which chaos should emerge is found to be
F > 0.07 (equation (39)). The differential equation (40) was solved and analysed according
to [24]. The calculated results are shown in the phase space plot in figure 14. For small
amplitudes F = 0.3 the phase space plots in figure 14 are symmetrical with respect to both
axes and the trajectory is periodic. In the right panel the oscillations of the system are shown
after ten cycles. Upon increasing the amplitude to F = 0.4 the plot is slightly asymmetric,
this being the first indication of the path into chaos [32]. At F = 4.5 period doubling occurs,
clearly seen in the time evolution. Above F = 4.9 the pattern is completely chaotic (see
figure 15).

In order to estimate the parameter space where chaotic motion is expected the Duffing
equation has to be written as

ω2
0 x ′′ + 2µω0x ′ + ω2

0x + k3x3 = F cos

(
ω

ω0
τ

)
, (42)

where τ = ω0t and x ′ = ∂x/∂τ . Dividing by ω2
0 and substituting x �→ y/

√
k3/ω

2
0

y ′′ + 2Dy ′ + y + y3 = B cos

(
ω

ω0
τ

)
(43)

with D = µ

ω0
and B = F

ω3
0

√
k3. A simplified form is given by

y ′′ + 2Dy ′ + y3 = B cos

(
ω

ω0
τ

)
, (44)

which is equation (43) without the linear term for the restoring force (DF [y] = y ′′+2Dy ′+y3).
From this equation a parameter plot can be obtained (see [24]), which allows us to determine
approximate values for the appearance of chaos in a nanomechanical system. We estimate for
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K=0.3, Periode=T

Figure 14. Numerically determined phase space diagrams (left) and time evolution (right) for
equation (38) with varying amplitude F ≡ K .

fairly long resonators the transition into the chaotic regime to occur for B > 12 T under large
excitation powers, but at low eigenfrequencies of f0 < 10 MHz.

A possible way to find the degree of nonlinearity and to trace the onset of deterministic
chaos is by applying the mechanical resonator as a mixing element: in figure 16 the RF
response of the beam near resonance is depicted for increasing magnetic field strength
B = 0, 1, 2, . . . , 12 T. The excitation power of the spectrum analyser was fixed at −50 dBm.
The mechanical quality factor of the particular resonator under test in the linear regime is
Q = 2330. As seen the profile of the resonance curve changes from a symmetric shape at
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Figure 15. Phase space and time evolution for equation (38) at F = 4.9.

moderate fields to an asymmetric, sawtooth shape at large field values, characteristic of an
oscillator operated in the nonlinear regime. As already mentioned the nonlinearity can be
described by the Duffing equation DF [x(t)] = F(t) [32]. The external driving F(t) is given
by the Lorentz force

F(t) = l B

meff
I (t) = l B

meff
I0 cos(2π f t), (45)

where l = 1.9 ×10−6 m is the effective length and meff = 4.3 ×10−16 kg is the effective mass
of the resonator, B is the magnetic field and I0 the input current.

Solving the Duffing equation and computing the amplitude of the oscillation as a function
of the driving frequency f for several excitation strengths reproduces the measured curves
shown in figure 16. The solutions at large power exhibit a region where three different amplitude
values coexist at a single frequency. This behaviour leads to bistability in the measurements
at high powers [20].

Turning now to the unique properties of the nonlinear nanomechanical system: by applying
two separate frequency sources as sketched in figure 8 (setup β) it is possible to demonstrate
mechanical mixing [33], as shown in figure 17. The two sources are tuned to f1 = 37.28 MHz
and f2 = 37.29 MHz with constant offset and equal output power of −48 dBm, well in the
nonlinear regime. Without applying a magnetic field the two input signals are simply reflected.
Above a critical field of B � 8 T higher order harmonics appear. Increasing the field strength,
a multitude of satellite peaks evolves. As seen the limited bandwidth of this mechanical mixer
allows effective signal filtering. Variation of the offset frequencies leads to data similar to
those presented in figure 18: excitation at −48 dBm and B = 12 T with the base frequency
fixed at f1 and varying the sampling frequency in kHz steps from f2 to f1 yields satellites at
the offset frequencies f1,2 ± n� f , � f = f1 − f2.

The nanomechanical system is modelled as a Duffing oscillator with a driving force

F(t) = F1 cos(2π f1t) + F2 cos(2π f2t), (46)
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Figure 16. Characterization of the nonlinear response of the suspended beam: ramping the
magnetic field from 0 T up to 12 T at large output power with constant driving amplitude around
−45 dBm (cf figure 10).

with two different, but neighbouring, frequencies f1 and f2. Before presenting the numerical
solution of the Duffing equation for the driving forces (equation (46)) an analysis is performed
based on n order perturbation theory [5] to explain the generation of higher harmonics.
Expanding

x = x0 + ηx1 + η2x2 + · · · , (47)

where it is assumed that the (small) parameter η is of the order of the nonlinearity k3x3, and in-
serting this expansion yields equations for the different orders in η. In zeroth order this leads to

ẍ0 + µẋ0 + ω2
0x0 = F1 cos(2π f1t) + F2 cos(2π f2t), (48)

first order to ẍ1 + µẋ1 + ω2
0 x1 + k3x3

0 = 0, and to similar equations for higher orders.
After inserting the solution of equation (48) into the first order equation and assuming
f1 ≈ f2 ≈ f0 = ω0/2π , two types of peak can be extracted: one peak is located at 3 f0.
Peaks of the other type are found at frequencies fi ± � f . Proceeding along the same lines in
second order perturbation theory we obtain peaks at 5 f0 and fi ± 2� f . Accordingly, owing
to the cubic nonlinear term, nth order peaks are generated at (2n + 1) f0 and fi ± n� f . While
the (2n + 1) f0-peaks could not be observed, the whole satellite family fi ± n� f is detected
in the experimental power spectra (see figure 17). The perturbative approach yields the cor-
rect peak positions and, for B < 4 T, also the peak amplitudes. However, in the hysteretic,
strongly nonlinear regime a nonperturbative numerical calculation proves necessary to explain
quantitatively the measured peak heights. The eigenfrequency is f0 = 37.26 MHz as seen
from figure 16 in the linear regime. The nonlinearity k3 is estimated from the shift [5]

δ f (B) = fmax(B) − f0 = 3k3[�0(B)]2

32π2 f0
(49)

in frequency fmax at maximum amplitude in figure 16. In first order the displacement of the
beam is given by �0(B) = l I0 B/(4π f0µmeff). Relation (49) yields with I0 = 1.9 × 10−5 A
a value of k3 = 9.1 × 1028 (m s)−2.
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Figure 17. Two synthesizers (setup β in figure 8) running at frequencies of f1 = 37.28 MHz and
f2 = 37.29 MHz with constant offset (output power −48 dBm) induce higher order harmonics as
a result of mechanical mixing by the nanoresonator in the nonlinear regime (B > 8 T).

First x(t) is computed by numerical integration of the Duffing equation with a driving
force as in equation (46) and F1 = F2 = l B I0/meff . Then the power spectrum is calculated
from the Fourier transform X (ω) of X (t) for large times (beyond the transient regime). For a
direct comparison with the measured power P in figure 17 we employ P � RI 2

ap. Here R is

the resistance of the electromechanical circuit and Iap = [4π f0µmeff/(l B)]X̂(ω) the applied
current, in close analogy to the relation between displacement �0 and I0.

The numerically obtained power spectra are displayed in figure 19: the emitted power for
the same parameters as in figure 17 is shown. The positions of the measured satellite peaks,
fi ± n� f , and their amplitudes are in good agreement with the numerical simulations for the
entire parameter range shown. Note that the height of the two central peaks in figure 17 cannot
be reproduced by the simulations, since they are dominated by the reflected input signal.

The numerical results in figure 19 clearly show the evolution of an increasing number of
peaks with growing magnetic field, i.e. increasing driving amplitude. As in the experiment, the
spectra exhibit an asymmetry in number and height of the satellite peaks while switching from
lower to higher frequencies by increasing the magnetic field from 8 to 12 T. This behaviour can
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Figure 18. Two-source excitation at −48 dBm and B = 12 T: base frequency is f1 = 37.290 MHz,
while the sampling frequency is varied in 1 kHz steps from f2 = 37.285 to 37.290 MHz (as denoted
in the graphs). As seen the spacing of the harmonics follows the offset frequency � f = f1 − f2.

be understood from equation (49) predicting a shift δ f in resonance frequency with increasing
magnetic field. This shift is reflected in the crossover in figures 17 and 18. For B = 8 T the
amplitudes of the satellite peaks are larger on the left than on the right side of the two central
peaks. As the field is increased the frequency shift drives the right-hand side satellites into
resonance, increasing their heights.

The power spectra in figures 17 and 18 are rather insensitive to changes in magnetic field
for B < 8 T compared to the rapid evolution of the satellite pattern for 8 T < B < 12 T.
The analysis shows that this regime corresponds to scanning through the hysteretic part in
the amplitude/frequency (or amplitude/B-field) diagram, involving abrupt changes in the
amplitudes. The resonator studied is strongly nonlinear but not governed by chaotic dynamics.
Similar setups should allow for entering the truly chaotic regime. In further studies on the
nanobeams in the nonlinear regime mechanical mixing was used as a probing mechanism.
Upon reducing the frequency offset δ f between the two sources, the envelope function of the
mixing product shows a clear periodicity as marked in figure 18. In other measurements a first
bifurcation and thus a hint for the cross over of the system from simple nonlinear response into
the chaotic regime was found [9].
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Figure 19. Calculation of the power spectra from the numerical solution of the Duffing equation
assuming an external force equation (46) for the same driving frequencies as used in figure 17.
Variation of magnetic field B = 8, 10, 11 and 12 T.

A requirement for entering the chaotic regime is the detection of harmonics of the
mechanical base frequency. The resonance frequencies are calculated straightforwardly
by FEM; we only recently observed harmonics and sub-harmonics. In figure 20 a first
measurement on the detection of a harmonic is presented. Using harmonics will allow
us to further increase the force sensitivity, by pumping the nanomechanical system on the
fundamental mode while probing on one of the harmonic modes.

These studies open up a wide range of applications, especially for signal processing and
scanning probe techniques [34]. The experimental results are in very good agreement with
numerical calculations based on a generalized Duffing equation, a prototype of a nonlinear
oscillator. Hence these mechanical resonators allow for studying nonlinear, possibly chaotic
dynamics on the nanometre scale.

7. Parametric amplifier

In the above sections the advantages of NEMS have been outlined. One of the major advantages
as compared to MEMS are the high frequencies of operation already achieved. Naturally, this
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Figure 20. RF spectrum of the reflected power for a resonator: shown is the base frequency
f0 = 41.05 MHz and the first harmonic at 2 × f0.

makes NEMS a favourite device for future integration of on-chip signal processing. However,
the fundamental drawback of NEMS is their small size, since this inherently limits the signal
strength with which, e.g., displacement of a resonant cantilever can be detected. Consider
the standard example of a doubly clamped beam, excited by magneto-motive driving. The
induced electromagnetic fields caused by the moving wire are then recorded. The signal
strength depends on several parameters, among these the displacement of the suspended beam.
The shorter the beam the smaller the induced voltage, hence a resonator with a length less than
400 nm will induce only a marginal signal.

A possibility to overcome this severe limitation is given at hand by using parametric
resonance. Generally, one finds that the condition for parametric resonance at frequency f is
given by f = 2 f0/n, where n is an integer [3]. The same principle holds for a huge variety of
different mechanical as well as electronic systems. Naturally, it is also found for MEMS, such
as microscopic cantilevers [28, 36] and micro-actuators [37], which are valuable for scanning
probe applications. Recently parametric amplification was demonstrated in micromechanical
resonators at eigenfrequencies of some kilohertz [38, 39], but not in the RF range. The obvious
approach to achieve RF operation is to scale down the already known sensors and actuators
from MEMS to the nanometre scale. This increases the possible mechanical frequencies by
orders of magnitude, allowing us to reach resonance frequencies in the gigahertz range.

In a straightforward scheme, the bandwidth limitation can easily be overcome by means
of parametric frequency tuning of a phase-locked nano-electromechanical resonator, as shown
in figure 21 [40]. Important for achieving the large increase in bandwidth is the effective phase
coupling between the nanomechanical resonator and the electrical circuit driving the device. In
the following the response of the suspended bridges in two different geometries is investigated.
This ensures proper treatment of the nonlinear restoring forces caused by the clamping points.

Sample A has a length of l = 1.82 µm, a width of w = 200 nm and a height of
h = 250 nm, is clamped on both ends, and the magnetic field is oriented perpendicular to the
sample plane. The other resonator (termed B) has a slightly different geometry: l = 4.8 µm,
w = 170 nm and h = 240 nm, while the magnetic field is fixed in plane, leading to an out-of-
plane displacement. The two nanoresonators allow us to verify parametric frequency tuning for
two different magnetic field configurations, by pumping them with a synthesizer at a frequency
f p ∼ f0 on one of the side gates. This mode couples capacitively to the mechanical resonator
with an estimated capacitance of Cgate ∼ 0.2 fF for sample A and Cgate ∼ 0.6 fF for sample B.
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Figure 21. Experimental setup for parametric frequency tuning: adding the pumping frequency
f p with a resulting current flow Ip on one of the gate electrodes and determining the variation of
the reflected power. Sketch of the sample configurations with the two different modes investigated:
in both cases an alternating current I0 is sent through the suspended bridge with the static magnetic
field B either in the sample plane or directed out of it, probing the strain dependence of the clamping
points. The resulting Lorentz force leads to in-plane mechanical oscillations for sample A, and
out-of-plane oscillations for sample B. The inset shows a circuit diagram with Rres, Cres and L res
used to model mechanical resonators.

In figure 22 (sample A) and figure 23 (sample B) the RF response is depicted for
different pumping frequencies at a fixed magnetic field strength. The excitation power
of the network analyser was fixed at −50 dBm. The mechanical quality factor of the
resonators under test in the linear regime is QA = 1.37 × 103 and QB = 2.73 × 103. The
fundamental resonance frequency is given by f0 = ω0/2π ∼= (E/ρ)1/2d/ l2 and d is the
beam’s thickness—for Au E = 8.0 × 1010 N m−2 and ρ = 19.32 × 103 kg m−3 and for Si
E(100) = 1.7 × 1011 N m−2 and ρ = 2330 kg m−3. The effective masses of the resonators
are computed to be mA

eff = 6.15 × 10−16 kg and mB
eff = 9.67 × 10−16 kg. The theoretically

estimated resonance frequencies are of the order of f A
0 = 74 MHz and f B

0 = 72 MHz, while
the eigenfrequencies obtained by Solvia are 95.93 and 81.7 MHz, respectively.

As seen in figure 22 the profile of most of the resonance curves follows a Lorentzian
shape corresponding to the linear response regime. For the other resonator discussed below
a transition from a symmetric resonance shape to an asymmetric, sawtooth shape is found,
characteristic of an oscillator operated in the nonlinear regime (figure 23). As seen the
resonance maximum shifts by δ fac = 130 kHz or vanishes completely for f p = f0 =
95.90 MHz (figure 22). A more complete view is also given in figure 22: the resonance
structure is shown in grey scale representation, where dark blue regions correspond to energy
absorption by the beam, i.e. a mechanical resonance, while the bright regions indicate zero
displacement. The plot is spanned by the frequencies f and f p. Direct cross-talk is seen in the
intersectioning line with linear slope. The mechanical resonance is found around 95.9 MHz
and is strongly distorted when the pumping frequency approaches 95.7 MHz. The mechanical
oscillator then locks to f p = f0 = 95.77 MHz, where the shift of the eigenfrequency is of the
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Figure 22. Top: typical response of a nanomechanical resonator around 95 MHz (sample A) with
different pumping frequencies fp applied as noted. The ac frequency leads to a shift of the resonance
frequency of δ fac = 130 kHz, compared to δ fdc = 4 kHz for a dc bias on the gate electrode [20].
The data is taken at a magnetic field strength of B = 10 T and at 4.2 K with the power levels of
the driving frequency at P0 = −63 dBm and of the pumping frequency at Pp = 2 dBm. Bottom:
complete spectrum from the above shown data in a grey scale plot (resonance is depicted as a dark
region).

order of 130 kHz. The power level of the driving signal at frequency f is found to be relatively
low at P = −63 dBm, while a large field strength is required for the pumping signal at f p

with Pp = +2 dBm.
In conventional measurements a frequency shift corresponding to an effective bandwidth

of B ∝ δ fdc
∼= ±2 kHz under Vdc = ±3 V is found [20]. The large frequency shift of

δ fac
∼= ±130 kHz is only possible since the mechanical properties of the beam are modified

under the action of the RF signal in resonance with the mechanical circuit. A further increase of
f p leads to a complete localization of the levers, marked by minimum amplitude. In between
these two, the frequency shift δ f has its maximum albeit with a smaller amplitude. This
corresponds to a softening of the mechanical resonance mode, i.e. the restoring force is changed
under the action of a dynamic excitation. Such a behaviour is characteristic for frequency
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tunable parametric resonators. The parametric excitation obviously allows increasing the
bandwidth by two orders of magnitude. An analogous effect is well known from experiments
on optically active materials [41].

It was possible to realize an enhancement of parametric frequency tuning by using the
slightly larger resonator (sample B). The resonator itself is excited well into the nonlinear
regime as indicated by the resonance shape (see figure 23). A shift in eigenfrequency with
opposite sign compared to sample A is measured. The bandwidth in this case is approaching
δ f ∼ 400 kHz and is even larger compared to sample A, while the applied field strengths are
of the same order of magnitude. Clearly, this larger signal intensity is due to the increase in
length, while the sign changes result from the different interplay of the elastic moduli of Au
and Si and hence the constants when the bridge is moving perpendicular to the sample plane.
The increased noise in the tuning regime results from the direct cross-talk of the pumping
frequency and can be eliminated by proper filtering of the response.

The force F(t) acting on the nanoresonator due to the RF current in the capacitor is
given by F = q E , where E = E0eiωpt is the electric pumping field and q = ∫

I dt ,
with I = I0 exp(i(ωt + φ)) the current running through the bridge. The phase φ is a free
parameter of the system and the frequency is defined as usual as ω = 2π f . One obtains
F ∝ exp(i((ω + ωp)t + φ)) for the experimental situation ω0 ≈ ω ≈ ωp, hence the signal
at the capacitor is roughly twice the eigenfrequency ω0 of the nanoresonator, which leads to
parametric resonance depending on the value of φ. In the experimental situation the pumping
signal ωp = 2π f p is ramped, while the other parameters are kept constant. As noted before it is
found that when ωp is approaching ω the two oscillations are synchronized, i.e. φ = constant.
Coupling energy demands the condition φ = 0, which implies that the nanoresonator is
functioning as a parametric resonator.

A very important difference between these two samples is found with respect to the
nonlinear term, since for sample A not only the first nonlinear term k3 has to be considered
as for sample B, but also a second term k5. The effect of the nonlinearity on the parametric
resonance can be summarized as follows: if the condition µ = k3 = k5 = F(t) = 0 is chosen,
the Mathieu equation is obtained, which gives rise to an explosive growth of x(ω + ωp) in
the region of parametric resonance. Introducing attenuation reduces the region of parametric
resonance in parameter space. The nonlinearity, however, suppresses the strong growth of x ,
since it produces a frequency shift δ1 that finally leads to a detuning.

For nanoresonator B the parameter k3 is constant for a large range of amplitude values,
hence it is a ‘tame’ nonlinearity, and the assumption k5 = 0 holds. For a constant input at the
resonator the nonlinearity implies a constant frequency shift δ1. In this case the new condition
for parametric resonance is expected to be ω + ωp = 2(ω0 + δ1), and not ω + ωp = 2ω0

as in the linear case. It is worthwhile to note again that parametric resonance in this case
does not drive x into the region of explosive growth due to the detuning. Once the condition
(ω+ωp) = 2(ω0 +δ) is met, the amplitude of the displacement x grows and detunes the system,
decreasing the amplitude in turn and δ. In this way the resonator remains always in balance
around the new parametric resonance condition. However, a large amplitude is expected for
the condition ω = ωp + δ2. This new symmetry at ω = ωp + δ2 is observed in figure 23.
It shows the amplitude absorption for sample B in a colour scale plot spanned by f ∼ ω

versus f p ∼ ωp. This figure is interpreted in the following way: when the nanoresonator
is not synchronized, no parametric, but a nonlinear resonance is found. When the system is
synchronized parametric resonance evolves with the resonance condition given by ω = ωp +δ2.

Nanoresonator A, on the other hand, possesses a strong nonlinearity, since k3 is not
constant for large amplitudes. Furthermore, k3 has a negative value which implies that for large
amplitudes (taking k3 < 0 and k5 = 0) the displacement x diverges. Obviously, the resonator
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Figure 23. Line plots (top) and grey scale plots (bottom) of parametric resonance tuning of
sample B. The resonator is operated in the nonlinear regime, indicated by the resonance shape.
In contrast to sample A the frequency shift δ fac is positive and even larger, due to the different
mechanical properties of this beam.

does not collapse and x does not diverge, i.e. saturation effects caused by higher nonlinearities
are present (modelled by the additional term k5). The presence of two nonlinearities leads to
a more complex picture for A compared to B. In this case it is expected that, when the system
is not synchronized only a trivial nonlinear resonance at ω + δ1 is observed. When the two
frequencies synchronize parametric resonance kicks in and a complex scenario is built up by
the interplay of the two nonlinear terms k3 and k5.

The achieved increase in bandwidth by two orders of magnitude will finally help in
overcoming the most severe limitation of NEMS. A very promising experiment will be
the combination of parametric frequency tuning and quantum noise squeezing for quantum
nondemolition (QND) measurements in nanomechanical systems.
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Table 1. Resonance frequencies of a torsional resonator and corresponding Q-values.

Frequency (MHz) Quality factor

0.566 560
0.584 580
0.741 2470
1.27 1270
2.33 1165
3.66 1220

51.5 1198
54.08 3605
76.2 1520
78.4 3140

109.38 2956
237.5 2160
239.3 1710
318.1 1770

8. Dissipation

The crucial quantity of nanomachined resonators is the mechanical quality factor Q, since it
is dominated by the energy dissipated in the device [43, 45]. Dissipation in these structures is
determined by external thermal phonons, i.e. radiation into clamping points, internal thermal
phonons (other resonator modes), electrons in overlayers, surrounding gas, bulk defects
(e.g. two-level systems), surface defects and adsorbates [42]. Nanomechanical resonators
show in comparison to macroscopic ones Q-values of the order of only 103–104 [44], where
the definition of Q is

Q = energy in each cycle ε

dissipated energy in each cycle εdiss
. (50)

Considering magneto-motively driven resonators

E = 1

2
meffω

2
0 y2

0,max = meff K 2

8µ2
= L2 B2 I 2

0

8meffµ2
. (51)

The attenuation constant µ is connected to the Q-value via µ = ω0/2Q. The total energy
dissipated per cycle εdiss is given as a sum of the different mechanisms, which will be discussed
in the following. In table 1 the eigenmodes and the corresponding Q-values of a typical
resonator are given. The large number of modes found is due to the more complex geometry
compared to conventional beams. Interestingly resonances up to 0.4 GHz were found—the
Q-values on the other hand were all of the same order of magnitude. All resonances are indeed
of mechanical origin and were taken in the linear response regime.

8.1. Ohmic losses

Exciting the resonator electromagnetically results in ohmic losses in the metallic top layer.
The dissipated power in an ohmic resistor is defined as Pdiss = RI 2

0 , with a resistance R of
the metal and a driving current I0. The resistance of the samples is usually found to be around
10−2–10−1 �. The experimentally found value is of the order of Qmax ∼ 1–5 × 104. Usage
of superconducting metal will help to reduce this source of dissipation. In order to address the
physics of dissipation in the ultimate limit of single electrons interacting with phonon modes of
their semiconductor host crystal, the most promising approach is to machine freely suspended
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Figure 24. (a) Top view and (b) side view of the smallest suspended silicon nanowire fabricated
with a width of 23 nm. The highly doped wire is clearly underetched; the gate allows tuning of the
carrier density in the wire.

nanobridges from doped semiconductor materials as shown in figure 24. These bridges allow
us then to study the relaxation between electrons and phonons [46, 47] in detail by tailoring
the phonon mode spectrum.

Efforts were undertaken in nanostructuring of Si-based materials: highly p-doped
suspended silicon wires were investigated at room temperature by Fujii et al [48]. Recently
a beautiful experiment by Schwab et al [49] revealed that in suspended Si nanostructures
the thermal conductance carried by phonons is quantized, as proposed earlier by Rego and
Kirczenow [51] and discussed in more detail in the literature [52–54]. For studying dissipation
on the microscopic level we realized highly doped suspended silicon nanowires with lateral
dimensions down to 20 nm [50]. Due to random dopant fluctuations and segregation effects a
potential landscape for electrons in the doped wire is created leading to a serial arrangement
of Coulomb islands also termed multi-tunnel junctions (MTJs). These MTJs can then applied
as Coulomb blockade thermometers (CBTs) [55–57] in suspended as well as non-suspended
devices for comparison, allowing us to study dissipation in the low drain–source bias regime.

A strong modulation of the wire conductance found at high source–drain currents is related
to heat transport by optical phonons. Since phonon generation depends on the phonon density
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Figure 25. Conductance of a nanowire: at the lowest temperatures of 1.5 K a sharp resonance
appears, resulting from MTJ in the wire. This temperature-dependent resonance around VDS = 0 V
vanishes above 25 K. The inset shows the conductance resonance at 1.5 K and a fit according to [11].
The resonance amplitude δG is finally applied for thermometry.

of states at the temperature of the nanowire the phonon spectrum affects electron transport in
the suspended nanostructures. The maximum current densities the nanowires can sustain is of
the same order as for superconducting wires. Figure 26 shows the nonlinear I V -characteristic
of a suspended nanowire as a function of temperature. We can conclude that internal dissipation
has a lower limit defined by the effective electron–phonon relaxation mechanisms.

8.2. Viscous or external losses

When a resonator is immersed into a liquid or into a gaseous atmosphere the non-zero
momentum transfer of the atoms effectively reduces the resonance amplitude [58–61].
Immersing a nanobeam in gaseous or fluid helium and inducing a mechanical vibration allows
us to study the underlying principles of these external dissipation effects. In figure 27 the
measurement of the reflected power during filling of the sample holder with 4He is shown
(the sample holder was cooled to 4.2 K). The attenuation by the gas leads to a decrease of the
resonance amplitude, a shift to lower frequencies and a broadening of the resonance. When
liquefaction of 4He occurs (shown in the last trace), the resonance disappears completely. As
seen in this figure we find even in the linear regime of the resonator’s response a dispersion
when the 4He content is increased. This corresponds to an effective momentum transfer to
the 4He atoms impinging onto the resonator. Increasing the power applied to the resonator, a
non-zero amplitude of its motion immersed in the liquid is found.

It is quite interesting to use the nanoresonators for creating excitations in superfluid helium,
since the velocity of the beam is of the same order compared to the critical velocity in 4He [62].
Until the beam reaches this velocity vortex line generation is considered to be low [3]. It has
to be noted that losses into sound waves are still possible below the critical velocity. Further
acceleration leads to the excitation of vortex states in the fluid resulting in an increased energy
consumption. This can be seen in a flattening of the resonance curves. In 3He the critical
velocity is given by the energy required for pair breaking of the superfluid pairs, which is in
the mm s−1 range. In 4He it is given by the creation of vortex states at low pressures and the
excitation of rotons at higher pressures. The corresponding velocities for these excitations are
about 25 m s−1.
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Figure 26. Top: conductance of the nanowire at high VDS. In the centre the MTJ resonance at 1.5 K
is seen. Around ±0.5 V we find a structure indicating electron relaxation via optical phonons. The
lower right inset shows the insensitivity of the optical phonon relaxation peaks up to 90 K. The
upper left inset depicts the field effect for this particular suspended nanowire with the conductance
as a function of side gate voltage VSG. Due to the strong doping the wire is not fully depleted.
Bottom: maximum sustainable current through a 100 × 140 nm2 thin suspended nanowire. The
inset shows the conductance close to the melting point.

8.3. Internal losses

Another source of dissipation is given by the small size of the resonators, since the surface to
volume ratio is quite different compared to macroscopic resonators. According to Carr et al [39]
a reduction of Q is found for larger surface to volume relation. In other words surface tension
and in general surface defects and adsorbed layers (e.g. chemicals and water) are becoming
increasingly important [63]. A detailed study will be presented elsewhere. Energy is also
lost into the clamping points of the suspended nanostructures. Another dominant contribution
to the losses is given by the so far used metallic top layer; i.e., the metal necessary to probe
the resonators strongly enhances the overall mass of the system. However, the experimental
data available suggest that surface defects and surface tension are the main cause for Q-factor
reduction, since the dry etching process might introduce a number of defects. In figure 28 the
nonlinear response of a mechanical resonator is shown: upon increasing the excitation power
a hysteresis is observed with a substructure, which might be interpreted as an impurity state.
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Figure 27. Attenuation of the mechanical resonance amplitude by increasing 4He pressure as
indicated until liquefaction occurs in the linear (left) and nonlinear (right) regime (−63 dBm input
power, T = 4.2 K). The maximum velocity of the beam vmax has been calculated for each curve
and is given on the left-hand side. In the inset a schematic view for directed phonon generation is
sketched. The magnetic field is oriented perpendicular to the high frequency current I .

(a) (b)

Figure 28. Spectra of a resonator: (a) the response of a nanobeam in the linear (Pin = −63 dBm)
and nonlinear (Pin = −53 dBm) regime is depicted. The particular feature shown is the kink in the
nonlinear trace, resulting from higher order nonlinearity. (b) This kink disappears upon increasing
the sample’s temperature to above 12 K.

Such an impurity can either be an adsorbed monolayer of molecules on the beam’s surface
or an intrinsic impurity of the resonator. In both cases this leads to a higher order term in
the potential, which in turn gives rise to a change in the restoring force. As seen in figure 28
this leads to an additional kink, which disappears towards higher temperatures. However, in
detailed measurements applying different gate voltages in the close vicinity of the mechanical
resonator we found that this specific kink results from a higher order nonlinearity introduced
by the clamping points [9].

8.4. Electronic environment

The coupling of the mechanical circuit to the electronic probing circuit is well understood [64]:
the mechanical oscillation in a magnetic field induces a voltage in the metallic beam, which is
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given by

V (t) = ξ L Bẋ(t) = iωξ L Bx(t), (52)

where ξ is a constant of order unity and is determined by the specific mode. Without an external
circuit connected, the voltage can be written

V (ω) = iωξ L2 B2/meff

ω2
0 − ω2 + iωω0/Q0

I (ω), (53)

where Q0 = ω0/2µ is the intrinsic Q-factor of the resonator. The magneto-motively driven
resonator can be represented by a circuit with resistance Rm, inductance Lm and capacitance
Cm in parallel. The voltage drop across this circuit under the assumption of large external
impedance Zext → ∞ is

V (ω) = iω/Cm

ω2
LC − ω2 + iω/RmCm

I (ω), (54)

where ωLC = 1/
√

LmCm.
The two equations can be directly compared:

Cm = meff

ξ L2 B2
, Lm = ξ L2 B2

ω2
0meff

, Rm = ξ L2 B2

ω0meff
Q0. (55)

This implies ωLC = ω0. We introduce now a finite external impedance under the assumption
that Zext(ω) is constant when the mechanical resonance condition is met, which is satisfied
when Q0 � 1. Approximating Zext(ω) ∼= Rext + iXext the voltage drop is obtained

VL(ω) =
[
ω2

0 − ω2 + iωω0/Q0

iω/Cm
+

1

Rext + iXext

]−1

I (ω)

= iω/Cm

(ω2
0 + ωω0 Zc Xext/|Zext|2) − ω2 + iωω0(1/Q0 + Zc Rext/|Zext|2) I (ω) (56)

with the characteristic impedance Zc = √
Lm/Cm. Obviously, the external impedance leads

to a resonance shift and to a variation of Q. A series expansion with respect6 to Zc/Zext leads
to

fL = f0

√
1 + Zc Xext/|Zext|2 (57)

and

Q−1
L = Q−1 + Zc Rext/|Zext|2. (58)

Finally, it can be concluded that proper impedance matching of the external circuit (cable, gate
structure etc) to a 50 � load is necessary for building high-Q mechanical resonators.

9. Quantum-limited displacement detection

One aim of building mechanical resonators on the nanometre scale is the possibility of accessing
the realm of quantum mechanics [16]. The simple reasoning for this is the comparison of
achievable mechanical energies of the system εm = h f0 and comparing this to the thermal
energy of the connecting environment εT = kB T . For frequencies of the order of 0.5–1 GHz the
corresponding temperature is 50 mK, which is in the accessible range of dilution refrigerators.
Theory work reflecting such an approach by Bocko and Onofrio [66] was based on classical
scanning tunnelling microscopy tips suffering a finite back-action of the tunnelling electrons
6 This expansion is valid, since the resonators investigated commonly show Zc < 0.01 � and Zext = 50 �.
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onto the resonating clapper. Rugar and Grütter [36] then built a mechanical parametric amplifier
for thermomechanical noise squeezing measurements, followed later by Greywall et al [28]
and Yurke et al [29] who demonstrated effective noise reduction in nonlinear oscillators. The
use of micromechanical devices for QND measurements was then investigated by Braginsky
and Khalili [65] and Bocko and Onofrio [66].

The starting ground for QND measurements are commonly the observables of a harmonic
oscillator. True QND observables require that they are decoupled from its conjugate observable,
otherwise a measurement on the observable unavoidably would spoil the observable of interest.
If such a measurement can be performed the mechanical resonator would be in a state where
one observable is squeezed at the expense of the other [67]. This would greatly enhance the
sensitivity of any mechanical system [68] and finally allow us to probe the decoherence of a
macroscopic object [69]. An example calculation of such a squeezed state in a micron-sized
cantilever was recently given by Blencowe and Wybourne [70, 71], showing the importance
for scanning probe techniques.

Taking a vibrating wire of macroscopic dimensions, the wave equation describing its
motion is essentially the same as for a mesoscopic mechanical resonator. The question naturally
arising is how the two regimes can be easily identified. In general, the distinction between
classical and quantum mechanics is given by the use of Heisenberg’s uncertainty relation.
There are different approaches which can be taken: the first one is realizing ultra-sensitive
displacement detection by using tunnel sensors and quantum dots, relying on the relation
�x�p ∼ h̄. The second approach is based on a more intricate method, i.e. on measuring
the heat load of suspended nanocrystals and addressing the determination of a number state
(N) of the suspended system. This relies on the Heisenberg relation �N�φ ∼ h̄. Recent
measurements by Schwab et al [49] give strong evidence that indeed phonon quantization can
be observed by using extremely sensitive SQUID noise thermometry. Extending this idea to
QND measurements requires us to fix the resonator number or Fock state. This would allow
us to count single phonons.

Following Bocko and Onofrio [66] a QND measurement on a harmonic oscillator can be
described in terms of Hermitian coordinate x̂ and momentum p̂ operators. The mechanical
system itself possesses a mass m and resonates at an angular frequency ω. Here, coupling
to the environment via an interaction Hamiltonian Ĥi is neglected. The Hamiltonian of the
system is then given by

Ĥ0 = p̂

2m
+

mω2 x̂2

2
, (59)

while the number of phonons is given by the number operator

n̂ = Ĥ0

h̄ω
− 1

2
= â†â (60)

with the creation and annihilation operators

â† =
√

mω

2h̄

(
x̂ − i

p̂

mω

)
, (61)

â =
√

mω

2h̄

(
x̂ + i

p̂

mω

)
. (62)

The frequency dependence of these operators can be simplified by defining the complex
amplitudes X̂1 + iX̂2 to yield

x̂ + i
p̂

mω
= (X̂1 + iX̂2) exp(−iωt). (63)
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This complex amplitude operator then is defined in terms of x̂ and p̂/2ω by splitting into the
real and imaginary part:

X̂1(x̂, p̂, t) = x̂ cos ωt − p̂

mω
sin ωt, (64)

X̂2(x̂, p̂, t) = x̂ sin ωt +
p̂

mω
cos ωt . (65)

In the absence of interactions these commute with themselves for all times t ,

d X̂ j

dt
= ∂ X̂ j

∂ t
− i

h̄
[X̂ j , Ĥ0] = 0, (66)

which is the condition for a QND observable. For practical purposes it follows that the number
of quanta n̂ and the complex amplitudes X̂1 and X̂2 can be used as continuous QND observables.

In both of the above mentioned experimental approaches the question whether quantum
mechanical systems can be realized is reduced to the degree of back-action of the detector onto
the quantum device. The main problem is how to isolate the system from the environment,
since any connection introduces decay channels leading to a destruction of coherence, i.e. a
non-negligible interaction Hamiltonian. However, with Q-factors above 103 nanomechanical
systems are expected to reveal the transition to quantum mechanics at low enough temperatures.
As we have seen in the earlier sections, it is indeed possible to build such freely suspended
devices on the nanometre scale with eigenfrequencies approaching the GHz regime. Hence,
it seems to be within reach to find a quantum mechanical response of a mechanical system,
when the thermal coupling due to phonon quantization can be sufficiently reduced.

The question now is how to determine whether a mechanical oscillator can be regarded as
a quantum mechanical object. Starting from the Duffing equation with the potential

V0(x) = 1
2 mω2x2 + 1

4 mαx4, (67)

we consider typical values for the mechanical resonator: m = 6.15 × 10−16 kg, ω0 = 2π f0 =
2π · 74 MHz = 5 × 108 Hz, for the anharmonicity α = 9.1 × 1028 m s−1, µ = 50 265 Hz and
length l = 1.9 µm, B = 1 T and I0 = 19 µA. For the first scaling factor to be considered it is
found (for α → 0) that

x0 =
√

h̄

mω0
, (68)

which yields 1.9 × 10−5 nm. Assuming achievable values of m ∼ 10−20 kg and ω =
1–2 × 109 Hz one obtains already x0 ∼ 3 pm. The energy of the lowest mode

ε0 = h̄ω0, (69)

is of the order of ∼10−34 J s × 1 GHz ∼= 10−25 J ∼= kB · 7.3 mK, a value which is just within
reach of dilution refrigerators.

As noted before, the most reliable technique to probe nanomechanical resonators is
recording the induced electromagnetic field by a magneto-motively driven beam. Detection
can be performed by monitoring the reflected signal or—at least in principle—the transmitted
power. Another possibility is given by tracing the displacement by a gate electrode coupling
capacitively to the beam. In other words the displacement �x is translated into a variation of
the capacitance �Cgate. A possible back-action then should alter the beam’s momentum �p
and hence change the resonance pattern. This is not a QND measurement, since �x and �p
are not Hermitian; such an experiment should allow us to probe the transition from classical
mechanics into the realm of quantum mechanics.
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Figure 29. Top: measured resonances of a nanobeam: this mechanical resonator is 4.8 µm long,
170 nm wide and 190 nm thick, covered by a 50 nm thick conducting Au layer. The magnetic field
is oriented in the plane of the sample surface and perpendicular to the beam. The inset shows the
observed hysteresis which emerges when tracing the frequency from low to high and the reverse.
Bottom: resonances in the spectrum of a nanomechanical resonator detected by capacitive coupling.

The result when using capacitive detection to probe the resonances of a mechanical
resonator is depicted in figure 29: in this measurement we observed Q ∼ 4150 enhanced
by a factor of 1.52 as compared to the value measured by the standard detection technique. As
noted before the induced voltage over the beam due to its motion in the magnetic field can be
written as

Vind(ω) = iωL Bξu(ω), (70)

where ξ denotes a factor depending on the excited mode and u the amplitude of the oscillation.
This approach is justified if a periodic motion at frequency ω is assumed. In order to derive a
similar equation for the case of capacitive detection it is of advantage to use an expansion to
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Figure 30. Highest frequencies measured for increasing magnetic fields.

the second order of the capacitance between the detection gate and the beam

C(u) = C(0) +
∂C(u)

∂u

∣∣∣∣
0

u +
1

2

∂2C(u)

∂u2

∣∣∣∣
0

u2 + · · · , (71)

where C(u) denotes the dependence of the capacitance on the displacement of the beam
perpendicular to the sample’s surface. In equilibrium, the beam is in a state of minimum
electrostatic energy, the first derivative of C(u) with respect to the amplitude u vanishes

∂C(u)

∂u

∣∣∣∣
0

= 0 (72)

and the induced voltage can be written, using equations (71) and (72), as

Vcap(ω) = Q

C(u)
= V0 − 1

2

Qc

C2
0

C ′′
0 u2(ω) (73)

where C ′′
0 denotes the second derivative of the capacitance with respect to the amplitude, taken

at zero amplitude—u(ω) is assumed to have a Lorentzian shape

u(ω) = 1√
(ω2

0 − ω2)2 + 4µ2ω2
. (74)

The different functional forms of equation (70), namely ωu(ω), and of equation (73), (u(ω))2,
result in two observable phenomena.

(i) The capacitively detected peaks are shifted by

�ω = ω0 −
√

ω2
0 − 2µ2, (75)

whereby the maximum is situated at ω0 when detecting the reflected power.
(ii) As equation (73) depends on u(ω)2 the width of the resonance should be reduced when

using capacitive detection. This results in an enhanced quality factor, depending on µ

and ω.



R942 Topical Review

The ratio of the quality factors for capacitive and direct detection can be calculated
evaluating the full width at half maximum positions of equation (70) and equation (73)
respectively and taking into account that in the experiment the power is measured and not
a voltage. This ratio � is a function of the resonance frequency ω0 and of the effective
attenuation constant µ. Using the experimentally found value of µ = 94.2×103 s−1, � = 1.55
is obtained, which agrees very well with the measured value of 1.52. To summarize, we have
shown that capacitive detection of NEMS displacement can be integrated as a highly sensitive
probing mechanism. Apart from implementing the detection technique another straightforward
approach to further increase the operating frequency (see figure 30) and force sensitivity
of NEMS is to pump the nanomechanical system on the fundamental mode while probing
capacitively on one of the harmonic modes. Applying parametrical amplification for QND
measurements will further improve resolution [72].

10. Outlook

Three-dimensional nanostructuring of silicon was applied to fabricate mechanical devices
on the nanometre scale. The properties of these structures are probed by RF techniques.
Unprecedented mechanical resonance frequencies of the order of 350 MHz were found.
Applications in sensor technology were demonstrated, promising integration in fast and highly
sensitive circuitry. The mechanical degree of freedom allows study of nonlinear dynamics on
the nanometre scale and possibly reaching the quantum regime at temperatures below 100 mK.
This is of great importance not only for the ultimate resolution of scanning probe microscopy,
but also for quantum non-demolition measurements.

As an outlook one might consider the application of NEMS as mechanical memory
elements. This idea dates back into the 19th century when Charles Babbage invented the
first mechanical computing machines. These were clumsy and hardly ever operational.
Nevertheless, nowadays the increasing integration density, the combination with electronic
components and the high speed of operation lead to a certain renaissance of mechanical
components. First realizations of mechanical transducers as memory elements have been given
already by Hälg [75]. Other work used fullerenes caged in short nanotubes as mechanical
memory cells [76]. Carbon nanotubes are of great interest regarding their mechanical
properties [77, 78]. Moreover, the insensitivity against electromagnetic pulses and radiation,
the low power consumption, the low defect density and usage of standard silicon processing
techniques will support such ideas.

Another path to be followed is probing and connecting molecules [79], and cells [80],
to mechanical semiconductor devices with Å resolution. The next few years will witness
the development of the chemistry required and the proper theory to describe contacts between
artificially fabricated systems and appropriate molecules. Yet one of the most promising topics
that nanomechanical tools allow us to access is the field of bio-NEMS. The starting point for
these investigations is the ability to design and build semiconductor devices on the length scale
of 10 nm, the same size as large proteins. This might ultimately lead to the integration of
molecular motors [81] into NEMS as pioneered by Montemagno and Bachand [82].
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