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Classical and quantum transport in rectangular antidot superlattices
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Experiments on antidot superlattices with a variety of rectangular geometries are used to test basic symmetry
relations. Depending on the direction of current flow with respect to lattice orientation, different classical
periodic orbits are probed. The symmetry relations also persist into the quantum-mechanical regime. Our
experimental results show that a quantum effect like the Shubnikov—de Haas oscillations can be modified for
the current direction where the resistance is influenced by classical trajectories and periodic orbits.
[S0163-18206)07447-4

Antidot superlattice’s* represent a versatile system to investigate how quantum properties arise in antidot superlat-
study electron transport in periodic potentials. A periodictices whose classical behavior is well understood we perform
array of potential pillars exceeding the Fermi energy inmeasurements at low temperaturé€s; 100 mK, where both
height is superimposed on a two-dimensional electron gaslastic and inelastic scattering lengths are larger than the
(2DEGQ). Usually the elastic mean free path is much largerength of the relevant periodic orbits. In this case additional
than the lattice period while the Fermi wavelength is typi-quantum oscillations in the magnetoresistance are superim-
cally an order of magnitude smaller than the characteristiposed on the classical peaks whose periodicity depends on
features of the artificial superlattice. The electrons are conthe direction of current flow. For the direction where the
sidered to behave like billiard balls bouncing around in theresistance is dominated by the influence of periodic orbits
antidot potential landscape. In a magnetic field applied peraround single antidots we finB-periodic quantum oscilla-
pendicular to the 2DEG the electrons travel around groups dfons reminiscent of Aharanov-Bohm oscillations while for
antidots once the cyclotron diameter is commensurate witithe perpendicular direction Bfperiodic Shubnikov—de Haas
the lattice period. A calculation based on classical chaoti¢SdH) oscillations are observed. These results show that
dynamics explains quantitatively the observed transporthere is a close relation between quantum corrections to
properties. A quantum transport calculation of the longitu- transport properties and classical periodic orbits. We com-
dinal and Hall resistivity of square lattices also yields resultspare our experimental results to recent semiclassical
in agreement with experimental d&t&xperimentally pro- theorie§® and to a quantum-mechanical approdtfihe lat-
nounced maxima occur in the magnetoresistance which ater theory by Neudert, Rotter, Bsler and SuhrkéNRRS
related to periodic orbits around groups of antidots. The reshows that the anisotropic miniband structure in a two-
sistivity tensor of a square lattice is isotropic and no dependimensional rectangular potential is responsible for the dif-
dence on the direction of current flow is theoretically ex-ferent quantum oscillations.
pected or experimentally observed. The fabrication process starts from a GaAs@B&; _,As

In this paper we study lattices with a rectangular symmeheterostructure that contains a 2DEG 65 nm below the sur-
try where the transport properties depend strongly on théace. Its electron density is;=3x 10" m~2 and the elastic
direction of current flow with respect to the lattice mean free path i,=8 um. Two Hall geometries which are
orientation’ For current flow along the long lattice period oriented perpendicular to each other are defined by wet etch-
the electrons are forced between the closely spaced antidatzy and provided with Ohmic contactduGe/Ni). This setup
and the magnetoresistance displays pronounced maxima iat suitable to experimentally determine the components of
magnetic fields commensurate with the lattice period. In théhe resistivity tensor. The antidot pattern is produced by elec-
perpendicular direction where the electrons predominantlyron beam lithography and transferred onto the sample by a
flow in the channels between the rows of antidots only orbitscarefully tuned wet etching step. Figure 1 shows an image of
whose size is comparable with the large lattice constanthe surface of a wet etched rectangular lattice with periods
manifest themselves in the magnetoresistance. In order @ =960 nm anda, =240 nm. Each antidot is well developed
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FIG. 1. Image of a wet etched surface of a GaAg(@d; ,As
heterostructure. The rectangular antidot pattern with lattice periods
a,=960 nm anda,=240 nm was produced by electron beam li-
thography. The image is taken with an atomic force microscope. If
a magnetic field is applied perpendicular to the plane of the 2DEG
the electrons travel around groups of antidots as it is schematically
shown in the figure.

pxy,pyx

and the variation in size is remarkably small. The whole
structure is covered by a gate metal which allows us to
change the Fermi energy in the system. We present data from
various rectangular lattices with a whole range of anisotro-
pies between the lattice constants. In this paper we denote by
a, the long period of the lattice and lay, the short one. For 2 [
the current flow along the& direction the electrons have to I
flow through the closely spaced antidots and the resistivity 1
component i, . If the current flows through the wide open i
channelsp,, is the respective resistivity component. 0

Figure 2a) presents the magnetoresistanpgs and py,
for a rectangular lattice with an anisotrop :a,=480
nm:240 nm= 2:1. A pronounced maximum occurs g, at
aroundB~1 T. As in the case of square lattices this maxi- FIG. 2. (8 Magnetoresistance at=4.2 K for a rectangular
mum reflects a periodic orbit around a single antidot. Atantidot lattice for current flow through the closely spaced antidots
smaller magnetic fields, ®B<0.5 T, there is a series of (PxJ and through the wide channels,(). The anisotropy between
further commensurability maxima corresponding to orbitsthe two lateral periods ia, :a, =480 nm:240 nm2:1. The inset in
around groups of antidofsee inset in Fig. @]. The orbit (b? clarlf_les the dlﬁerent_currentdlrectlor!s with respect to the lattice
around two antidots which is unlikely to occur in square °"iéntation. The peaks ip,, can be ascribed to commensurate or-
lattices for geometrical reasons becomes more probable in %\ts amund.grQUps of antidots. An a.dd't'.onf'i' maximum arises at
rectangular lattice. A completely different behavior is ob- I(_)w magnetic fields for_both current directiofiadicated by a ver-

- -tical arrow). (b) Hall resistance for the sample as measured for both
Serve_d When the current ﬂOWTS through the_WIde channels Rurrent directions. The curve in the lower corner shows a magnifi-
the direction of the short period of the lattice. The magne-_ ..o ofp.. ando.. aroundB=0.
. . . Pxy Pyx

toresistance,, shows no structure in the regime where the
pronounced maximum ip,, occurs. The observation that
commensurability oscillations mainly show upgg, but not  responds to classical trajectories.
in pyy, can be explained by a different coupling to the peri- In all rectangular antidot samples a pronounced maximum
odic orbits around the antidofsThe electrons traveling is observed at small magnetic fieldgigs. 2—4. The maxima
along chaotic trajectories within the wide channels are onhjindicated by the vertical arrows in Figs. 2 and 3 occur in
slightly influenced by the presence of the periodic orbits.px, as well as inp,,. In the following we argue that the
Only at small magnetic fieldB<0.5 T where the periodic maximum originates from a different physical effect,
orbits extend into the channels is the magnetoresistance simiamely, the scattering of electrons in the wirelike geometry
larly influenced for both current directions. The quantum me4n analogy to boundary scattering in quantum wires. The
chanical theory by NRRSRef. 10 calculating the band magnetoresistance of quantum wires displays a maximum at
structure for this system and the conductivity from the Kubolow magnetic fields where the classical cyclotron radius is
formula reproduces all the features of the experiment. Theoughly twice as large as the widthV of the wire,
strongly anisotropic behavior @k, andp,, can be traced to 0.5R,~W.!! This effect has been first observed in thin
differences in the magnetic-field dependence of band anthetal films?and was explained by diffusive scattering at the
scattering contributions to the conductivity. These calcularough boundaries of the systémDiffusive scattering re-
tions give new insight how the dispersion of minibands cor-quires any roughness to be larger or equal to the Fermi wave-
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of the roughness is now given by the short period of the
sesesesse  sessecses ] lattice. The width of the quasiwire between the rows is not as
03 = S 1 005 well defined as in the case of single wires. An upper bound is

@ y the size of the larger period minus the diameter of the anti-
I .b o ofeceeslelele ] dots. For the sample witha,;a,=480 nm:240 nm
we find a value W;,,~300 nm compared with
i 0.04 W=0.55R,~250 nm from the edge roughness scattering
model.
T R In square lattices the periodic orbits influence the magne-
oo b ” toresistance as well as the Hall resistahde plateaulike
p.:p,=2400nm:2400m 0.02 features in the Hall effect are related in their magnetic-field
T=40mK position to the occurrence of maxima in the magnetoresis-
f ] tance. This is explained by similar classes of trajectories that
0.15 Pyy are thought to cause these two effects. The Hall effect of a
‘ rectangular lattice is presented in FigbR While the mag-
. : : : netoresistance is highly anisotropic and strongly dependent
on the current direction the Hall effect is isotropic within the
accuracy of the experimenfp,,|=|py,|.” This is a direct
) . . consequence of Onsager’s relatibwhich reflects the equal-
FIG_. 3. _Magnetoresstance for a rec_tangular antidot lattice fori,[y of the off-diagonal components of the resistivity tensor
both dlrecfuons_of .current flow. The anlsotr.opy between_the twounder reversal of the magnetic field, i.ep, (B)
lateral periods isa, :a,=4800 nm:240 nr20:1. The experiment _ S . Y
=pyx(—B). A rectangular lattice is symmetric under rever-

is done afT =40 mK. Many commensurability oscillations are ob- Lof th tic field which lains th trv of th
served inp,, corresponding to electron orbits around,1,2.,18 sal of the magnetic ield which explains the symmetry of the

antidots. Superimposed are SdH oscillations B»0.1 T. The Hall _effect as observed in Fig.(tZ)._ This ggneral Sy_mmgt!’y
maximum which is related to scattering at the corrugated boundt€lation, however, does not explain the microscopic origin of

aries formed by the antidot rows is indicated by an arrow. the observation. _ . .
Figure 3 presents the magnetoresistance of a lattice with

an extreme anisotropy @, :a,=4800 nm:240 nns+20:1. At
lengthA ¢ . For small magnetic fields the electrons travel pre-B=0 the resistance in the barrier-dominated geometry
dominantly in the wire center and rarely reach the wire(p,.) is much larger than that of the wirelike geometry
edges. At high fields skipping orbits arise along the edges ofp, ) in agreement with geometrical considerations. At
the wire. For intermediate fields the diffusion is reduced andhigher fieldsB=50 mT a remarkable number of maxima
a maximum in the resistance arises. In rectangular antid(grises inpxx while Pyy shows no classical Commensurabi“ty
lattices the situation is very similar. Although the Scatteringeffects_ The oscillations ipxx are exactly 1B periodic. The
in our samples is mostly specular, a similar effect is likely tojinear behavior agrees nicely with the commensurability con-
occur at the corrugated boundaries of the wide channelgition 2R.=na, in the sense that the size of the electron
which are formed by the antidot rows. The correlation lengthorhits around 1,2,3 . . ,18 coincides with the classical cy-
clotron diameteKsee left inset of Fig. 8 Superimposed are
SdH oscillations which are also periodic inBLand which
occur in bothp,, andpy, .
penm ¢ To explain the effects in lattices with large anisotropies a
T=35mK different point of view can be adopted. If the electrons travel
M in the direction of the closely spaced antidots they can be
: l backscattered once the cyclotron diameter fits a multiple in-
l teger of the short lattice periaal, (see right inset of Fig.)3
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Similar electron focusing experiments have been done on
specially designed parallel point contact geometriaghere

one point contact serves as an injector and a second one as a
collector. If a magnetic field is applied perpendicular to the
plane of the 2DEG the number of electrons which reach the
Pl collector has a maximum whenever the cyclotron diameter
coincides with the distancd. of the point contacts,

/\ /\\ 2R.=L. In antidot lattices this leads to an enhanced back-
1 L5
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scattering. The resonance conditioR:2=na, for the occur-
N rence of a maximum is the same as if one considers periodic
B(T) orbits around groups of antidots. Both points of view rely on
ballistic classical trajectories in spite of their different con-
FIG. 4. Magnetoresistance for a rectangular lattice with an anceptual background.
isotropy of a,:a,=960 nm:240 nm4:1. The superimposed SdH All the data presented so far have been explained in the
oscillations inp,, are periodic in 1B while in p,, additional oscil- ~ framework of classical dynamics. At very low temperatures,
lations arise(see arrows T<100 mK, it is possible to resolve the SdH oscillations in
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classically encircle a single antidot, the oscillations are al-
most B periodic (see inset in Fig. 6 For higher magnetic
fields B>1.5 T there is a crossover to B+/periodic SdH
oscillations. In the quantum Hall regime the filling factors
4 for pyx andpy, are identical.

As has been already shown the Hall resistance does not
depend on the direction of current flow while the magnetore-
sistance is highly anisotropic. This general symmetry rela-
tion also applies in the magnetic-field regime where classical
effects and quantum oscillations coexist. There are quantum
oscillations superimposed on the classical Hall resistance
(appearing as plateaulike structures in our experimént
| the magnetic-field regime 0s5B<1.5 T these quantum os-

cillations in the Hall resistance are not in phase with the
oscillations in p,, and py,. Only for magnetic fields
0 B>1.5 T wherea,,a,=2R; and commensurability effects
are no longer present the plateaus in the Hall resistance take
B(T) quantized values and are in phase with the SdH oscillations
in pyx andpyy.

FIG. 5. Magnetoresistance and Hall resistance for a rectangular Weisset al!® have observed quantum oscillations super-
lattice with an anisotropy ofa,:a,=480 nm:240 nr+2:1 at  imposed on the classical peak in square antidot lattices. De-
T=30 mK. In the magnetic-field regime, where the maximum cor-pending on the antidot potential the periodicity can change
responding to a classical periodic orbit around a single antidot ocfrom aB periodicity similar to Aharonov-Bohm oscillations
curs, B-periodic oscillations are observed j, while the oscilla-  to a 1B periodicity familiar from SdH oscillations. The au-
tions in py, are periodic in 1B. The positions of the resistance thors have calculated the contribution of a few simple peri-
minima in  p, which are obtained from Ap,  odic orbits to the density of states using Gutzwiller's trace
= pxx(30 MK)— p,(4.2 K) are equidistant on thB scale(inse}. formulal’ The quantum oscillations are attributed to the os-

cillatory structure of the density of states. Since the density
the magnetic-field range where classical commensurabilitgf states should be isotropic this model cannot be applied to
oscillations occur. The data in Fig. 3 suggest that $fdid)  rectangular lattices with their anisotropies of the periods of
and commensurabilityslow) oscillations may coexist in the quantum oscillations. Using the Kubo formula Richter
rectangular antidot lattices with large anisotropies. Here Sdrind Hackenbroich and von Oppdndependently derived an
oscillations which are in phase for both current directions are@nalytical semiclassical expression for the quantum contribu-
exactly periodic in 1B up to high filling factorsy<120. At  tions to the conductivity in terms of periodic orbits. The
higher temperatureg,=1 K, the SdH oscillations disappear contribution of each periodic orbit oscillates as a function of
in this magnetic-field range while the classical maxima re-Fermi energy and magnetic field with a phase determined by
main. There are large regions of unpatterned 2DEG’s beits classical actiorSpo( EF,B)=[p-dr. The amplitude de-
tween the antidot rows so that the free cyclotron orbits argpends on the stability and the velocity correlations along the
hardly influenced by the presence of the antidots. periodic orbits. It is found that only a few of the infinitely

If the antidot rows are moved closer together we expectmany periodic orbits give a significant contribution.
deviations from the 1B-periodic behavior since the number  This formalism provides a qualitative understanding of
of cyclotron orbits which are modified by the antidot poten-the relation between classical trajectories and the observed
tial increases. We discuss these phenomena in a differequantum oscillations. Different periodic orbits and trajecto-
rectangular lattice presented in Fig. 4. Here the lattice periries are important for describing the transport in the two
ods area,:a,=960 nm:240 nr¥4:1. Again the dominant lattice directions which leads to different quantum contribu-
structures irp,, are the maxima which correspond to cyclo- tions in p,, andp,,. We discuss the magnetic-field regime
tron orbits around groups of antidots. The superimposed SdMhere the classical cyclotron diameter matches the short lat-
oscillations inp,, are periodic in 1B while additional oscil- tice period. Electron transport through the wide channels is
lations appear imp,, (marked by arrows in Fig. )4 It is only weakly influenced by periodic orbits. In this direction of
remarkable that the commensurability effects can be seegurrent flow mainly unperturbed cyclotron orbits contribute
also inpy, as an envelope of the SdH maxima. This indicatedo the quantum oscillations. Their acti@ao=eBAB) leads
that the electrons which flow through the wide channels aréo the well known 1B periodicity of the SdH oscillations
also influenced slightly by the periodic orbits. If the distancesince the enclosed arééB) = 7R? scales with 1B2. How-
between neighboring rows is reduced further the periodicityever, if the current flows through the closely spaced antidots
of the SdH oscillations in the two directions of current flow the contributions of periodic orbits around single antidots
becomes more different. This is obvious from the data of glay a major role. Their actio®po(Er,B) determines the
sample with an anisotropy,:a,=480 nm:240 nm2:1  periodicity of the quantum oscillations. Since it is difficult
which is presented Fig. 5. The oscillationsgdyg,, which are  for the cyclotron orbits to contract with increasing magnetic
superimposed on the strongly pronounced maximum afield the area enclosed by the orbits deviates from tH&?# 1/
2R =a,, deviate from the 1B periodicity in p,,. In this  behavior. The quantum oscillations are no longer periodic in
magnetic-field range (06B<1 T), where the electrons 1/B. In the magnetic-field regime where the enclosed area

Prxyy(kQ)
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remains approximately constant with magnetic field we findp,, superimposed by quantum oscillations out of phase with
B-periodic oscillations. This behavior can be seen in thehe SdH oscillations. The different periodicity of the quan-
magnetic field range 06B<1.1 T (Fig. 5. The quasi- tum oscillations inp,, andp, is a direct consequence of the
B-periodic oscillations with a periodB=h/eA~90 mT are  magnetic-field dependence of the miniband structure in the
caused by circular orbits which enclose a constant aregespective lattice directions.
A=m(ay/2)% In the Hall resistance both the unperturbed |n summary, we have reported a series of experiments on
and the modified orbits contribute to the plateaulike strucyectangular antidot lattices that span a whole range of
tures. It is difficult, however, to establish their particular in- apisotropies of the two lattice constants. The classical peri-
fluence. _ o odic orbits have a different influence on the resistance traces
The behavior of the quantum oscillations in rectangulargepending on the direction of current flow with respect to the
lattices is confirmed by the theory of NRRBef. 10 which  jattice. The quantum oscillations which are superimposed on
evaluates the Kubo formula to obtain the components of thgye ¢jassical commensurability maxima are modified by the
conductivity. Two contributions to the diagonal componentsyresence of the periodic orbits. These results contribute to-
can be distinguished; the band conductivity related to a non5r4s the understanding of how quantum properties may

vanishing group velocity in a dispersive miniband and theyise in superlattices whose classical dynamics is well under-
scattering conductivity associated with scattering betweegygy.

minibands. The influence of scattering and band conductivity

in rectangular lattices is dependent on the direction and the We thank R. Neudert, P. Rotter, U. &der, and M.
magnetic field. For magnetic fields wheag<2R. the con-  Suhrke for helpful discussions and for making their calcula-
ductivity o, is dominated by scattering contributions as in ations available to us prior to publication. We also profited
2DEG and SdH oscillations are found jy,,. The other from many discussions with G. Hackenbroich, F. Salzberger,
components,, is determined by the band conductivity due T. Schicsser, and F. von Oppen. This work has been sup-
to the influence of the antidot potential which gives rise toported by MINERVA(R.S) and a grant from Deutsche For-
the dispersion. This leads to commensurability oscillations irschungsgemeinscha8FB 348.
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