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Commensurability oscillations of rectangular antidot arrays: A classical diffusion model
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We have studied magnetoresistivity oscillations in rectangular lateral antidot superlattices both in low-
temperature electron transport experiments as well as in a classical diffusion model. Within this model, the
conductivity tensor is obtained from a numerical simulation of the spatial distribution of electrons diffusing in
the antidot array. It is demonstrated that all the essential features of the measured magnetoconductivity can be
reproduced within this classical model. Maps of the trajectories in real space give an intuitive understanding of
the mechanism that causes the anisotropies in the conducfiSitg.63-18208)06028-1

I. INTRODUCTION (2DEG) of a G4Al]As heterostructure with a sheet density
Nyg=3.5x10® m~2 and a mobility of u=76 m?/V s. In
Magnetotransport experiments on antidot lattices inorder to measure all four components of the-r2sistivity
two-dimensional electron gases have revealed a variety aénsor, the sample was processed to an L-shaped Hall bar
unpredicted feature's. Characteristic magnetoresistivity [Fig. 1(a)]. A rectangular antidot lattice with periods af,
oscillationg=* in square antidot lattices have been observed=240 nm anda,=480 nm aligned to the Hall bars were
experimentally and explained by numerical simulatfons defined by electron beam lithography followed by wet
based on the classical equation of motion and Kubo's lineaghemical etching. To keep the lateral depletion minimal,
response theoryBasically the maxima in the magnetoresis- only the cap layer and a part of the Si-doped layer have been
tance are thought to arise from either pinned orbits aroungemoved. The resulting potential landscape has relatively
groups of antidots® or from so-called runaway steep sidewalls and weak saddle points between two antidots
trajectories ™ electrons bouncing from antidot to antidot. [see the modeled potential landscape in Fidp)]L Further
The numerical simulations of the magnetoresistance are ietails of this sample are described in Ref. 16. The compo-
excellent agreement with experimental restit* Never-  nents of the magnetoresistivity tensor have been measured at
theleSS, the influence of the Significant types of 0rbitS|0W temperaturesj(: 1.7 K) and in magnetic fields up to 8
strongly depends on the details of the samples. In this papet; perpendicular to the plane of the electron gas. For high
classical trajectories are calculated building on methods denagnetic fields B>2 T), Shubnikov—de Haas oscillations
veloped and used by other auth8rslowever, for the inter-  and the quantum Hall effect occur as in an unpatterned
pretation we do not concentrate on Poincaeztions in 2DEG and give the possibility to determine the electron

phase space but rather on diffusion clouds in real spacgneet densityn,y. At lower magnetic fields B<2 T),
similar as it has been done by Lorke, Kotthaus, and Ploog
for square lattices. We demonstrate that numerical simula-
tions of the classical electron diffusion can explain the mag- \
netotransport in rectangular antidot arr_%%@‘ﬁ_to a surpris- sossnaseaeeee I
ingly large extent. The pictures of typical trajectories NiCely |eecescssssccccscs
illustrate the origin of the magnetic-field-dependent anisot- |seeee ‘
ropy of the conductivity. e
The outline of the paper is as follows: In Sec. Il, we Teseee y
describe our experimental setup for the low-temperature |®®®®®| \_
transport experiments. In Sec. Ill, our numerical model is '""_ny
introduced. The experimental and numerical results are com =

pared in Sec. IV. We conclude with a summary and an out-
look. FIG. 1. Left: L-shaped Hall bar to measure all the components

of the resistivity tensor. Right: The potential landscape of the anti-
Il. EXPERIMENT dots used for the simulations. The radius of the antidots at the Fermi
energy isr=0.18, and the steepness parameter@s-2. The
To study anisotropy effects in rectangular antidot latticeSshown trajectory is for a magnetic field where the cyclotron diam-
we defined antidots in a two-dimensional electron gaster R.=2a, (B=0.42 7).
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anomalous peaks in the longitudinal resistivity are ob- conservative systems with two degrees of freedom the acces-
served, especially for the current direction perpendicular tsible phase space is thel nergy surfacd’ separated into
the antidot rowsthey direction in Fig. 1a). For these peaks disjunct partd’; by invariant tori that can be investigated by

the classical cyclotron radius Poincare surfaces, for example, the sectiong, ) at
. (x moda,=0). In the absence of scattering events we can
_Mve (1) distinguish between invariant tori of chaotic orbits and regu-
¢ eB lar orbits surrounding a group of antiddfer certain ranges

of magnetic field. In Ref. 5 it has been argued that only the
chaotic trajectories contribute to the conductivity because the
regular orbits are pinned and do not drift away when an
electric field is applied. Here, however, the impurity scatter-
ing is incorporated into the simulation of the trajectories and
hence the whole accessible phase space gets connected: an
electron can scatter from a chaotic orbit into a regular orbit

the reSiStiVitpr.X obtained from current flow along the anti- and vice versa. We therefore do not distinguish between dif-
dot rows and vice versa. Care was taken to perform all Mea&g, ant parts of the phase space
e

surements at equal electron densities in both arms of th
L-shaped Hall bar.

is an integer multiple of the lattice constant. Her€, is the
effective electron mass,- the Fermi velocity. The conduc-
tivity tensor oy; is computed from the experimental data by
inverting the resistivity tensorp;;. It was shown
theoretically® and experimentalfyf that the conductivity
through the rows of antidots,, is predominately related to

B. Calculation of the conductivity

I1. NUMERICAL SIMULATIONS It is straightforward to calculate numericaffythe con-
) ) ductivity tensora; , which is related to the diffusion tensor
A. Trajectories D;; by the Einstein equation

The potentialV(x,y) of the rectangular antidot lattice is

modeled by o;;=€’D(Ep)Dj;, 4
o \A o \BY with D(Eg) being the density of states at the Fermi energy
V(X,Y) =V0( cos’-—x) (cos’-—y) , (2 Er . The diagonal components are obtained by a direct simu-
Ax ay lation of the diffusion process. The applied electrical field is

whereV, is the amplitude of the potential modulation, cho- not considered in the simulation because it is irrelevant in
sen such that the size of the antidots in xheirection at the linear response approximatiérithe density of states is as-
Fermi energy is of given radius: V0: EF /[Cosz(rwlax)]ﬂ_ sumed to be unaffected by the antidots and the magnetic
The parametep determines the steepness of the antidot po.flE'd However, the quantum-mechanical m_iniband_ structure
tential andy=In(Ex/Vp)/[B In Cog(rq.,/ay)] is adjusted to ob- has been calculattiand successfully applied to interpret
tain circular antidots at the Fermi energy. It has, howeverthe observation of quantum oscillatidfisn arrays with rela-
been argued that the antidots are not circular because tfizvely large antidots. The solution for the diffusion problem
screening is expected to be weaker between neighborin§ one dimension fon, particles starting ax=0, t=0 is
antidots!® The potential landscape is described by two pa-
rameters, namely;, and 8. The equation of motion for an n(x.t) = No o~ (l4DY) ®)
electron in this potential and a perpendicular magnetic field ' 47Dt '
B has been solved numerically as described in Ref. 5.

In our simulations, an electron scatters after a tintkat  where D is the diffusion constant and(x,t) the density
is randomly chosen with the distribution for a mean scatterdistribution for the observed electrons. We have calculated
ing time 7 1000 trajectories with starting points randomly distributed in
the elementary cell0,a]xX[0,b] (except for the circle cut
out by the antidosand random direction of initial velocity
for a timety,=107; long. As mentioned above, the trajecto-
ries are not restricted on invariant tori but can reach the

means that the differential scattering rafe'(4) as a func-
tion of.the 'scatit?r_allglgills constant and so the quan_tum enough {>r,).

sfcatterlnlg timer, l_ffwT (6)d6 and the Drude scattering  Tpe variancet, andA, of the endpoints in the and the
time 7p,°=["_ 7 7(#)(1—cos6)dd are the same in this y gjrections after the time, determines the diagonal com-
model. Our sample is made of a wafer with a mobility of ponents of the diffusion tensor by

w=76 nf/V s corresponding to a Drude scattering time of

=30 ps. However, the intrinsic scattering time in the an- A, .

tidot sample is not exactly known. It is known that electron Dii=5r, 15Xy (6)
beam lithography can reduce the mobility and that at the S

borders of the antidots, where the electron density fades outhe criterion for Eq.(4) being valid is a linear relation be-
and hence the screening is reduced, the intrinsic scattering imeen A andt. Figure 2 clearly demonstrates that this is
enhanced. In the simulations a scattering timegf13.5 ps  fulfilled for the time range under study. For very shara

is used, as this corresponds to a mean free path.of deviation from linear spreading is observed because the tra-
~14a,, based on best agreement with experimental data. Ijectories do not start at a single pofitThe model was

the initial distribution as long as the simulated time is long
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2R.=1a,,2a, (B,D) while the conductivity perpendicular
FIG. 2. Variance of the spreading cloud as a function of timeto the antidot rowsr,, is weakly reduced. For noncommen-
(upper ploty direction; lower plotx directior), confirming that the  surate magnetic field@.g., R.=1.53,) the conductivity is
model produces normal diffusion. The slight deviation from linearnearly isotropic C). This behavior can be understood by
spreading at the beginning is due to initial conditisee text The  studying the pictures of the trajectories as shown in Fig. 4. It
accuracy is demonstrated with the two different runs. can bee seen how the trajectories are guided along the antidot
rows in the case of commensurabilit,©) and how this

tested by calculating the conductivity; in the absence of gffect lacks at noncommensurate fiel®) ( As already dis-
antidots. The results match the values form the Drude forzyssed in Ref. 9 we can confirm that it is mainly the en-

mula within some percent. hanced diffusion along the antidot rows and not the pinning

of orbits that leads to the commensurability oscillations ob-

IV. COMPARISON OF EXPERIMENTAL AND served in transport experiments. How important are the skip-
NUMERICAL DATA ping and pinned orbits used to argue in earlier pagers?

The model contains three parameters to be estimateé? ut of a large collectlpn .Of pictures of trajectones, we fo.und
only a few that are skipping regularly from antidot to antidot

namely,r., B, and .. Their coarse valugs are known from for several periods, but a lot of them are diffusing in a cha-
thg ph_yS|caI sample and (_)nly a fine funing is performed byotic way along the antidot rows and are pinned to them
adjusting them to better fit the transport measurements. .Aéecause it is infrequent to skip from one row to the next,
an example, we ta.ke a measqrement 'done W'th5a E)gsmvwithout a scattering event. In this sense the trajectories are
gate voltage, resulting in a carrier density of 880" m

. : . . pinned and skipping at the same time.
EEeF _sgﬁzleme\t))ﬁeﬁgmig(t)?mrl;;ﬁj rscecgécrtt))secoep;ir[;lgi:zjerstgf Our simulation does not take into account that the scatter-

~0.2a,. The steepness can be estimated from the fact thell?g probability depends on the scattering angle and presum-

an external potential should be screened out on a length scale

of the screening length. Concerning E&), we useB=2. In A B

Fig. 1(b) the potential landscape is shown to give a visual s  « « « « « o & .
impression. In Fig. 3 we show the experimental and the Nu-,5_ _ 5.4, 2Rg=11 2y
merical curves for the longitudinal conductivities as a func-; = =~ - > = = = = = * = Tt

tion of R;. Note thatR. is inversely proportional to the
magnetic field Eq. (1)]. The conductivity along the rows of
antidots ©,,) shows peaks when the cyclotron diameter is
one or two times the smaller lattice constayt The con-
ductivity perpendicular to the antidot rowsr(,), shows o
weak minima at the corresponding positi§rBetween these  2r.- 162,
positions of maximum anisotropy, the conductivity becomes -
nearly isotropic. The figure shows that the essential featurey . . . . .
are reproduced by the simulations. This proves that the com N
mensurability oscillations are purely due to a modulation of ===~ ==~ ===~
the diffusion tensor. The modulation of the denSity of states FIG. 4. The trajectories show how the anisotropic diffusion is
that causes the Shubnikov—de Haas oscillations is not comriginated. The inset shows the cloud of diffusing electrohs (
sidered in this simulation. The conductivity along the antidot=135 p3, which gets anisotropic for commensurate magnetic field
rows (oyy) is enhanced for commensurate magnetic field§B,D) and nearly isotropic betweeICj.
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ably on position. Furthermore, it neglects that the antidotthe commensurability oscillations. Maps of trajectories in
are not circular. The anisotropy of the conductivity for zeroreal space show how the anisotropic diffusion for commen-
magnetic field is much larger in the model than measuredsurate magnetic fields is caused: the trajectories are follow-
probably due to noncircular antidots. It is anyway remark-ing in a nonregular way the rows of antidots, rarely they skip
able how this simple Drude-type model explains the magnefrom one row to the next. We expect that quantum effects get
totransport in antidot arrays. dominant as soon as the lattice constants gets in the range of
In conclusion, we have demonstrated that results othe Fermi wavelengthNg~50 nm). A quantum mechanical
transport experiments on rectangular antidot arrays can bmodel of the diffusion in small antidot lattices can be per-
explained by a classical diffusion model and that all theformed in a similar way.
parameters can be estimated realistically from physical con-
siderations. Pictures of the diffusion clouds for different
magnetic fields provide a intuitive visualization of the oscil-
latory behavior of the magnetoconductivity and of its anisot- The authors would like to thank R. Ketzmerick for valu-
ropy. Furthermore such illustrations clarify that it is mainly able discussions. Financial support by the Schweizerischer
the enhanced diffusion along the antidot rows that is causinglationalfonds is gratefully acknowledged.
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