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Commensurability oscillations of rectangular antidot arrays: A classical diffusion model
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We have studied magnetoresistivity oscillations in rectangular lateral antidot superlattices both in low-
temperature electron transport experiments as well as in a classical diffusion model. Within this model, the
conductivity tensor is obtained from a numerical simulation of the spatial distribution of electrons diffusing in
the antidot array. It is demonstrated that all the essential features of the measured magnetoconductivity can be
reproduced within this classical model. Maps of the trajectories in real space give an intuitive understanding of
the mechanism that causes the anisotropies in the conductivity.@S0163-1829~98!06028-7#
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I. INTRODUCTION

Magnetotransport experiments on antidot lattices
two-dimensional electron gases have revealed a variet
unpredicted features.1 Characteristic magnetoresistivit
oscillations2–4 in square antidot lattices have been observ
experimentally and explained by numerical simulation5

based on the classical equation of motion and Kubo’s lin
response theory.6 Basically the maxima in the magnetores
tance are thought to arise from either pinned orbits aro
groups of antidots3–5 or from so-called runaway
trajectories,7–9 electrons bouncing from antidot to antido
The numerical simulations of the magnetoresistance ar
excellent agreement with experimental results.5,10,11 Never-
theless, the influence of the significant types of orb
strongly depends on the details of the samples. In this pa
classical trajectories are calculated building on methods
veloped and used by other authors.5 However, for the inter-
pretation we do not concentrate on Poincare´ sections in
phase space but rather on diffusion clouds in real sp
similar as it has been done by Lorke, Kotthaus, and Plo4

for square lattices. We demonstrate that numerical sim
tions of the classical electron diffusion can explain the m
netotransport in rectangular antidot arrays10,12–15to a surpris-
ingly large extent. The pictures of typical trajectories nice
illustrate the origin of the magnetic-field-dependent anis
ropy of the conductivity.

The outline of the paper is as follows: In Sec. II, w
describe our experimental setup for the low-temperat
transport experiments. In Sec. III, our numerical model
introduced. The experimental and numerical results are c
pared in Sec. IV. We conclude with a summary and an o
look.

II. EXPERIMENT

To study anisotropy effects in rectangular antidot lattic
we defined antidots in a two-dimensional electron g
PRB 580163-1829/98/58~7!/3568~4!/$15.00
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~2DEG! of a Ga@Al #As heterostructure with a sheet dens
n2d53.531016 m22 and a mobility ofm576 m2/V s. In
order to measure all four components of the 2d-resistivity
tensor, the sample was processed to an L-shaped Hal
@Fig. 1~a!#. A rectangular antidot lattice with periods ofax
5240 nm anday5480 nm aligned to the Hall bars wer
defined by electron beam lithography followed by w
chemical etching. To keep the lateral depletion minim
only the cap layer and a part of the Si-doped layer have b
removed. The resulting potential landscape has relativ
steep sidewalls and weak saddle points between two anti
@see the modeled potential landscape in Fig. 1~b!#. Further
details of this sample are described in Ref. 16. The com
nents of the magnetoresistivity tensor have been measur
low temperatures (T51.7 K! and in magnetic fields up to 8
T perpendicular to the plane of the electron gas. For h
magnetic fields (B.2 T!, Shubnikov–de Haas oscillation
and the quantum Hall effect occur as in an unpattern
2DEG and give the possibility to determine the electr
sheet densityn2d . At lower magnetic fields (B,2 T!,

FIG. 1. Left: L-shaped Hall bar to measure all the compone
of the resistivity tensor. Right: The potential landscape of the a
dots used for the simulations. The radius of the antidots at the Fe
energy is r 50.18ax and the steepness parameter isb52. The
shown trajectory is for a magnetic field where the cyclotron dia
eter 2Rc52ax (B50.42 T!.
3568 © 1998 The American Physical Society
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anomalous peaks in the longitudinal resistivityr i i are ob-
served, especially for the current direction perpendicula
the antidot rows~they direction in Fig. 1~a!. For these peaks
the classical cyclotron radius

Rc5
m* vF

eB
~1!

is an integer multiple of the lattice constant. Here,m* is the
effective electron mass,vF the Fermi velocity. The conduc
tivity tensors i j is computed from the experimental data
inverting the resistivity tensor r i j . It was shown
theoretically10 and experimentally17 that the conductivity
through the rows of antidotssyy is predominately related to
the resistivityrxx obtained from current flow along the ant
dot rows and vice versa. Care was taken to perform all m
surements at equal electron densities in both arms of
L-shaped Hall bar.

III. NUMERICAL SIMULATIONS

A. Trajectories

The potentialV(x,y) of the rectangular antidot lattice i
modeled by

V~x,y!5V0S cos2
p

ax
xD bS cos2

p

ay
yD bg

, ~2!

whereV0 is the amplitude of the potential modulation, ch
sen such that the size of the antidots in thex direction at the
Fermi energy is of given radiusr : V05EF /@cos2(rp/ax)#

b.
The parameterb determines the steepness of the antidot
tential andg5 ln(EF /V0)/@b ln cos2(rp/ay)# is adjusted to ob-
tain circular antidots at the Fermi energy. It has, howev
been argued that the antidots are not circular because
screening is expected to be weaker between neighbo
antidots.16 The potential landscape is described by two p
rameters, namely,r and b. The equation of motion for an
electron in this potential and a perpendicular magnetic fi
B has been solved numerically as described in Ref. 5.

In our simulations, an electron scatters after a timet that
is randomly chosen with the distribution for a mean scat
ing time tc

P@t5t#5
1

tc
e2~ t/tc!, ~3!

and it changes the direction of flight by a random angle. T
means that the differential scattering ratet21(u) as a func-
tion of the scatter angleu is constant and so the quantu
scattering timetq

215*2p
p t21(u)du and the Drude scatterin

time tD
215*2p

p t21(u)(12cosu)du are the same in this
model. Our sample is made of a wafer with a mobility
m576 m2/V s corresponding to a Drude scattering time
tD530 ps. However, the intrinsic scattering time in the a
tidot sample is not exactly known. It is known that electr
beam lithography can reduce the mobility and that at
borders of the antidots, where the electron density fades
and hence the screening is reduced, the intrinsic scatterin
enhanced. In the simulations a scattering time oftc513.5 ps
is used, as this corresponds to a mean free path ol c
'14ax , based on best agreement with experimental data
o
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conservative systems with two degrees of freedom the ac
sible phase space is the 3d energy surfaceG separated into
disjunct partsG i by invariant tori that can be investigated b
Poincare´ surfaces, for example, the sections (y,vy) at
(x mod ax50). In the absence of scattering events we c
distinguish between invariant tori of chaotic orbits and reg
lar orbits surrounding a group of antidots~for certain ranges
of magnetic field!. In Ref. 5 it has been argued that only th
chaotic trajectories contribute to the conductivity because
regular orbits are pinned and do not drift away when
electric field is applied. Here, however, the impurity scatt
ing is incorporated into the simulation of the trajectories a
hence the whole accessible phase space gets connecte
electron can scatter from a chaotic orbit into a regular o
and vice versa. We therefore do not distinguish between
ferent parts of the phase space.

B. Calculation of the conductivity

It is straightforward to calculate numerically18 the con-
ductivity tensors i j , which is related to the diffusion tenso
Di j by the Einstein equation

s i j 5e2D~EF!Di j , ~4!

with D(EF) being the density of states at the Fermi ener
EF . The diagonal components are obtained by a direct sim
lation of the diffusion process. The applied electrical field
not considered in the simulation because it is irrelevant
linear response approximation.6 The density of states is as
sumed to be unaffected by the antidots and the magn
field. However, the quantum-mechanical miniband struct
has been calculated19 and successfully applied to interpre
the observation of quantum oscillations20 on arrays with rela-
tively large antidots. The solution for the diffusion proble
in one dimension forn0 particles starting atx50, t50 is

n~x,t !5
n0

A4pDt
e2~x2/4Dt !, ~5!

where D is the diffusion constant andn(x,t) the density
distribution for the observed electrons. We have calcula
1000 trajectories with starting points randomly distributed
the elementary cell@0,a#3@0,b# ~except for the circle cut
out by the antidots! and random direction of initial velocity
for a time ts510tc long. As mentioned above, the traject
ries are not restricted on invariant tori but can reach
whole 3d energy surface and so the results do not depend
the initial distribution as long as the simulated time is lo
enough (ts@tc).

The varianceDx andDy of the endpoints in thex and the
y directions after the timets determines the diagonal com
ponents of the diffusion tensor by

Dii 5
D i

2ts
, i 5x,y. ~6!

The criterion for Eq.~4! being valid is a linear relation be
tween D and t. Figure 2 clearly demonstrates that this
fulfilled for the time range under study. For very shortt, a
deviation from linear spreading is observed because the
jectories do not start at a single point.18 The model was
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3570 PRB 58BRIEF REPORTS
tested by calculating the conductivitys i i in the absence o
antidots. The results match the values form the Drude
mula within some percent.

IV. COMPARISON OF EXPERIMENTAL AND
NUMERICAL DATA

The model contains three parameters to be estima
namely,r , b, andtc . Their coarse values are known fro
the physical sample and only a fine tuning is performed
adjusting them to better fit the transport measurements
an example, we take a measurement done with a pos
gate voltage, resulting in a carrier density of 3.631015 m22

(EF512.5 meV!. From atomic force microscope pictures
the sample, the antidot radius can be estimated tor
'0.2ax . The steepness can be estimated from the fact
an external potential should be screened out on a length s
of the screening length. Concerning Eq.~2!, we useb52. In
Fig. 1~b! the potential landscape is shown to give a vis
impression. In Fig. 3 we show the experimental and the
merical curves for the longitudinal conductivities as a fun
tion of Rc . Note thatRc is inversely proportional to the
magnetic field@Eq. ~1!#. The conductivity along the rows o
antidots (sxx) shows peaks when the cyclotron diameter
one or two times the smaller lattice constantax . The con-
ductivity perpendicular to the antidot rows (syy), shows
weak minima at the corresponding positions.8 Between these
positions of maximum anisotropy, the conductivity becom
nearly isotropic. The figure shows that the essential featu
are reproduced by the simulations. This proves that the c
mensurability oscillations are purely due to a modulation
the diffusion tensor. The modulation of the density of sta
that causes the Shubnikov–de Haas oscillations is not
sidered in this simulation. The conductivity along the antid
rows (sxx) is enhanced for commensurate magnetic fie

FIG. 2. Variance of the spreading cloud as a function of ti
~upper plot,y direction; lower plot,x direction!, confirming that the
model produces normal diffusion. The slight deviation from line
spreading at the beginning is due to initial condition~see text!. The
accuracy is demonstrated with the two different runs.
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2Rc51ax ,2ax (B,D) while the conductivity perpendicula
to the antidot rowssyy is weakly reduced. For noncommen
surate magnetic fields~e.g., 2Rc51.5ax) the conductivity is
nearly isotropic (C). This behavior can be understood b
studying the pictures of the trajectories as shown in Fig. 4
can bee seen how the trajectories are guided along the an
rows in the case of commensurability (B,D) and how this
effect lacks at noncommensurate fields (C). As already dis-
cussed in Ref. 9 we can confirm that it is mainly the e
hanced diffusion along the antidot rows and not the pinn
of orbits that leads to the commensurability oscillations o
served in transport experiments. How important are the s
ping and pinned orbits used to argue in earlier papers?3,7,9

Out of a large collection of pictures of trajectories, we fou
only a few that are skipping regularly from antidot to antid
for several periods, but a lot of them are diffusing in a ch
otic way along the antidot rows and are pinned to the
because it is infrequent to skip from one row to the ne
without a scattering event. In this sense the trajectories
pinned and skipping at the same time.

Our simulation does not take into account that the scat
ing probability depends on the scattering angle and pres

r

FIG. 3. Comparison of the experimental and numerical cond
tivity as a function of the cyclotron radius. The positions corr
sponding to the four pictures in Fig. 4 are indicated.

FIG. 4. The trajectories show how the anisotropic diffusion
originated. The inset shows the cloud of diffusing electronst
5135 ps!, which gets anisotropic for commensurate magnetic fi
(B,D) and nearly isotropic between (C).
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ably on position. Furthermore, it neglects that the antid
are not circular. The anisotropy of the conductivity for ze
magnetic field is much larger in the model than measur
probably due to noncircular antidots. It is anyway rema
able how this simple Drude-type model explains the mag
totransport in antidot arrays.

In conclusion, we have demonstrated that results
transport experiments on rectangular antidot arrays can
explained by a classical diffusion model and that all t
parameters can be estimated realistically from physical c
siderations. Pictures of the diffusion clouds for differe
magnetic fields provide a intuitive visualization of the osc
latory behavior of the magnetoconductivity and of its anis
ropy. Furthermore such illustrations clarify that it is main
the enhanced diffusion along the antidot rows that is caus
ta
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the commensurability oscillations. Maps of trajectories
real space show how the anisotropic diffusion for comm
surate magnetic fields is caused: the trajectories are foll
ing in a nonregular way the rows of antidots, rarely they s
from one row to the next. We expect that quantum effects
dominant as soon as the lattice constants gets in the rang
the Fermi wavelength (lF'50 nm!. A quantum mechanica
model of the diffusion in small antidot lattices can be pe
formed in a similar way.
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