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Magnetotransport properties of arrays of cross-shaped antidots
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In magnetotransport measurements on arrays of cross-shaped antidots, we observe pronounced features in
both the longitudinal and transverse magnetoresistivitiesrxx andrxy , which cannot be understood within the
simple framework of commensurability between cyclotron radius and superlattice period. These resonances can
be regarded as magnetotransport fingerprints of the complex unit cell. With the help of detailed numerical
calculations using classical linear response theory we can ascribe additional maxima inrxx to closed orbits in
the dotlike potential between four antidots. A pronounced minimum inrxy demonstrates the significance of
open trajectories.@S0163-1829~99!13835-9#
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I. INTRODUCTION

Two-dimensional electron gases~2DEG’s! with a strong
electrostatic modulation of the electron density, which is
duced by periodic submicron voids, are called antidot arra
The low-field magnetotransport properties of these syst
are largely determined by the commensurability between
superlattice perioda and the cyclotron radiusRc .1–4 The
longitudinal magnetoresistivityrxx exhibits a series of
maxima accompanied by nonquantized plateaus in the
resistivity rxy . If the Fermi wavelength is sufficiently
smaller than the superlattice perioda, a classical theoretica
approach taking into account the chaotic electron dynam
is feasible and has been proven successful to describe
dominant transport phenomena.5 Assuming pinned classica
cyclotron orbits in a billiard model of reflecting discs, ea
maximum inrxx can be associated with commensurate t
jectories encircling a certain number of antidots.

Additional features can be observed in the magnetore
tivity if the unit cell of the lattice becomes mor
complicated.6–8 Here, we investigate an antidot array wi
such a complex unit cell, namely cross-shaped antidots.
to its special structure this superlattice can also be rega
as an array of coupled quantum dots9 or as an array of quan
tum point contacts~see inset of Fig. 1!. It is therefore a
promising candidate to study the transition between differ
types of quantization, e.g., between the quantized cond
tance in 1D channels at zero-magnetic field and the quan
Hall effect in 2D electron gases at high fields. The comp
unit cell is reflected in the magnetotransport properties
we analyze with a classical approach. We find maxima in
longitudinal magnetoresistivity which can be ascribed to c
rier trapping in the coupled dots. A pronounced quenching
the Hall resistivity can be understood in the picture of
series of point contacts.

The outline of the paper is as follows: In Sec. II, w
describe the fabrication and the layout of our samples
PRB 600163-1829/99/60~12!/8845~4!/$15.00
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the experimental techniques. Our numerical model is int
duced in Sec. III, the experimental and numerical results
presented and compared in Sec. IV.

II. FABRICATION AND EXPERIMENTAL TECHNIQUES

The devices are fabricated from shallow GaA
Al xGa12xAs heterostructures with a typical carrier density
631011 cm22 and a typical mobility of 83105 cm2/Vs at
4.2 K. High-resolution electron beam lithography and w
chemical-etching techniques are used to define a square
of antidots as part of a standard Hall bar geometry. A se

FIG. 1. Longitudinal and transverse magnetoresistivities of p
terned ~solid lines! and unpatterned~dotted lines! sample areas.
Indicated in the main plot are the cyclotron diameters correspo
ing to the positions of the maxima. Inset: Sketch of the superlat
geometry.
8845 ©1999 The American Physical Society
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transparent NiCr gate covering the entire central part of
Hall bar allows us to vary the electron density. We ha
chosen a lattice period ofa5700 nm~see inset of Fig. 1!,
which is much smaller than the electron mean-free pathl e
'10 mm), but still much larger than the Fermi waveleng
(lF'30 nm). Various samples originating from differe
wafers have been fabricated this way and their longitud
and transversal magnetoresistivities at liquid-helium te
perature have been measured both before and after evap
ing the gate electrode. Our Hall bar has four pairs of prob
enabling us to investigate the properties of the patterned
the unpatterned 2DEG on the same device and to com
the results directly.

III. NUMERICAL SIMULATIONS

As the Fermi wavelengthlF for our electron densities is
about 30 nm, and thus well below the size of the superlat
structure, we make use of classical transport theory to a
lyze the features in the magnetoresistivity, following the a
proach outlined in Ref. 5. Solving the classical equations
motion, we obtain a set of trajectoriesx(t), y(t) and veloci-
ties vx(t), vy(t). The antidots enter the equations of moti
via a soft, two-dimensional model potential whose shap
sketched in the inset of Fig. 2~a!. The potential height is
adjusted such that the antidot size at the Fermi energy i
agreement with the lithographically defined structure.

This allows us to determine the conductivity tensor v
linear response theory10 by evaluating velocity-velocity cor-
relation functions for a fixed Fermi energy. Scattering at io
ized impurities, the dominant scattering process for the e
trons at liquid-helium temperature, is considered by
exponential damping term with constant scattering timet.
The components of the conductivity tensor read

smn5
m* e2

p\2 E0

`

e2t/t^vn~0!vm~ t !&0dt. ~1!

m and n refer to the directionsx or y, m* is the effective
electron mass of GaAs and^ . . . &0 means an averaging ove
phase space at the Fermi energy.

IV. RESULTS AND DISCUSSION

In Fig. 1, we present a typical experimental result. T
plot shows a comparison of the longitudinal and transve
magnetoresistivities obtained from the patterned and un
terned areas of the sample. Due to depletion effects resu
from the Schottky gate, we have to apply positive gate v
ages to make the device conducting. We would like to e
phasize that this positive gate voltage does not affect
interpretation of the results, since the sample shows qua
tively the same behavior before fabricating the gate electr
@see solid lines in Figs. 2~b! and 2~c!#. As seen in Fig. 1,rxx
exhibits three clearly resolved maxima at low- a
intermediate-magnetic fields. The Hall resistivity
quenched aroundB50 ~Refs. 11 and 12! and exhibits a dra-
matic decrease well below the value of the unmodula
2DEG aroundB50.8 T, where it drops almost to zero. A
higher fields,rxy exceeds the classical value and show
behavior reminiscent of the ‘‘last Hall plateau’’ found i
e
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ballistic cross junctions.13,14Finally, Shubnikov–de Haas os
cillations accompanied by quantized Hall plateaus co
mence, and the traces from the patterned and unpatte
segments approach each other. This indicates that the in
sic properties of the 2DEG are preserved in the regions
tween the antidots.

The classical cyclotron diameter 2Rc52(\/eB)A2pns
~cf. Fig. 1! is 740 nm at the dominant magnetoresistiv
maximum, which is close to the lattice period. In contrast
results from arrays of round antidots,2,3 characteristic fea-
tures appear also at magnetic fieldsabovethis fundamental
commensurability condition 2Rc5a at B'0.3 T: two addi-
tional peaks inrxx and the drastic decrease inrxy . Commen-
surability maxima for lower magnetic fields cannot be r
solved since trajectories enclosing a group of two or fo
antidots are not allowed for geometric reasons in a lattice
large antidots.2 When varying the gate voltage and thus t
electron density, only the maximum at 2Rc'a remains at a
constant cyclotron diameter. The structures in the longitu
nal and in the transverse magnetoresistivities at higher fi

FIG. 2. ~a! Longitudinal conductivitysxx and Hall conductivity
syx numerically calculated. Inset: Contour lines of the model p
tential used for the simulations.~b! and~c!: Comparison of experi-
mental~solid lines! and calculated~dotted lines! values of the lon-
gitudinal ~b! and the Hall magnetoresistivities~c!. Experimental
data taken on an ungated sample.
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shift both on theB and on theRc scales. Taking into accoun
that the gate is height-modulated, it becomes clear th
variation ofVg not only affects the electron density, but al
strongly influences the effective size and shape of the a
dots — the period on the other hand is fixed. So, from th
position and the fact that they are very sensitive to the ex
shape of the potential, we conclude that these new feat
reflect the complex structure of the basis rather than the
perlattice period. However, they cannot easily be explai
in terms of circular cyclotron motion within a hard-wall bi
liard model, as in our system the finite potential gradie
between the antidots is not negligible.

To account for the additional structure we therefore p
form numerical calculations for a soft model potential. T
calculated longitudinal and transverse magnetoconductiv
are plotted in Fig. 2~a!. We obtain the corresponding resi
tivities by tensor inversion and compare them to the exp
mental data@cf. Figs. 2~b! and 2~c!#. Considering the com-
plicated shape of the basis, the numerical results are in g
agreement with our experiments. Even though no fit para
eters were used in the calculations, we find not only qual
tive similarity between experiment and simulation, but to
large extent even quantitative agreement. The experime
curves in Figs. 2~b! and 2~c! have been obtained from th
same sample as the ones in Fig. 1, but before evaporatin
NiCr gate. Compared to the measurements with gate,
observed structures are slightly shifted towards larger cy
tron diameters here. Different samples, however, show e
quantitatively the same behavior, indicating that our obs
vations are highly reproducible. Furthermore, similar fe
tures have been independently observed inrxx by other
authors.8 The presence of the gate has a much stronger in
ence on theRc values than, e.g., the wafer material used
fabrication. This fact shows again that the exact poten
plays a more important role than in antidot lattices with
less-complicated basis. The first maximum in the longitu
nal magnetoresistivity atB'0.3 T, corresponding to the
commensurability conditon 2Rc'a for round antidots, is
very well reproduced by the simulation. This well-know
peak is mainly caused by a minimum in the longitudin
conductivity that arises due to electrons encircling a sin
antidot. It is often accompanied by a shoulder in the H
conductivity.15 Here, the exact cyclotron diameter is 2Rc
5910 nm, which is somewhat larger than the superlat
constanta5700 nm. We ascribe this shift to soft wall e
fects in the electrostatic potential,5 which influence the sen
sitive interplay between longitudinal and Hall conductivitie
In our array of relatively large antidots compared to the l
tice constant, these soft-wall effects lead to a deformation
the circular cyclotron orbits. Both the additional maxima
rxx at the magnetic fieldsB'0.5 andB'0.9 T and the drop
in the Hall resistivity, all of them above the fundamen
commensurability condition, appear in the simulated cur
as well. They are a unique feature of the cross-shaped an
form.

To determine typical electron trajectories relevant
transport at a given magnetic field, we investigate the cla
cal phase space by evaluating Poincare´ sections. Due to the
complex shape of the antidots the phase space structu
complicated and it is not always possible to attribute spec
trajectories to each peak.
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The Poincare´ section in Fig. 3~a! for the maximum atB
'0.5 T shows three islands of stability near the center of
plot, each of them associated with electrons trapped in
potential minimum between four crosses. A typical trajecto
is plotted in Fig. 3~b!. Hence, the maxima inrxx for higher
magnetic fields reflect the fact that our superlattice can
regarded as a network of coupled quantum dots. Electr
are trapped for specific magnetic-field ranges within sin
dots reducing transport between neighboring unit cells.

In the following, we concentrate on the discussion of t
minimum inrxy , which is split into two minima in the simu-
lation curve. The minima in the calculatedrxy curve clearly
correspond to maxima insxx @compare Figs. 2~a! and 2~c!#.
Using the symmetry relationssxx5syy andsyx52sxy the
transverse magnetoresistivity is

rxy5
syx

sxx
21syx

2
. ~2!

Considering that the Hall conductivitysyx depends only
weakly onB for these magnetic fields and has the same or
of magnitude assxx @Fig. 2~a!#, a maximum insxx translates
therefore approximately into a minimum inrxy .

In order to understand the behavior ofsxx we analyze the
phase-space structure again. Figure 3~c! shows a Poincare´
section for thesxx-maximum atB50.55 T with two islands
of stability. The right one is associated with bound trajec
ries encircling one antidot and the left one with trajector
that channel along the principal axes of the lattice@see Fig.
3~d!#.15–17Due to the concave shape of the walls in our s
tem these so-called ‘‘runaway’’ trajectories are extrem

FIG. 3. ~a! Poincare´ section at the magnetic field of the secon
rxx-maximum (B'0.5 T! through the planex mod a5a/2. ~b! A
typical trajectory, trapped in the quantum-dot-like potential betwe
four cross-shaped antidots, with initial conditions located inside
island of stability@arrow in ~a!#. The electrostatic potential is indi
cated by contour lines.~c! Poincare´ section at the magnetic field o
the sxx-maximum (B50.55 T! through the planex mod a50. ~d!
‘‘Runaway’’ trajectory with initial conditions of the left island o
stability @arrow in ~c!#.
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8848 PRB 60S. de HAANet al.
stable. According to the Kubo formula@Eq. ~1!# such regular
open trajectories translate directly into a high conductivit

As in the experiments, the quantitative values for the c
culated conductivities and resistivities depend sensitively
the exact shape of the potential and on the electron den
though the main features are qualitatively reproducible ir
spective of the specific parameters. The double minimum
rxy in the calculated data occurs for a carrier density of
31011 cm22. The open trajectories leading to th
sxx-maximum atB50.95 T differ slightly from the run-
aways atB50.55 T. For higher and lower densities the
different classes can no longer be resolved individually a
the rxy structure smears out to become one broad minim
similar to the experimental curve.

Open trajectories occur under the condition that the e
trons can successively pass neighboring constrictions
tween the cross-shaped antidots. If, at sufficiently low-g
voltages, these constrictions approach the quantum limit t
have to be regarded as a series of quantum point con
with a small number of occupied 1D subbands.18–20 Thus,
the antidot array can also be considered as an array of q
tum point contacts. Low-temperature measurements of
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expected conductance quantization in this system are
ently underway.

In conclusion, we have measured novel magnetore
tance features in an array of cross-shaped antidots. In a
tion to the well-knownrxx peak at the commensurabilit
condition 2Rc5a, the longitudinal magnetoresistivity show
two maxima for higher magnetic fields. With the help
numerical simulations, using classical linear response the
we attribute them to trajectories trapped in the dotlike pot
tial between four antidots. The Hall resistivity shows a d
tinct minimum, which is accompanied by a maximum in t
longitudinal conductivity at the same magnetic field. Th
feature is particular to the present antidot shape and is ca
by stable runaway trajectories which link the dotlike minim
through the constrictions between the antidots.
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