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Electron trajectories in rectangular antidot superlattices
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A periodic array of potential pillars is superimposed on a two-dimensional electron gas being ballistic on the
length scale of the lattice period. Pronounced maxima occur in the magnetoresistance of such systems. The
magnetoconductivity as obtained from the magnetoresistance via a tensor inversion displays maxima or
minima depending on the direction of current flow with respect to the lattice orientation. So-called pinned
electron orbits as well as runaway trajectories coexist and specifically influence a given element of the con-
ductivity tensor. In contrast to square lattices, both sets of trajectories show up in the experimental data
simultaneously.@S0163-1829~97!02119-X#
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I. INTRODUCTION

How is electron transport affected by a classical perio
potential? This question has been the focus of many re
experimental and theoretical publications. Here we will co
centrate on so-called antidot lattices constituting a sys
with a periodic arrangement of potential pillars that exce
the Fermi energy in height. On the experimental si
hexagonal1 as well as square2 lattices have been fabricate
and pronounced maxima have been observed in the mag
resistance.3,4 These maxima have been attributed to the ex
tence of pinned electron orbits around groups of antido5

leading to a reduced diffusion for magnetic fields, where
cyclotron diameter is commensurate with the lattice peri
This intuitive interpretation has been complemented by
called runaway trajectories6 resembling skipping orbits alon
the rows of antidots thus predicting an enhanced diffusi
Diffusion is generally related to the conductivity via the Ei
stein relation rather than to the resistivity. By calculating t
conductivities from the experimentally determined magne
resistivities7–9 it was shown that maxima as well as minim
in the conductivity can occur at magnetic fields where
classical cyclotron diameter matches the lattice peri
Quantum mechanically the miniband structure in an anti
potential was calculated10 and successfully applied to inte
pret the experimental data.

Rectangular antidot lattices11–16also reveal maxima in the
magnetoresistance whose position, however, depends o
direction of current flow with respect to the lattice orient
tion. Classical17 as well as quantum-mechanical18 calcula-
tions are in agreement with the experimental data. In part
lar it was shown that the observed anisotropy in the diago
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components of the resistivity tensor is related to the an
tropic miniband structure.18 The importance of runaway tra
jectories in rectangular lattices was pointed out by calcu
ing conductivities from the experimentally determine
resistivities.19

Quantum oscillations superimposed on the classical c
mensurability oscillations have been observed in squ
lattices20,21and are explained by the quantization of period
orbits around single antidots.20,22,23 A quantum-mechanica
calculation revealed the importance of the miniband struct
and with it the density of states.10,24 In finite structures
smaller than the phase coherence length of the electr
reproducible fluctuations superimposed on the classical c
mensurability maxima12,25are observed as well as Aharono
Bohm-like oscillations.25,26The interpretation of these quan
tum effects relies fundamentally on pinned and theref
closed electron orbits. Quantum oscillations in the abo
sense of modified Shubnikov–de Hass~SdH! oscillations22,23

were also detected in rectangular antidot lattices16 and ex-
plained by the anisotropic miniband dispersion18 in these
systems.

In this paper we concentrate on the presentation of c
ductivity data for rectangular antidot lattices. In particula
we find that the conductivity along the wide open chann
between the rows of antidots shows maxima each time
cyclotron diameter equals an integer multiple of the latt
period. For samples with small values of the lattice anis
ropy the conductivity in the perpendicular direction, i.e., b
tween the closely spaced antidots, displays minima. We c
clude that runaway~maxima in the conductivity! and pinned
~minima in the conductivity! electron trajectories influenc
the transport properties simultaneously. At very low ma
13 088 © 1997 The American Physical Society
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55 13 089ELECTRON TRAJECTORIES IN RECTANGULAR . . .
netic fields an additional maximum in the magnetoresistan
is observed12 being related to the boundary scattering i
quantum-wire-like structures.27 Here we show that this effect
leads to a pronounced minimum in the conductivity along th
wide open rows of antidots leaving the conductivity alon
the perpendicular direction unaffected.

II. SPECTROSCOPY OF CLASSICAL TRAJECTORIES

A high-mobility two-dimensional electron gas~2DEG!
imbedded in an AlxGa12x-As-GaAs heterostructure is pat-
terned into an antidot lattice by electron beam lithograph
and a subsequent wet etching step. The details of the sam
structure, the fabrication procedure, and the experimen
setup are described in Ref. 12. In this paper we concentr
on two samples with lattice anisotropies of 2:1 and 4:1. Fi
ure 1 shows typical magnetoresistance traces for an anti
lattice with a lattice anisotropy of 4:1. In the following, we
identify the direction with the long lattice period withax and
the short period withay . The magnetoresistivitiesrxx and
ryy display a series of oscillations. At high magnetic fields
B.2 T where the classical cyclotron diameter at the Ferm
energy

2Rc52
h

e

A2pNS

B

is much smaller than both lattice constants, SdH oscillatio
dominate the magnetoresistivitiesrxx andryy and Hall pla-
teaus show up inrxy . HereNs is the carrier density of the
2DEG. At low magnetic fields pronounced maxima occur i
rxx . The arrows pointing to the top in Fig. 1 mark magnetic
field positions where 2Rc5nay with n51,2,3. The addi-

FIG. 1. Magnetoresistances and Hall resistance of a rectangu
antidot lattice with ax :ay54:15960 nm:240 nm. The arrows
pointing from below mark maxima in the magnetoresistance th
are identified with the geometrical commensurability of the class
cal cyclotron diameter and the short lattice perioday . The arrow
pointing from above signifies a low-field maximum occurring in
both rxx andryy that is related to the scattering of the electrons a
they travel in the open channels between the rows of the antido
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tional low-field maximum marked by the arrow pointing
the bottom atB'0.1 T occurs from scattering at the roug
edges in the wirelike geometry.27 In order to resolve the
classical commensurability oscillations more clearly,rxx is
plotted in Fig. 2 as a function of 2Rc /ay . Integersn along
this axis resemble situations where the classical cyclot
diameter matches integer multiples of the short lattice c
stant. Up ton57 the maxima ofrxx perfectly coincide with
the vertical straight lines. Starting fromn58 the maxima
become washed out and their positions deviate from
straight forward prediction.

In Fig. 3 circular orbits are plotted in a schematic antid
lattice with ax :ay54:1. It is obvious from this simple geo
metric consideration that the orbit corresponding ton58 is
the first to touch the neighboring row of antidots and w
therefore be deformed by the antidot potentials. This, ho
ever, will be true for both runaway trajectories~as sketched
in Fig. 3! as well as for pinned orbits. In order to furthe

FIG. 3. Schematic trajectories with diametersnay in a rectan-
gular lattice withax :ay54:1.
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t
i-

s
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FIG. 2. Magnetoresistancerxx as a function of 2Rc /ay . The
right part~scale on right-hand side! is the continuation of the sam
trace in an expanded scale. The features at 2Rc /ay,1 are
Shubnikov–de Haas oscillations.



w

io
b

s
ty
an
e
ec
b

ge

n
e

a
d
e

an
r i

er
el
at

f
im

u-
f
re-
ro-

-
s to
e
is

h

bits

ed
t
e

y

13 090 55S. LÜTHI et al.
understand the details of the characteristic trajectories
present data for the magnetoconductivities

sxx5
ryy

rxxryy1rxy
2 , syy5

rxx
rxxryy1rxy

2 ,

sxy5
rxy

rxxryy1rxy
2

in Fig. 4. The above formulas contain Onsager’s relat
urxyu5uryxu, which is supported by experimental data o
tained on rectangular antidot.11 It was shown theoretically17

and experimentally19 that the conductivity through the row
of antidotssyy is predominately related to the resistivi
rxx obtained for current flow through the closely spaced
tidots. Here we investigate an antidot lattice with a larg
anisotropy such that the influence of various kinds of traj
tories is more pronounced due to the wide open space
tween the rows of antidots.

It is clear from Fig. 4 thatsyy displays pronounced
maxima atn51,2,3,4,5. In the same magnetic-field ran
sxx and sxy are rather featureless~weak minima atn
53,4,5,6!. The maxima insyy are a clear signature of a
enhanced conductivity related to runaway trajectories. Th
trajectories will hardly influencesxx . Since both runaway
trajectories as well as pinned orbits oscillate periodically
least along one spatial coordinate they are expected to lea
minima insxy . This is observed in the present case as w
as in square lattices7–9 for different parameter regimes.

In square lattices pinned orbits become more import
for larger antidots. In this case pronounced minima occu
the conductivity at 2Rc5a.7,28 Furthermore quantum
oscillations20,21 as well as Aharonov-Bohm-like
oscillations,25 being explained on the basis of phase coh
ently closed orbits have been observed in systems with r
tively large antidots. Quantum oscillations in rectangular l
tices have been shown to be more pronounced for sm
lattice anisotropies.16 In general the smaller the fraction o
unperturbed electron gas in an antidot lattice, the more
portant are pinned orbits.

FIG. 4. Magnetoconductivitiessxx andsyy ~left-hand scale! and
Hall conductivitysxy ~right-hand scale! as a function of 2Rc /ay for
the same sample as in Fig. 1 withax :ay54:15960 nm:240 nm.
e

n
-

-
r
-
e-

se

t
to
ll

t
n

-
a-
-
all

-

Figure 5~a! presents the magnetoresistivity of a rectang
lar lattice withax :ay52:15480 nm:240 nm as a function o
2Rc /ay . This smaller lattice anisotropy compared to the p
vious sample shows the transition to square lattices. P
nounced maxima occur inrxx for n51,2,3 while the position
of the maximum forn54 already deviates from the pre
dicted position. This is expected from a sketch analogou
Fig. 3 where the orbit with a diameter of 4 small lattic
constants should hit the neighboring row of antidots and
therefore expected to be deformed. Figure 5~b! shows the
correspondingsxx andsyy traces for the same sample wit
ax :ay52:15480 nm:240 nm. As beforesyy shows maxima
at n51,2,3.

The unexpected features occur insxx where minima are
observed at or close ton52,3,4. Similar minima but much
less pronounced can also be seen in Fig. 4 forsxx . These
minima are interpreted as being related to pinned or
around groups of antidots. Atn52,4,6~for ax :ay52:1! also
runaway trajectories could occur along thex direction of the
lattice. Since in the experiment clearly minima are observ
in the conductivitysxx the influence of these orbits is no
important. In this case of a lattice with anisotropy 2:1 w

FIG. 5. Magnetoresistancerxx ~a! and magnetoconductivities
sxx and syy ~b! for a sample with a small lattice anisotrop
ax :ay52:15480 nm:240 nm.
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55 13 091ELECTRON TRAJECTORIES IN RECTANGULAR . . .
have thus clear evidence that pinned orbits occur and ha
significant influence on the conductivity in the respect
conductivity direction between the closely spaced antido

This means that both kinds of trajectories, pinned (sxx)
and runaway (s)yy , play a role in rectangular antidot lattice
and can be analyzed via the components of the conduct
tensor. By comparing rectangular lattices with different d
grees of anisotropy we find in agreement with geometr
considerations that pinned orbits become less important
lattices with larger anisotropies. This is consistent with
finding on square lattices where the importance of pinn
orbits is hindered for small antidots leaving wide regions
unperturbed 2DEG. Furthermore it explains why a poss
deviation of quantum oscillations from a 1/B periodicity be-
comes more significant for smaller anisotropies of the lat
periods.16

III. WIRELIKE EFFECTS IN RECTANGULAR LATTICES

At very low magnetic fields additional maxima show u
in rxx as well as inryy ~see vertical arrow pointing from top
in Fig. 1 atB'0.1 T!. These effects appear in rectangu
lattices with large anisotropies12 and are explained by th
scattering of the electrons as they travel along the wide o
regions confined by the rows of antidots similar as in qu
tum wires.27

In quantum wires one can measure a resistance or con
tance. In our latticelike structures of dimensions that
much larger than the intrinsic length scales of the electro
system individual components of the resistivity or conduct
ity tensor can be obtained. Obviously the low-field maximu
is observed in both diagonal componentsrxx andryy of the
resistivity tensor. In a plot of the corresponding conducti
tiessxx andsyy a similar feature is very difficult to discer
since the Drude background is very steep in this l
magnetic-field range. Therefore the conductivities have b
fitted with a Drude-like expression which was subtrac
thereafter, as has been done for square lattices.7 A similar
procedure was used for rectangular lattices with small lat
anisotropiesax :ay51:0.8 ~Ref. 19! where this low-field
maximum is not observed. Figure 6 shows the correspond
result for the sample withax :ay54:15960 nm:240 nm.
While thesxx trace is rather featureless aroundB'0.1 T the
trace for the normalizedsyy displays a pronounced mini
mum as marked by the arrow pointing from the top. T
arrows pointing from below mark the maxima in the magn
toresistance that are related ton51,2,3.

Based on the Einstein relation which connects the dif
sion constant with the conductivity, the identification
minima and maxima in the conductivity with certain electr
trajectories leads to very sensible physical results. Furt
more, the original interpretation of the low-field magneto
sistance maximum is supported by this analysis.

IV. CONCLUSIONS

Experimentalists generally measure resistivities since
is the proper way to do a four-terminal experiment. The
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rists, on the other hand, tend to calculate conductivities in
framework of linear response. Pronounced features h
been experimentally found in the magnetoresistance of a
dot superlattices and quantitatively explained by class
and quantum-mechanical calculations. While the conduc
ity is closely related to the rather intuitive diffusion consta
the observed features are much more easily discernible in
resistivities. The open question remains whether conduc
ties and resistivities are related to different physical realiti

In this paper we demonstrate that the influence of pinn
and runaway trajectories can be distinguished by evalua
the diagonal elements of the conductivity tensor. Furth
more we show that two different physical mechanism
namely, boundary scattering in wirelike structures and
geometrical commensurability of the cyclotron diameter w
the lattice constant, lead to minima and maxima, resp
tively, in the magnetoconductivity. It is a challenge for futu
experiments with smaller lattice period samples to test
general validity of these arguments in the quantum trans
regime.
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FIG. 6. Effective magnetoconductivity for the same sample a
Figs. 1 and 4. The data are obtained after a Drude fit tosyy has
been subtracted from the original data. The arrows pointing fr
below mark geometrical commensurability conditions. The arr
pointing from above indicates the magnetic field, where a minim
occurs reflecting the enhanced scattering of carriers as they trav
the wide open channels between the rows of antidots.
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