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Ballistic electrons in an open square geometry: Selective probing of resonant-energy states
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We report on the interplay between classical trajectories and quantum-mechanical effects in a square geom-
etry. At low magnetic fields the four-terminal resistance is dominated by phenomena that depend on ballistic
trajectories in a classical billiard. Superimposed on these classical effects are quantum interference effects
manifested by highly periodic conductance oscillations. Numerical analysis shows that these oscillations are
directly related to excitations of particular eigenstates in the square. In spite of open leads, transport through an
open cavity is effectively mediated by just a féer even a singleresonant-energy states. The leads injecting
electrons into the cavity play a decisive role in a selection of the particular set of states excited in the dot. The
above selection rule sets a specific frequency of the oscillations seen in the experiment.
[S0163-18297)50316-X

Ballistic semiconductor quantum dots are rewarding ob-geometry of the leads injecting electrons into the cavity plays
jects for studying relations between quantum mechanics and decisive role in the selection of the particular eigenstates
corresponding semiclassical electron dynamics. A number afxcited in the dot. The above selection rule sets a specific
semiclassical predictions have been recently made for tran§requency for the oscillations seen in the experiment.
port characteristics of ballistic quantum dots whose classical Our device[schematically shown in the inset of Fig.al]
counterparts are chaotic or regular, respectivelyany of  consists of a patterned high mobility GaAs/Sla; _,As het-
the above predictions have been tested in recergrostructure which contains a two-dimensional electron gas
experiment$ and the difference in transport properties of 65 nm below the surface. At=4.2 K its electron density is
chaotic and regular billiards has been fotnd. ns=3x10" m™? and the elastc mean free path is

Transport characteristics of open dots are often analyzet=8 wm. The pattern was produced by electron beam li-
on the basis of the known properties of the correspondinghography and transferred onto the sample by a carefully
closed structuré® Recent theoretical studies of the effects of tuned wet etching step. The square geometry with a system
leads on the electron dynamics in open dots are rather coimensionL=2.4 um has quantum point contatQPQO—
tradictory. Reference 6 shows that the statistics of the spectlike openings at its corners serving as contacts to the system.
for open dots are exactly the same as that of the correspondhe openings are adjusted to support roughly three modes so
ing closed systems. At the same time, the reétitsuggest  that charging effects are not important. The whole structure
that the leads attached to the dot may change the level sti§ covered by a metal gate which allows one to tune the
tistics, so that a transition to chaos can occur in a nominallyj-ermi energy in the system. The sample is cooled in a dilu-
regular system. Besides, when dot openings become lardion refrigerator with bath temperatures between 1.4 K and
enough, the eigenenergy levels interact and acquire a finitd0 MK. At low temperaturesT(<1 K) both the elastic mean
broadening due to the finite lifetime of electrons in the dot.free path and the phase coherence length of the electrons
This energy broadening might be much bigger than the meagXxceed the dimensions of the device. Typical four-terminal
energy level separation, resulting in overlapping of manymeasurements of the resistarigg = (V¢—V,)/1 are made
resonances. Under these conditions it is not clear whether Ry passing a curreritthrough the contactisandj and mea-
discussion of transport through the dot based on the propepuring the voltage drop across the other two contactand
ties of the Hamiltonian of the closed structure is still mean-1). The longitudinal resistanc® =R;,3, has a negative
ingful for the open system. value at zero magnetic field; see Figal R, then rises

In this paper we investigate ballistic transport in an opengharply and has a pronounced maximunBat0.7B; and a
nominally regular square geometry. We show that despite thiurther one aB~ 2B, (B, is the the magnetic field when the
lifetime broadening induced by the leads, transport througleyclotron radius at the Fermi energR.=7%kg/eB, equals
the structure is still effectively mediated by just a féer  side of the square, R.=L). The Hall resistance
even a singleregular eigenstates of the isolated square. Thd&ry=R43, in this regime exceeds the linear value
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FIG. 2. Measureda) and calculatedb) resistance oscillations as a func-
tion of the Fermi wave vector and their Fourier transfortR3) (insets;
Tpat=30 mK (a), T=250 mK (b). Periodicity of the measured and calcu-
lated oscillations as extracted from the FEkPP=1.75<10° m™ I,
AKPM™=2.17x10° m™L,

The dimension of the simulated device is smaller by a
factor of 2.4 than the dimension of the real ofmherwise
the calculation would become forbiddingly lajg&herefore,
one cannot expect a direct one-to-one correspondence be-
tween the experiment and the numerical simulations. At a
given magnetic field the rati®./L (and consequently, the
spatial extent of the wave functions relative to the size of the
square is bigger for the simulated device. Therefore, inter-
ference effects are of a greater importance, giving rise to a
rich structure which is not seen in the experiment. However,
the relative peak positions &, ,Ry are in good qualitative
agreement. The lower panel of Figbl shows the calculated
total transmission coefficient$,; and T,;, from lead 1 to
leads 2 and 4, respectivelicoefficientsT3; and Ry, are
rather featureless and are not displayed hdpeonounced
0.0 ' 0.0 peaks seen in the the transmission coefficients can be directly
0.0 1.0 2.0 3.0 attributed to the classical ballistic orbits as depicted in the
B/B, insets. An interplay between these coefficients in the four-
FIG. 1. (@) Measured longitudinaR, and Hall resistance,, for a ba-  terminal Landauer-Bitiker formula* causes the particular
listic square geometry(right inse}; size of the squareL=2.4 um, peak positions detected in both numerical simulations and
Toat=30 MK, B, corresponds to the magnetic field when the cyclotron experiment. A negativ® seen in experimental and calcu-
diameter equals to the size of the squae=75 mT. (b) Upper panel: |ated longitudinal resistances Bt~ 0 is caused by the en-
T e o —oamita s NaNCeMet of the diagonal waTSMISSCN - Tz, Ts) e
beam in a single QPC. Lower panel: transmission coefficidntsand to the Class.lcal horn Commat'on effecsee inset Slm!lar
T,41; the insets show classical ballistic trajectories illustrating the enhanceMagnetoresistance anomalies related to the geometrical reso-
ment of T,, atB~0.98, andT,, atB~ 1.38, (peak positions differ from the Nances and collimation effect have been detected in narrow
classical expected valu®&B.=1 and 1.5 due to the strong collimation of junctions in Hall-bar geometry and are well explained within
the electron beam over the diagonal of the square the classical ballistic transport pictu(gee Ref. 12 for a de-
tailed review.
Ry=B/ens and has plateaulike structures which are closely At lower temperaturesT,me 30 mK) reproducible bal-
related to the corresponding featuresRin. For higher mag- listic fluctuations are superimposed on these classical effects
netic fields,B=0.2 T, Shubnikov—de Haa&SdH) oscilla-  in the experiment. This strongly suggests that these fluctua-
tions and quantized Hall plateaus appear. tions are phase coherence effects arising from electron inter-
Figure 1b) shows the results of numerical calculation for ference in the dot.
a square dot of size=1 um in the four-terminal geometry We tune the electron density, and thus the Fermi energy,
depicted in the inseR, andR,, are computed in the frame- inside the square by varying the voltage on the surface gate.
work of the multiterminal Landauer-Biiker formalism!'~*®* At zero magnetic field we find a strong oscillatory behavior
To calculate the transmission probabilities we solve a fullin both the experimental and the calculated longitudinal re-
quantum-mechanical scattering problem making use of theistance as a function &= (27ng)*? (Fig. 2). In order to
hybrid recursive Greens function technidlgeneralized for  understand the nature of these periodic oscillations we study
the presence of four leads. The effect of finite temperature ithe probability density distributiof (x,y)|? in the dot. In
accounted for in a standard way, as a convolution of thehis analysis we limit ourselves to a two-terminal geometry,
transmission coefficients over energy, with the derivative ofwhere the dot is connected to reservoirs only by leads 1 and
the Fermi-Dirac distributiof>*3 2. (The calculated two-terminal resistance has the same fre-
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FIG. 3. Upper panel: probability density distribu-
PSS e tion |¥(x,y)|> in the dot calculated for
S ke=1.12<10® m~! (left) and ke=1.134x10® m™!
(right). Lower panel: expansion coefficienis,,|%(see
text) showing a contribution of the eigenstatasn me-
diating transport at the giveky .
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guency of oscillations as the longitudinal four-terminal onekg is varied, we are in a position to identify a particular set
and, therefore, the above limitation does not affect our conef eigenstates which contribute to the conductance at a given
clusion on the origin of the fluctuations. Er . In the system under consideration where the aspect ratio
In Fig. 3 |¥(x,y)|? is displayed for two representative “dot size/dot opening” is 10, the above set typically consists
values of ke. The origin of the wave function pattern of just a few or sometimes even a single energy level.
becomes clear when we numerically expand the calcu- At a given Fermi energy the eigenstates of the dot seem to
lated ¥ (x,y) (which is a solution of the scattering problem pe excited randomly at the circkém?+ n?=kgL/r, see Fig.
in the open dot onto the set of eigenstates of the 3, lower panel. However, averaging over the appropriate en-
square, ¥ma=(2/L)sin(mmxL)sin(zny/L) [with eigen- ergy interval shows that it is primarily eigenstates with
energiesen n=h%2m* (k5 +k3); kp=mm/L, ky=7n/L]l.  m~n (i.e., ky~k,~kg /v2), which mediate transport in the
This is equivalent to finding the coefficient,, of the com-  square dot, see Fig(a. It is the injection properties of the
plex two-dimensional sine-Fourier transformP(x,y) leads which define these selection rulesleed, for a single
=2mZn Cmpsin(@mxL)sin(zny/L). The lower panel of QPC, a state withk, inside the QPC is mostly coupled to an
Fig. 3 shows the calculated expansion coefficigiatg,|>  outgoing state with the same transverse wave véttai:
representing the contributions of the eigenstaies in the  though, strictly speaking, this is no longer correct for the
corresponding wave-function patterns. We find that only thedouble QPC's in seriefi.e., the dot when interference ef-
coefficientsc,,, with quantum numbersn,n lying near the fects destroy this coupling, it is justified when an average
circle of radius R=+m?+n?=keL/7 give nonvanishing over a finite energy window is performed, so that the dot
contributions. Broadening of the resonant levels due to th@ominally plays the role of a reservdit.n the present ge-
effect of the dot openings ik space is less than the distance ometry with electrons injected from a corner, the beam is
between neighboring eigenstates whose quantum numbestrongly collimated due to a classical horn collimation effect
differ by one, |k, —Kn«1|=|km—km=1/|=7/L. This makes and is directed along the diagonal of the box, Fi@) A4This
us conclude thatransport in open structures is effectively means thak, ~0 andkj~kg. Extending those results for
mediated by the eigenstates of the corresponding closed dour geometry of the injecting leads, we gét.,)~(k,)
with eigenenergies lying in close proximity to the Fermi en-~kg/+/2 which explains the above selection rules displayed
ergy, emn~Eg. By examining the wave function pattern as in Fig. 4a); ({- - -) stands for energy averagind\ote, that

(b)

kn
ke - AkE
_k\: o NG FIG. 4. (a) Coefficients(c,,y averaged in the inter-
Kk §---------0 n+1 S / AkL val 1.1<kg<1.15[20 patterns of¥(x,y) have been
N2 203 S n > /(\\ N analyzed. (b) Eigenenergy states of the square dot
3 b . o St which are excited as the Fermi energy is varied; see
103 i e text.
0 = EIIHHIIIIIIIHHIIIIIKIH:IHHIIIIIIHI / Ak\\;
10 20 130 40 I
m: k L
L " mm-+l

0o KAk



R10 212 ZOZOULENKO, SCHUSTER, BERGGREN, AND ENSSLIN 55

the selection rule would be different for a different geometryof the longer primitive periodic orbits exceéd Whenk is

of injecting leads. o changed byAkt, only k,, (or k) is changed and the final
Let us now discuss the observed periodicity of the conwave vectors are not equal. Then the electron no longer stays

ductance fluctuations. As we have found that the fluctuationg, the periodic orbit and eventually loses its phase memory

are directly related to the excitation of resonant-energy levelgfier multiple bounces inside the dot, and does not contribute

of the dot, one can expect that the observed periodicity i phase-coherent interference. However, whien is

ke is related to the transitions between different eigenstate%hanged byAkZ , both quantum numbers are changed such
Suppose, at a giveky:, that an eigenstaem,n; is excited in thatk,,.1=K,+1. As a result, the electron does not leave the

the dot; see Fig.@). In the case under consideration mostly = . ™™ ! U
; o periodic orbit and retains its phase coherence. We conclude
states withk,~k,~kg /2 are excited in the dot. For these } . . ) . . .
. 1 . . this discussion with a question mark, in a hope that further
states, changing: by Akt=Ak/\/2 results in the excitation :
experiments on much smaller dots, where electrons can per-

of .the states which one of.the Euantum-number .dlffers b34‘0rm tens or even hundreds of bounces before losing their
unity, {m+1,n} or {m,n+1}; Ak=/L being the distance hase coheren@@ would help to clarify this issue.

between neighboring levels of the square. This, as one ¢ ) ) .
expect, would lead to an appearance of the next conduction Despite the discrepandyactor of 2 between the experi-

peak, with Ak,l:L=7T/\/§=2.22 defining the period of the ment and the t.hepry, it is still remarl_<ab!e that they b.Oth
oscillations. Increasink, by AkZ=2Ak: corresponds to the demonstratepenodlg: cpnductanpe oscnlatlpns. ThI'S is in
Y F F F contrast to theaperiodic fluctuations seen in chaotic dots.
excitation of the statgm-+1n+1} where both quantum o \aer are well described by the random matrix thery,
nurrmbers are changed by one. The calcglated pe”Od",:'%ased on the assumption that the leads are coupled to a dot
Akg'L=222, as 1extracted from the Fourier transform iny hic js described by the transfer matrix constructed from
Fig. 2, equalsAkgL exactly. The observed periodicity, the appropriate random statistical ensemble. In contrast, in
AkgPL=4.42, however, rather well corresponds tothe square dot only a set of selected eigenstates excited ac-
AKEL=\2m=4.44. cording to the specific selection rules effectively mediate
Currently, we do not fully understand the origin of the transport through the structure. The fact that conductance
factor of two disagreement between the theory and the exascillations in the dot are related to the excitation of the
periment. We speculate, however, that this can be due toorresponding regular eigenstates of the square suggests that
inelastic scattering which may play an important role in oura soft potential due to remote donors would not affect the
relatively large dot, but has not been accounted for in theegular character of the electron dynamics significantly.
numerical simulations. Indeed, in the framework of the semi- To conclude, at low magnetic fields the magnetoresistance
classical theory?® the contribution to the oscillating part of is dominated by phenomena that depend on classical trajec-
the density of states of the dot comes from the electronsories traversing a ballistic square cavity. Conductance fluc-
bouncing in all stable primitive periodic orbits. In real sys- tuations observed at millikelvin temperature are directly re-
tem, however, phase breaking events and temperature smeéited to the excitation of a particular set of eigenstates of the
ing strongly suppress contributions from long orbits. In prac-square selected according to injection properties of leads.
tice, neglecting periodic orbits or trajectories longer than theThe above selection rule sets a specific frequency for the
inelastic scattering length;, seems to be a good approxi- oscillations seen in the experiment.
mation*1"~1®The selection rules found above correspond to We thank J. P. Kotthaus, S. Ulloa, Y. Levinson and J. P.
the excitation of the family of orbits with winding numbers Bird for valuable discussions. This work was partly sup-
(1,1 (Ref. 17 of lengthl=2./2L, where the wave vectors ported by a grant from Deutsche Forschungsgemeinschaft
(velocitieg parallel to the sides of the square are equal(SFB 348 (R.S). |.V.Z. acknowledges a grant from the
km=k, . Note that in the dot under investigation, the lengthsRoyal Swedish Academy of Sciences.
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