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PACS. 73.20Dx – Electron states in low-dimensional structures (superlattices, quantum well
structures and multilayers).

PACS. 73.23Hk – Coulomb blockade; single-electron tunneling.
PACS. 05.45+b – Theory and models of chaotic systems.

Abstract. – The fluctuations and the distribution of the conductance peak spacings of a quan-
tum dot in the Coulomb-blockade regime are studied and compared with the predictions of
random matrix theory (RMT). The experimental data were obtained in transport measurements
performed on a semiconductor quantum dot fabricated in a GaAs-AlGaAs heterostructure. It
is found that the fluctuations in the peak spacings are considerably larger than the mean level
spacing in the quantum dot. The distribution of the spacings appears to be Gaussian both for
zero and for non-zero magnetic field and deviates strongly from the RMT predictions.

Advanced nanofabrication techniques have made it possible to confine small numbers of
electrons electrostatically within the two-dimensional electron gas (2DEG) of a semiconductor
heterostructure [1], [2]. Both the electric charge and energy of such “quantum dots” are
quantised and hence such structures are sometimes referred to as “artificial atoms” [3], [4].
In transport measurements the charging of these electron islands with single electrons leads to
the observation of periodic conductance oscillations in the Coulomb-blockade regime [1]. These
reflect the electrostatic coupling of the quantum dot to its environment and, additionally, they
contain information about the eigenenergies and eigenfunctions of the electrons in the dot. Due
to irregularities in the electrostatic confinement potential and electron-electron interactions,
the corresponding classical motion of the electrons in the quantum dot can be expected to
be chaotic (nonintegrable) [5]-[7]. Consequently, recent experiments have considered the peak
height distribution [8], [9], parametric conductance correlations [9] and level statistics [10]
of a quantum dot in the Coulomb-blockade regime to test the concepts developed for the
quantum-mechanical description of classically chaotic systems (“quantum chaos” [11], [12]). In
particular, random matrix theory (RMT) [13] has proven to be a very successful description of
the statistical properties of spectra of many irregular systems. Therefore, it is a very interesting
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question, how RMT applies to the transport properties of quantum dots. In this paper we
investigate the fluctuations of the peak spacings of the conductance peaks of a quantum dot
obtained in transport measurements with and without applied magnetic field. The spacing
distributions are calculated and compared with the predictions of RMT.

For sufficiently low temperatures T and small dot capacitances C, quantum dots isolated
from the reservoirs of the 2DEG via tunnel barriers can exhibit Coulomb-blockade phenomena.
When e2/C � kBT , transport through the quantum dot is blocked. A finite conductance only
occurs when the total energy of the quantum dot with N electrons is degenerate with the energy
of the dot occupied by N + 1 electrons. This is the case when

F (N + 1)− F (N) = µ , (1)

where F (N) denotes the free energy of the quantum dot with N electrons and µ is the chemical
potential of the leads. Then a single electron can tunnel from a reservoir into the dot [1]. This
can be achieved by tuning the dot’s potential with a centre gate. A sweep in the centre gate
voltage Vg results in the well-known conductance oscillations in the Coulomb-blockade regime.
From eq. (1) the difference ∆Vg between gate voltages at which two adjacent peaks occur
can be related to the thermodynamic quantity ∂µ/∂N , which has the meaning of an inverse
compressibility [10]. Within the capacitive charging model [1] the electrons are assumed to
occupy single-particle states of energies εi and the Coulomb interactions are described by a
classical electrostatic term U(N). The dot’s energy is then F (N) ≈

∑N
i εi + U(N) and the

difference ∆Vg is given by

eα∆V Ng = e2/C + ∆εN . (2)

Here e denotes the electronic charge, C the total capacitance of the dot and ∆εN = εN+1− εN
the level spacing. The conversion factor α = Cg/C, where Cg is the dot-to-gate capacitance,
translates between the energy and the voltage scale of the conductance oscillations. Thus,
in principle, one should be able to extract the energy level spacings ∆εN from the so-called
“addition spectrum” obtained in Coulomb-blockade measurements.

From the addition spectrum, one can calculate the nearest-neighbour spacing (NNS) distri-
bution P (S), which can be compared to the predictions of RMT. P (S) is the distribution of the
spacings between adjacent levels of an energy spectrum, where the spacings S are normalised
to a mean value of unity. The results for P (S) within the framework of RMT are very well
approximated by the Wigner surmise, which is [12]
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(GUE) , (4)

for time-reversal invariant systems and for systems with broken time-reversal invariance, e.g., in
the presence of a magnetic field. The first distribution corresponds to the energy spectrum
of Hamiltonians drawn from the Gaussian orthogonal ensemble (GOE) of random matrices,
while the second is obtained for the Gaussian unitary ensemble (GUE). The fluctuations
δS = (〈S2〉 − 〈S〉2)1/2 are thus expected to be 0.52〈S〉 and 0.42〈S〉 for GOE and GUE,
respectively.

The quantum dot on which our measurements were performed was defined by electron-beam
lithography in the 2DEG of a GaAs-Al0.32Ga0.68As heterostructure. The mobility and the
sheet density of the 2DEG are 120 m2/Vs and 3.6× 1015 m−2, respectively. The application
of negative gate voltages to the surface structure defines an island which is isolated from the
left and right reservoirs via tunnel barriers (see inset of fig. 1). The radius of the island
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Fig. 1. – Conductance oscillations of a quantum dot in the Coulomb-blockade regime at zero magnetic
field as a function of the centre-gate voltage Vg. Roughly 170 peaks are observed between Vg =
−200 mV and Vg = −1000 mV. The inset shows a schematic of the quantum dot. The shaded area
denotes the 2DEG and the black areas indicate the gates with which the dot is defined. The lower
middle gate is the centre-gate.

is estimated to be r ≤ 150 nm. The Coulomb-blockade measurements were performed in a
dilution refrigerator with a base temperature of 25 mK. Electron transport through the dot was
studied by applying a small bias voltage (4.3 mV AC) between the left and right reservoirs and
measuring the current using standard lock-in techniques (for further details see ref. [14]). From
the onset of the conductance oscillations at Vg = −200 mV roughly 170 peaks are observed
(fig. 1). During the gate sweep from Vg = −200 mV to −1000 mV the number of electrons
in the quantum dot thus varies from N ≈ 250 to N ≈ 80. In the following, the only relevant
energy scale is the mean energy level spacing ∆. It should be roughly EF/N , where EF is the
Fermi energy. From the sheet density one obtains EF ≈ 12.9 meV and therefore ∆ ≈ 50 meV.
The thermal energy kBT is about one order of magnitude smaller.

To calculate the NNS distribution from the conductance oscillations, first the gate voltage
differences ∆Vg between adjacent peaks are extracted from the data. The mean value of ∆Vg

increases linearly with decreasing voltage (see fig. 2a)) reflecting an inverse linear change in
the dot-to-gate capacitance [15]. Identifying 〈∆Vg〉 with the classical charging voltage e/Cg,
from eq. (2) the energy spacings are obtained as

∆ε = eα(∆Vg − 〈∆Vg〉) . (5)

The conversion factor α is also a function of the gate voltage. This can be considered by using
the same linear fit as above, i.e. α = Cg/C = e(e + Crest · 〈∆Vg〉)−1, where the capacitance
Crest = C − Cg is assumed to be constant. However, the actual choice of α is not a crucial
parameter in the calculation, as tests with different constant values for α have shown. From
eq. (5) the ∆ε are obtained as fluctuations around a mean value of zero. To remove the
unphysical negative values for ∆ε the whole data are shifted by a constant value (cf. fig. 2 b)).
It turns out that the fluctuations around the mean value are considerably larger than the mean
level spacing ∆ estimated above. This may be regarded as an indication that the calculated ∆ε
are not the “real” addition energies and that the influence of the electron-electron interactions
both within the dot and its environment play a significant role [10].

From the energy spacings one can construct an artificial one-particle energy spectrum via
Ei =

∑i
N=1 ∆εN . To unfold the data to a mean level spacing of unity, a polynomial fit is made
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Fig. 2. – a) The peak spacings (∆Vg) extracted from fig. 1 (indicated by dots) and a linear fit to them.
b) Energy spacings (∆ε) calculated from the peak spacings and shifted to positive values. The straight
line indicates their mean value and the broken lines indicate the largeness of the fluctuations expected
from RMT.

to the spectral step function N(E) =
∑
i θ(E−Ei). The renormalized energies are obtained by

the standard unfolding mapping Ei 7→ 〈N(Ei)〉 [11], [12]. From these, the energy level spacings
are calculated and can be directly compared to the predictions of RMT.

In fig. 3 a) the resulting NNS distribution for zero magnetic field is displayed. It obviously
does not agree with the Wigner surmise (eq. (3)). Instead, it is much better described by a
Gaussian centered at S = 1, as illustrated.

In the presence of a magnetic field, time-reversal invariance breaks down. In this case
the appropriate ensemble of random matrix theory to describe energy level fluctuations is the
Gaussian unitary ensemble. However, as in the B = 0 T case, the experimentally obtained
spacing distributions look Gaussian rather than GUE-like. In fig. 3 b) the distributions for
zero, for low (B = 0.1 T, B = 0.5 T) and high (B = 4 T) magnetic fields are displayed.
The distributions are derived with typically 150–170 data points. From a statistical point of
view this number is rather small. Nonetheless, these are large numbers when compared to
previous Coulomb-blockade experiments [10]. It can be seen that the distributions narrow with
increasing magnetic field as may be expected due to the Landau quantisation [16], [17].

The largeness of the fluctuations indicates that the capacitive term e2/C in eq. (2) undergoes
even larger fluctuations than the energy levels themselves. Thus, the ∆ε obtained above do not
display the energy level spectrum of the quantum dot. However, this would not mean a failure
of RMT, but an insufficiency of the capacitive charging model. Equation (2) obviously cannot
be used to get access to the bare energy level spacings of the quantum dot, when a larger range
of gate voltages is considered.
In a recent publication Sivan et al. [10] argued that electron-electron interactions in the dot
were responsible for the failure of RMT to describe the conductance peak spacing distribution.
Their experiments and calculations lead to a Gaussian P (S) centered at S = 1 which is similar
to our results. In terms of the charging energy the fluctuations obtained in our experiment
are δ(∆ε) ≈ 0.07–40.11e2/C, which is slightly smaller than in the work by Sivan et al.
Their numerical calculations suggest that fluctuations in the quantity ∆V/〈∆V 〉 converge to
a “universal” value between 0.1 and 0.2 for strong electronic interactions. Calculating this
quantity from our data we arrive at 0.10, which is consistent with their finding. However,
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Fig. 3. – a) NNS histogram calculated from the energy spacings of fig. 2 b) after unfolding them to a
mean value of unity. The full line denotes the GOE prediction of RMT for P (S) and the broken line is
a Gaussian fit centered at S = 1. b) NNS distributions for different magnetic field strengths. The full
and the broken lines denote the RMT predictions for P (S) obtained in the Gaussian orthogonal and
unitary ensemble, respectively. For clarity, lines have been used to display the distributions instead of
histograms.

the influence of the capacitive coupling to the reservoirs has not been considered in their
publication, which may also have a considerable influence on the fluctuation properties of the
peak spacings.

Finally, it has to be considered that RMT was initially developed to handle the statistical
properties of excitation spectra of complex systems. The addition spectrum as obtained in
Coulomb-blockade measurements, however, consists of the many-particle ground state energies
of the quantum dot rather than excitation energies. The comparison with RMT has been made
under the assumption that the addition spectrum be equivalent to a single particle spectrum.
Indeed, the excitation spectrum of the model used in [10] obeys RMT. Recently, this could
also be shown for the excitation spectrum of the two-dimensional Hubbard model [18]. But
it is not clear whether the results of RMT can be applied to ground-state energy statistics.
In this respect it is interesting to notice that the peak height distribution for the conductance
oscillations seems to be in accordance with RMT [8], [9], whereas the parametric conductance
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correlations [9], [19] quantitatively do not agree with RMT.
In conclusion, we have investigated the statistics of conductance peak spacings obtained in

Coulomb-blockade experiments with zero and non-zero magnetic field. In all cases the results
do not agree with the predictions of random matrix theory. Instead, the nearest-neighbour
spacings appear to be Gaussian distributed around their mean value. It seems to be difficult to
extract the bare energy levels when using a simple capacitive charging model. Therefore, our
results include fluctuations in the electrostatic coupling with the environment which are larger
than the fluctuations in the quantum dot’s energy level spectrum itself. Further theoretical and
experimental work are required to understand this central phenomenon in mesoscopic physics.
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