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Mechanical mixing in nonlinear nanomechanical resonators
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The physics of nonlinear dynamics has been studied in detail in macroscopic mechanical systems
like the driven classical pendulum. By now, it is possible to build mechanical devices on the
nanometer scale with eigenfrequencies on the order of several 100 MHz. In this work, we want to
present how to machine such nanomechanical resonators out of silicon-on-insulator wafers and how
to operate them in the nonlinear regime in order to investigate higher-order mechanical mixing at
radio frequencies. The nonlinear response then is compared in detail tonth-order perturbation
theory and nonperturbative numerical calculations. ©2000 American Institute of Physics.
@S0003-6951~00!04545-9#
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Mechanical devices in combination with modern sem
conductor electronics offer great advantages as, for exam
their robustness against electrical shocks and ionization
to radiation. In the outstanding work by Rugar and Gru¨tter,1

the importance for applications in scanning-probe micr
copy of mechanical cantilevers was demonstrated. Grey
et al.2 investigated noise-evasion techniques for freque
sources and clocks. The main disadvantage of mechan
devices so far is the low speed of operation. This has b
overcome with the realization of nanomechanical resonat
which allow operation at frequencies up to 500 MHz.3–7

In the present work, we realize such a nanomechan
resonator to study its nonlinear dynamics and its mechan
mixing properties. Mixing is of great importance for sign
processing in common electronic circuits. Here, we pres
measurements on such a nonlinear nanomechanical res
tor, forced into resonance by application of two different, b
neighboring, driving frequencies. We also present a theo
ical model, based on the Duffing equation, which accura
describes the behavior of the mechanical resonator.

The starting materials are commercially availab
silicon-on-insulator substrates with thicknesses of the
layer and the SiO2 sacrificial layer of 205 and 400 nm, re
spectively~Smart-Cut wafers!. The gate leads connecting th
resonator to the chip carrier are defined using optical lith
raphy. In a next step, the nanomechanical resonator is
fined by electron-beam lithography. The sample is dry etc
in a reactive-ion etcher in order to obtain a mesa struc
with clear-cut walls. Finally, we perform a hydrofluoric~HF!
wet-etch step in order to remove the sacrificial layer bel
the resonators and the metallic etch mask. The suspe
resonator is shown in a scanning electron-beam microgr
in Fig. 1~a!: The beam has a length ofl 53 mm, a width of
w5200 nm, and a height ofh5250 nm, and is clamped o
both sides. The inset shows a close up of the suspen
beam. The restoring force of this Au/Si-hybrid beam
dominated by the stiffer Si supporting membrane.

The chip is mounted in a sample holder and a sm

a!Electronic mail: robert.blick@physik.uni-muenchen.de
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amount of4He exchange gas is added~10 mbar! to ensure
thermal coupling. The sample is placed at 4.2 K in a m
netic field, directed in parallel to the sample surface but p
pendicular to the beam. When an alternating current is
plied to the Au layer of the beam, a Lorentz force aris
perpendicular to the sample surface and sets the beam
mechanical motion. For characterization, we employ a sp

FIG. 1. ~a! Scanning electron-beam micrograph of the electromechan
resonator with a lengthl 53 mm, width w5200 nm, and heighth
5250 nm. The Si-supporting structure is covered by a thin Au sheet~50 nm
thick!; the electrodes on the left and right allow tuning of the elastic pro
erties. Inset shows a view of the beam from a different angle.~b! Experi-
mental setup for sampling the mechanical properties of the suspended b
For characterization we employ a spectrum analyzer scanning the frequ
range of interest~a!. Mechanical mixing is analyzed by combining tw
synthesizers (f 1 , f 2) and detecting the reflected power~b!.
2 © 2000 American Institute of Physics
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trum analyzer~Hewlett Packard 8594A!: The output fre-
quency is scanning the frequency range of interest, the
flected signal is tracked, and then amplified@setupa in Fig.
1~b!#. The mixing properties of the suspended nanoreso
tors are probed with a different setup comprising two s
thesizers~Marconi 2032 and Wavetek 3010! emitting excita-
tions at constant, but different, frequency@setupb in Fig.
1~b!#.

In Fig. 2 the radio-frequency response of the beam n
resonance is depicted for increasing magnetic-field stren
B50,1,2,...,12 T. The excitation power of the spectrum a
lyzer was fixed at250 dBm. The mechanical quality facto
Q5 f /d f , of the particular resonator under test in the line
regime isQ52330. As seen, the profile of the resonan
curve changes from a symmetric shape at moderate field
an asymmetric, sawtooth shape at large field values, cha
teristic of an oscillator operated in the nonlinear regime.

This behavior can be described by the Duffing equat

ẍ~ t !1m ẋ~ t !1v0
2x~ t !1ax3~ t !5F~ t !, ~1!

with a positive prefactora of the cubic term being the pa
rameter of the strength of the nonlinearity.8 In Eq. ~1! m is
the damping coefficient of the mechanical system;v0

52p f 0 , where f 0 is the mechanical eigenfrequency of th
beam; andx(t) its displacement. In our case, the extern
driving F(t) is given by the Lorentz forceF(t)5
5( lB/meff) I0 cos(2pft), wherel 51.931026 m is the effec-
tive length andmeff54.3310216kg is the effective mass o
the resonator.B is the magnetic field andI 0 the input current.

Solving Eq.~1! and computing the amplitude of the o
cillation as a function of the driving frequencyf for several
excitation strengths reproduces the measured curves sh
in Fig. 2. The solutions at large power exhibit a region wh
three different amplitude values coexist at a single f
quency. This behavior leads to a hysteretic response in
measurements at high powers~e.g.,250 dBm!,7 as shown in
the inset of Fig. 2, where we used an external source~Mar-
coni! to sweep the frequencies in both directions. If the f
quency is increased@inverted triangles~,! in the inset#, the
resonance first follows the lower branch, and then sudde

FIG. 2. Characterization of the nonlinear response of the suspended
by ramping the magnetic field from 0 T up to 12 T, obtained with t
spectrum analyzer operated with an output power level of250 dBm~setup
a!. Inset shows the measured hysteresis:, corresponds to an increase i
frequency andn represents the lowering branch.
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jumps to the upper branch. When sweeping downwards fr
higher to lower frequencies@triangles~n!#, the jump in reso-
nance occurs at a different frequency.

By applying two separate frequency sources, as sketc
in Fig. 1~b! ~setupb!, it is possible to demonstrate mechan
cal mixing, as shown in Fig. 3~a!. The two sources are tune
to f 1537.28 MHz andf 2537.29 MHz with constant offse
and equal output power of248 dBm, well in the nonlinear
regime. Without applying a magnetic field, the two inp
signals are simply reflected. Crossing a critical field ofB
.8 T, higher-order harmonics appear. Increasing the fi
strength further, a multitude of satellite peaks evolves.
seen, the limited bandwidth of this mechanical mixer allo
effective signal filtering. The gray line is taken at zero fie
for comparison, showing only the reflected power when
beam is not set into mechanical motion.

Variation of the offset frequencies leads to the data p
sented in Fig. 3~b!: Excitation at248 dBm andB512 T with
the base frequency fixed atf 1537.290 MHz and varying the
sampling frequency in 1 kHz steps fromf 2537.285 to
37.290 MHz yields satellites at the offset frequenciesf 1,2

6nD f , D f 5 f 12 f 2 . At the smallest offset frequency of
kHz the beam reflects the input signal as a broadband
excitations~data not shown!.

We model the nanomechanical system as a Duffing
cillator ~1! with a driving force

F~ t !5F1 cos~2p f 1t !1F2 cos~2p f 2t !, ~2!

with two different, but neighboring, frequenciesf 1 and f 2

and amplitudesFi5 lBI i /meff .
Before presenting our results of a numerical solution

Eq. ~1! for the driving forces~2!, we perform an analysis

am

FIG. 3. ~a! Two synthesizers@setupb in Fig. 1~b!# running at frequencies of
f 1537.28 MHz andf 1537.29 MHz with constant offset~output power248
dBm! induce higher-order harmonics as a result of mechanical mixing
the nanoresonator in the nonlinear regime (B.8 T). The gray line is taken
at B50 T, showing pure reflectance of the beam without excitation of m
chanical motion.~b! Excitation with two frequencies at248 dBm andB
512 T: Base frequency isf 1537.290 MHz, while the sampling frequenc
f 2537.285 and 37.288 MHz. As seen, the spacing of the harmonics foll
the offset frequencyD f 5 f 12 f 2 .
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based onnth-order perturbation theory9 to explain the gen-
eration of higher harmonics. Expanding

x5x01ex11e2x21¯ , ~3!

where we assume that the~small! parametere is of order of
the nonlinearityax3, and inserting this expansion into E
~1!, yields equations for the different orders ine. In zeroth
order we have

ẍ01m ẋ01v0
2x05F1 cos~2p f 1t !1F2 cos~2p f 2t !, ~4!

to first-order ẍ11m ẋ11v0
2x11ax0

350, and similar equa-
tions for higher orders. After inserting the solution of Eq.~4!
into the first-order equation and assumingf 1' f 2' f 0

5v0/2p, two types of peaks can be extracted: One pea
located at 3f 0 which we, however, could not detect expe
mentally. Peaks of the other type are found at frequen
f i6D f . Proceeding along the same lines in second-or
perturbation theory we obtain peaks at 5f 0 and f i62D f .
Accordingly, owing to the cubic nonlinear term,nth-order
peaks are generated at (2n11) f 0 and f i6nD f . While the
(2n11) f 0 peaks could not be observed, the whole satel
family f i6nD f is detected in the experimental power spe
tra Figs. 3~a! and 3~b!.

The perturbative approach yields the correct peak p
tions and, forB,4 T, also the peak amplitudes. However,
the hysteretic, strongly nonlinear regime, a nonperturba
numerical calculation proves necessary to explain quan
tively the measured peak heights. To this end, we determ
the parameters entering into Eq.~1! in the following way:
The damping is estimated from the quality factorQ52330
which gives m550 265 Hz. The eigenfrequency isf 0

537.26 MHz, as seen from Fig. 2 in the linear regime. T
nonlinearitya is estimated from the shift9

d f ~B!5 f max~B!2 f 05
3a@L0~B!#2

32p2f 0
, ~5!

in frequencyf max at maximum amplitude in Fig. 2. In zer
order the displacement of the beam is given byL0

5 l I 0B/(4p f 0mmeff). Relation ~5! yields with I 051.9
31025 A, a value ofa59.131028 ~ms!22.

We first computedx(t) by numerical integration of the
Duffing equation with driving~2! and F15F25 lBI 0 /meff ,
I 052.931025 A. We then calculated the power spectru
from the Fourier transformx̂(v) of x(t) for large times~be-
yond the transient regime!. For a direct comparison with th
measured powerP in Fig. 3, we employP.RIap

2 . Here,R is
the resistance of the electromechanical circuit andI ap

5@4p f 0mmeff /(lB)#x̂(v) the applied current, in close ana
ogy to the zero-order relation between displacementL0 and
I 0 .

The numerically obtained power spectra are displaye
Fig. 4. The positions of the measured satellite peaksf i

6nDf, and their amplitudes, are in good agreement with t
numerical simulations for the entire parameter range sho
Even small modulations in the peak heights to the left of
two central peaks in Fig. 3~b! seem to be reproduced by th
calculations in Fig. 4~b!.

The numerical results in Fig. 4~a! show clearly the evo-
lution of an increasing number of peaks with growing ma
netic field, i.e., increasing driving amplitude. As in the e
periment, the spectra exhibit an asymmetry in number
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height of the satellite peaks which switches from lower
higher frequencies by increasing the magnetic field from 8
12 T. This behavior can be understood from Eq.~5! predict-
ing a shift d f in resonance frequency with increasing ma
netic field. This shift is reflected in the crossover in Figs. 3~a!
and 4~a!. For B58 T, the amplitudes of the satellite peak
are larger on the left than on the right side of the two cen
peaks. As the field is increased the frequency shift drives
right-hand-side satellites into resonance, increasing t
heights.

In summary, we have shown how to employ the nonl
ear response of a strongly driven nanomechanical reson
as a mechanical mixer in the radio-frequency regime. T
opens up a wide range of applications, especially for sig
processing. The experimental results are in very good ag
ment with numerical calculations based on a generali
Duffing equation, a prototype of a nonlinear oscillator.

The authors acknowledge financial support by the De
sche Forschungsgemeinschaft~DFG!.
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FIG. 4. Calculation of the power spectra from the numerical solution of E
~1! and~2! for the same driving frequencies as used in Fig. 3.~a! Variation
of magnetic fieldB54, 8, 9, 10, 11, and 12 T.~b! Variation of offset
frequency atB512 T. Note that the two central peaks of Fig. 3 are n
reproduced by the theory, since they stem from the reflected input sign


