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Abstract

We present an experimental study of the 
uctuations of Coulomb blockade peak positions of a quantum dot. The dot
is de�ned by patterning the two-dimensional electron gas of a silicon MOSFET structure using stacked gates. The ratio
of charging energy to single-particle energy is considerably larger than in comparable GaAs=AlGaAs quantum dots. The
statistical distribution of the conductance peak spacings in the Coulomb blockade regime was found to be unimodal and
does not follow the Wigner surmise. The 
uctuations of the spacings are much larger than the typical single-particle level
spacing and thus clearly contradict the expectation of random matrix theory. Measurements of the natural line width of a set
of several adjacent conductance peaks suggest that all of the peaks in the set are dominated by electrons being transported
through a single-broad energy level. ? 2000 Elsevier Science B.V. All rights reserved.
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The spectral properties of many quantum mechan-
ical systems whose classical behavior is known to
be chaotic are remarkably well described by the the-
ory of random matrices (RMT) [1]. This has been
experimentally con�rmed, for example, in measure-
ments of slow neutron resonances of nuclei [2] and in
microwave re
ection spectra of billiard-shaped cavi-
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ties [3]. Electron transport experiments performed on
semiconductor quantum dots in the Coulomb blockade
(CB) regime 1 provide a further possibility to check
RMT predictions. The classical motion of electrons in
these structures can be assumed to be chaotic due to
an irregular potential landscape produced by impuri-
ties, an asymmetric con�nement potential [5], and=or
electron–electron interactions [6]. The transport prop-
erties of quantum dots are inherently related to their

1 For a review of Coulomb blockade phenomenon in semicon-
ductor quantum dots see Ref. [4].
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energy spectra and electronic wave functions and thus
the connection with RMT is readily made [5,7].
On the other hand, the distribution of the Coulomb

blockade peak spacings have been found to deviate
from the expectations of RMT [8–11]. The results sug-
gest that the peak spacings are not distributed accord-
ing to the famous Wigner surmise. Furthermore, there
is no indication of spin degeneracy which would result
in a bimodal peak spacing distribution [10]. In Refs.
[8,9,11] the 
uctuations of the peak spacings are con-
siderably larger than expected from RMT, whereas the
experiments presented in Ref. [10] yield smaller peak
spacing 
uctuations, which, however, are still larger
than those predicted by RMT.
The deviations from the RMT predictions have been

frequently interpreted as 
uctuations in the charging
energy. As the charging energy re
ects the Coulomb
interactions both between the electrons on the dot as
well as between the dot and its environment, the de-
pendence of the 
uctuations on the interaction strength
is of fundamental interest. Numerical studies suggest
that the 
uctuations are proportional to the charging
energy rather than to the single-particle level spacing
[8,12]. Recently, also a non-interacting explanation
for the Gaussian shape of the peak spacing distribu-
tion has been given in terms of level dynamics due to
shape deformation of the quantum dot [13].
Here we present an experimental study of the

statistics of Coulomb blockade peak positions of a
quantum dot. The dot is de�ned by patterning the
two-dimensional electron gas of a silicon metal ox-
ide semiconductor �eld e�ect transistor (MOSFET)
structure using stacked gates. These experiments
di�er signi�cantly in two major ways from prior ex-
periments on quantum dots de�ned in GaAs=AlGaAs
heterostructures: �rst and foremost, due to the dif-
ferent electron density and material properties of
silicon, the ratio of the charging energy, EC, to the
single-particle energy level spacing, ��, is consider-
ably larger; likewise the dimensionless parameter rs,
which characterizes the strength of the Coulomb inter-
actions, is larger than in previous studies. Secondly,
the number of electrons is varied by the application
of a voltage to a top gate instead of by squeezing
the quantum dot with a plunger gate. We �nd that
the distribution of the peak spacings is unimodal and
roughly Gaussian. The magnitude of the 
uctuations
is 15 times larger than that predicted by RMT.

Conduction through a small electron island coupled
to leads via tunnel barriers is normally suppressed
if kBT.EC, where EC is the charging energy of the
island. This e�ect is known as the Coulomb block-
ade [4]. The blockade is lifted when the condition
�d¡�dot¡�s is satis�ed, where �s; �d, and �dot are
the chemical potentials of the source, drain and dot, re-
spectively. The chemical potential of the dot is de�ned
as �dot(N + 1) = E(N + 1)− E(N ) where E(N ) is
the total energy of the dot occupied by N electrons. In
the case where the blockade is lifted an electron can
tunnel from the source onto the dot, changing the dot’s
occupation from N to N + 1, and sequentially tunnel
o� the dot to the drain leaving the dot in its original
state. The resulting 
uctuation of the electron number
on the dot leads to a �nite conductance. Experimen-
tally this can be achieved by appropriately tuning �dot
with an external gate.
In the constant interaction (CI) model [4] the energy

of the dot is approximated as E(N ) = (Ne)2=2C� +∑N
i=1 �i, where the electrostatic interactions are treated

using a simple capacitive charging model with a total
dot capacitanceC�, and the quantummechanical terms
are taken into account as single-particle energies �i.
In this model the di�erence in the chemical potentials
for successive occupation numbers, the so-called addi-
tion energy, is ��N = �(N + 1)− �(N ) = EC + ��N
with a constant charging energy EC = e2=C�, and the
level spacing ��N = �N+1 − �N . This is mapped to
gate voltages via e(Cg=C�)�Vg = EC + ��N where
Cg is the capacitance of the dot to the gate and �Vg
the di�erence between the gate voltages at which ad-
jacent conductance maxima occur.
This �nal expression motivated the original inves-

tigations of the peak spacings in the light of random
matrix theory. RMT shows that the normalized spac-
ings S (〈S〉= 1) between adjacent eigenvalues of a
generic time-reversal invariant Hamiltonian are dis-
tributed according to the Wigner surmise

PW(S) =
�
2
Se−(�=4)S

2
: (1)

The 
uctuations of these spacings are (〈S2〉 −
〈S〉2)1=2 ≈ 0:52〈S〉. However, experiments have
shown that the combined CI-RMT model is not capa-
ble of describing the observed peak spacing distribu-
tion correctly [8–11].



384 D. Abusch-Magder et al. = Physica E 6 (2000) 382–387

Fig. 1. Schematic representation of the device design.
A cross-section of the device is shown in (a). Two oxide and
two gate layers are formed on the top of a silicon substrate. The
voltage on the upper gate is used to vary the electron density in
the 2DEG induced at the interface of the lower oxide and the sil-
icon. A top view of the device is shown in (b). The pattern in
the lower gates de�nes a quantum dot in the induced electrons;
note that the upper gate covers all of the area show in (b) and
overlaps the source and drain. The lithographic dimensions of the
quantum dot are 250 nm × 270 nm.

The Coulomb blockade measurements on which
the following analysis is based have been performed
on a quantum dot de�ned in a silicon MOSFET struc-
ture. We have utilized a stacked gate structure to
pattern the electron gas as shown in Fig. 1. First,
a 20 nm thick gate oxide is grown on a p-type sili-
con substrate (lower oxide), and then a lower metal
gate is deposited and patterned using electron beam
lithography and lift-o� techniques. Above the lower
gate a second layer of silicon dioxide is deposited
(upper oxide, 80 nm thick), and �nally an upper gate
is formed; the upper oxide layer serves to insulate
the lower gate from the upper gate. Application of
positive voltages to the upper gate leads to the for-
mation of a two-dimensional electron gas (2DEG) at
the Si=SiO2 interface; n+ implanted regions serve as
ohmic contacts to the 2DEG. Further details about this

device may be found elsewhere [14,15]. The lower
gates locally screen the electric �eld created by the
upper gate, and a quantum dot is formed by applying
appropriate negative voltages to the lower gates. The
size of the dot is estimated from the capacitance to
be A ≈ 200 nm × 200 nm, which agrees well with the
lithographic dimensions of 250 nm × 270 nm when
electrostatic depletion at the edge is considered. The
electron density can be varied by changing the upper
gate voltage, whereas the lower gate voltage controls
the tunnel barriers and the electrostatic con�nement
potential of the quantum dot. This technique allows
the de�nition of very small structures which therefore
have low capacitances and high charging energies.
In contrast to previous experiments on quantum

dots in GaAs=AlGaAs heterostructures the electron
density is considerably higher, ns ≈ 2:5× 1016 m−2.
The mobility of the two-dimensional electron gas is
� = 0:56 m2=V s, and the mean free path l ≈ 100 nm
is comparable to the system size. The single-particle
energy level spacing can be obtained from the esti-
mated dot area, A, via Weyl’s formula [16] as ��=
2�˜2=gm∗A= 15 �eV, where g is the degeneracy of
electronic states in the two-dimensional electron gas,
and m∗ is the e�ective mass of the electrons. In a
2DEG in a silicon MOS system m∗ = 0:2me, and at
B= 0 both the spin and valley degeneracies must be
considered and therefore g= 4. While these quantum
dots are smaller than many of the GaAs=AlGaAs quan-
tum dots studied [8–10], �� is of the same order due
to the larger e�ective mass, and to the valley degen-
eracy.
To determine the value of EC we measure

the temperature dependence of the full-width at
half-maximum (FWHM) of several conductance
peaks; one such measurement is shown in the inset of
Fig. 2. From the slope d(FWHM)=dT we determine
Cg=C�, while from the T = 0 intercept we determine
the natural line width � [17]. 2 Four consecutive peaks
were measured and all yield Cg=C� = 0:15± 0:01,
from which we calculate that C� ≈ 85 aF and
EC = 1:9 meV.
The measured values of � range from 100–

165 �eV, are remarkably uniform, and seem to

2 The determination of Cg=C� is discussed in Ref. [17] while
the determination of FWHM (T = 0) = 0:78� is discussed in Ref.
[18].
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Fig. 2. The conductance as a function of gate voltage at
T = 320 mK. The inset shows the temperature dependence of the
full-width at half-maximum of one of the conductance peaks.

contradict the Thouless criterion [19], �¡��, be-
lieved necessary for charge localization and therefore
Coulomb blockade. However, recent theoretical work
[20] predicts just such behavior in chaotic quantum
dots due to the e�ects of a single, well-coupled energy
level. In the model of Ref. [20] an electron tunnels
into and subsequently out of a single, well-coupled en-
ergy level on the quantum dot. When the gate voltage
is adjusted between conductance peaks the additional
electron scatters into another, narrower single-particle
state leaving the original broad level unoccupied. The
next conductance peak is due to transport throught
the same broad energy level; this situation may re-
peat many times allowing one level to dominate the
transport through more than 20 conductance peaks.
Our data may be explained by this hypothosis, and
suggest that further experimental studies are needed
to test this model.
The strength of the electronic interactions char-

acterized by the dimensionless parameter rs =
g=(2

√
�nsa∗B) = 2:1 considerably exceeds the val-

ues obtained in recent experiments (where rs ≈ 1)
[8–10]; here a∗B is the e�ective Bohr radius. Simi-
larly, the ratio of charging energy to single-particle
energy level spacing EC=�� ≈ 125, another measure
of the relative importance of electron–electron inter-
actions, is larger than in the experiments performed
on GaAs=AlGaAs quantum dots.
The measurements were performed in a 3He re-

frigerator at a temperature of T = 320 mK using
standard lock-in techniques at low frequencies and
bias. The conductance oscillations were measured as

a function of the upper gate voltage. Consequently,
the electron density was varied without drastically
changing other system parameters such as charging
energy, single-particle energy, and dot shape. This
also contrasts with former experiments on the statis-
tics of conductance oscillations where the shape of
the quantum dot was distorted by plunger gates [10].
The following analysis is based on a series of more

than 100 conductance peaks occurring in the upper
gate voltage range from 12.1 to 13.5 V. In this range
the electron density changes from 2:4× 1016 to 2:6×
1016 m−2. The quantum point contacts connecting the
quantum dot to the leads are tuned into the tunneling
regime by applying voltages of −4:5 and −8:0 V to
the left and right pair of lower gates, respectively. The
precise position of each peak is obtained by �tting the
peak by a thermally broadened line shape. The gate
voltage spacings, �Vg, are calculated from the peak
positions.
The mean value 〈�Vg〉 changes by only 4 parts per

thousand in the gate voltage range of the experiment
showing that the in
uence of the upper gate on the ca-
pacitance and therefore on the size of the dot is rather
weak. Accordingly, the shape deformation which has
been postulated to explain the distribution of �Vg [13]
plays no signi�cant role in this experiment. The nor-
malized peak spacings

�=
�Vg − 〈�Vg〉

〈�Vg〉 (2)

are displayed in Fig. 3. The 
uctuations of � are com-
puted to be 〈�2〉1=2 ≈ 0:06. The 
uctuations in the ad-
dition energy are, therefore, roughly 115 �eV, which
is 7.5 times the mean level spacing ��, and thus
15 times larger than the 
uctuations expected from
CI-RMT. This supports the view that the 
uctuations
of the addition energy scale with the Coulomb en-
ergy rather than with the kinetic energy. However,
the proportionality factor 0.06 is smaller than that
suggested by numerical calculations (0.1–0.2) [12].
It should be noted that in these experiments �� ≈
kBT . We expect that the e�ect of thermal broadening
would be to reduce the 
uctuations in peak spacing.
A simple model [10] predicts that the 
uctuations ex-
pected within CI-RMTwould be reduced by a factor of
2–3. If we incorporate this correction into CI-RMT
then the 
uctuations we �nd in our experiment are 30
–45 times larger than those predicted by CI-RMT.
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Fig. 3. The top panel shows normalized peak spacings � obtained
from an upper gate voltage sweep. The 
uctuations around the
mean value 0 are much larger than expected from the CI-RMT
model. The bottom panel is an histogram showing the distribu-
tion of the normalized peak spacings. The area of the histogram
is normalized to unity. A Gaussian �t with standard deviation
of � = 0:06 is also displayed. The inset shows the same his-
togram alongside the Wigner surmise, the distribution predicted
by CI-RMT, for �� = 15 �eV. The experimental distribution is
much broader than expected from CI-RMT.

The distribution of the peak spacings normalized to
an area of unity is shown in Fig. 3. The distribution
is unimodal and roughly has the shape of a Gaussian.
In the inset of Fig. 3 the experimental distribution is
depicted together with the Wigner surmise (Eq. (1));
for comparison to � we have rescaled the predictions
of CI-RMT taking into account the experimental val-
ues of EC and ��. As in previous experiments there
is no evidence of a bimodal addition spectrum as is
predicted by the CI-RMT model. This is in agreement
with the theoretical prediction that the in
uence of
spin degeneracy on the addition spectrum is washed
out for stronger electron–electron interactions (rs¿ 1)
[12].
In conclusion, we have investigated the Coulomb

blockade peak spacing distribution of a quantum
dot fabricated in the 2DEG of a silicon MOS-
FET structure. In accordance with experiments on
GaAs=AlGaAs quantum dots the distribution di�ers
from the Wigner surmise and is roughly Gaussian.
The 
uctuations are approximately 0:06× EC. Due to

the large ratio of charging energy EC to single-particle
energy �� this strongly suggests that the 
uctuations
scale with EC and not with ��. This clearly contra-
dicts the predictions of CI-RMT and indicates that
the 
uctuations are dominated by electron–electron
interactions in this system.
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