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Optical response of grating-coupler-induced intersubband resonances:
The role of Wood’s anomalies
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Grating-coupler-induced collective intersubband transitions in a quasi-two-dimensional electron system are
investigated both experimentally and theoretically. Far-infrared transmission experiments are performed on
samples containing a quasi-two-dimensional electron gas quantum confined in a parabolic quantum well. For
rectangular-shaped grating couplers of different periods we observe a strong dependence of the transmission
line shape and peak height on the period of the grating, i.e., on the wave-vector transfer from the diffracted
beams to the collective intersubband resonance. It is shown that the line shape transforms with increasing
grating period from a Lorentzian into a strongly asymmetric line shape. Theoretically, we treat the problem by
using the transfer-matrix method of local optics and apply the modal-expansion method to calculate the
influence of the grating. The optically uniaxial quasi-two-dimensional electron gas is described in the long-
wavelength limit of the random-phase approximation by a local dielectric tensor, which includes size quanti-
zation effects. Our theory reproduces excellently the experimental line shapes. The deformation of the trans-
mission line shapes we explain by the occurrence of both types of Wood’s anomalies.
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I. INTRODUCTION

The optical and electronic properties of electron syste
with reduced dimensionality, such as quasi-two-dimensio
electron gases~Q2DEG’s! formed at, e.g., a modulation
doped semiconductor heterojunction have been widely s
ied in the recent past. Especially the collective excitat
spectrum of such a system has attracted a lot of attentio
it represents one of the Q2DEG’s most fundamen
properties,1 but also because of potential devic
applications.2–4Here, both types of collective charge-dens
excitations,intrasubbandas well asintersubband plasmon
in the far-infrared~FIR! regime, have been intensively stu
ied for the last twenty years~see, e.g., Ref. 5!.

It is known ~see, e.g., Ref. 6! that the intrasubband plas
mons always exist for wave vectorsqi larger than the wave
vector of the freely propagating light,qi.v/c, where
qi5(qx ,qy) is the in-plane wave vector (qi5uqiu) of the
collective excitation@c denotes the vacuum speed of lig
andv is the~angular! frequency#, assuming that interfaces o
the sample are parallel to thex-y plane. But differently, each
intersubband excitation is accompanied by two branche
dispersion curves due to the polariton effect.7 One branch is
located to the left of the light line (qi,v/c) and thus is the
dispersion relation of a radiative virtual mode, and the s
ond, appearing to the right of the light lineqi.v/c, de-
scribes a nonradiative normal mode. Commonly, one c
the Q2D radiative virtual intersubband modes the collect
intersubband resonances~ISR’s!, collective intersubband
550163-1829/97/55~4!/2303~12!/$10.00
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transitions, or dimensional resonances and the nonradia
normal modes the intersubband plasmons.

Unfortunately, the investigation of the mode dispersion
the Q2D plasmonsvp

Q2D(qi) is not directly accessible in FIR
spectroscopy. In general, the Q2D plasmons are accom
nied by different collective intrasubband and intersubba
transitions due to the intersubband coupling~ISC!. In this
case, the resulting spectrum is of hybrid type. Only for we
ISC nearly pure intrasubband and intersubband plasmons
cur. In such a situation, intrasubband plasmons can only
excited with fields polarized parallel to the heterointerfac
and that have wave vectorsqi.v/c, whereas ISR’s and in-
tersubband plasmons can only be excited with electrom
netic fields having components polarized perpendicular
the interfaces of the sample8,9 and that have wave vector
qi,v/c and qi.v/c, respectively. To solve this problem
usually the FIR radiation is coupled to the Q2DEG throug
metallic grating of periodd above the electron system.9–11

This way, different discrete values of the probe wave vec
kin5(kxn ,ky) of the diffracted electromagnetic field parall
to the 2D plane, kxn5(v/c)sinQ01(2p/d)n;
n50,61,62, . . . (Q0 is the ray angle of the incident ligh
measured from thez axis, which is assumed to be perpe
dicular to the interfaces of the sample!, can be excited. As-
suming the incident light propagation in thex-z plane and
the stripes of the grating along they axis, the incident light
couples at the discrete wave vectorsqi5kxn to the collective
excitationsvp

Q2D(qi) in the Q2DEG, provided the grating i
sufficiently close to the electron gas. Here, the grating c
2303 © 1997 The American Physical Society
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2304 55L. WENDLER et al.
pler serves as a special optical coupling arrangement:~i! to
convert the in-plane electromagnetic field compon
Ex(x,zuv) of the incident wave into the perpendicular com
ponentEz(x,zuv) of the scattered waves and~ii ! to induce a
wave-vector transferkx→kxn parallel to the interfaces of th
system. Moreover, grating couplers provide unique adv
tages over other techniques such as the use of prism12

Brewster angle orientation,13 or multiple internal reflection
~waveguide! geometry:14 normal incidence of the FIR radia
tion and a relatively large component of the electric fie
along the direction of confinement can be easily achieve

The aim of this paper is to investigate both experimenta
and theoretically the influence of the grating coupler on
coupling efficiency and the resulting transmission line sh
of the Q2D ISR as a function of the grating coupler perio
Both intrasubband plasmons~see, e.g., Refs. 9–11 for ex
periments and Refs. 15–19 for theory! and ISR’s~see, e.g.,
Refs. 20–23 for earlier experiments and Refs. 24 and 25
theory! are intensively investigated. Here, we wish to foc
on the excitation of the ISR. Unfortunately, the theories
veloped up to now on the grating-coupler-induced excitat
of collective Q2D plasmon modes are restricted to stro
approximations, e.g., optically isotropic media, 2D gratin
perfectly conducting gratings, simple half-space geome
etc., which are unsuitable to describe correctly the opt
response of the Q2DEG synthesized in multilayer syste
with grating. Moreover, as we will point out below, the in
fluence of the grating coupler on the line shape is much m
pronounced for the ISR than for the intrasubband plasm
and thus it needs to be considered carefully. Because
perpendicular field component is zero for the zeroth-or
beam, the grating-coupler-induced ISR’s are nonvert
transitions ink space, i.e., involve wave-vector transfers
kxn ,n561,62, . . . . Experiments26,27 indicate that the
power absorbed at the ISR frequency is a function of
ratio of the grating periodd to the intersubband resonanc
wavelengthlsub. Our theoretical investigations are com
pletely universal in the framework of local optics and can
applied to any given optically uniaxial multilayered structu
with gratings of finite height.

II. EXPERIMENT

The experiments are performed on parabolic quan
well’s ~PQW’s!.28 Here, the conduction-band edge of
GaAs-Ga12xAl xAs quantum well is graded such that it turn
out to have a parabolic shape in the growth direction. Thi
achieved by a proper variation of the percentage of one
the ingredients~namely the Al contentx). An electron that is
experiencing this profile ‘‘sees’’ a potential that could al
result from a homogenous positive background such a
doping layer. From Poisson’s equation and a back-of-t
envelope calculation the potential of this~in the case of a
PQW fictitious! positive background with densityn1 can be
related to the growth parameters of the PQW by

n15
«0«s
e2

d2EC

dz2
5

«0«s
e2

8D

W2 . ~1!

Here, «s denotes the mean static dielectric constant
Ga12xAl xAs forming the PQW,«0 is the dielectric permit-
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tivity in vacuum,D is the energy height of the parabola fro
its bottom to the edges, the electron charge is2e andW is
the width of the grown PQW. Once such a structure is
motely doped, the donors release electrons into the w
which in turn will screen the man-made parabolic poten
and form a wide and nearly homogeneous electron layer

The collective response of such systems has been the
ject of many different experiments and theoretical investi
tions over the last few years~see, e.g., Ref. 29!. The most
surprising effect that has been observed in the early day
the spectroscopy of PQW’s is that the electron system
sorbs radiation independently from the electron density
the PQW only at a single well-defined frequency, which c
be related to the shape of the bare confining potential alo
Self-consistent effects such as the renormalization of the s
band energies in the structures due to electron-electron in
actions seem to turn out to be of no importance for the
tical absorption. In a celebrated paper Brey, Johnson,
Halperin30 and Yip31 generalized Kohn’s theorem,32 origi-
nally derived for the cyclotron resonance in 3D bulk sem
conductor structures. They showed that for the case of a
perfectly parabolic confinement potential long-waveleng
radiation only couples to the center-of-mass~CM! part of the
Hamiltonian, leaving the relative coordinates completely u
touched. The reason for this unique phenomenon is that f
bare harmonic confinement and only for this the Hamilton
can be separated into one part containing only CM coo
nates and one part containing only relative coordinates.
interaction Hamiltonian for the incident light can be show
to couple only to the CM part. In other words, long
wavelength radiation excites a mode in the electron syst
which is only connected with the CM motion. This collectiv
intersubband mode is sometimes referred to as Kohn’s m
or more figurative ‘‘sloshing mode.’’ Per construction, it co
responds to the classical plasma oscillations of a bulk
electron gas of densityn1 :vp5@n1e

2/(«0«sme)#, where
me is the effective conduction-band-edge mass. If we use
~1! relatingn1 to the growth parameters it reads

vp5V5S 8D

W2me
D 1/2, ~2!

whereV is the confining frequency of the bare parabo

potential:V0(z)5
1
2 meV

2z2.
The many-particle picture of this phenomenon33,34 is that

the renormalization of the~1-0! subband separation fre
quency DV105V10(0)2V10(n2DEG), where V10(n2DEG)
5(E12E0)/\ is the subband separation frequency of t
PQW with the 2D electron densityn2DEG ~sheet carrier con-
centration!, cancels forqi50 with the collective frequency
shift Dp

105vp
10(qi50)2V10(n2DEG) of the ~1-0! intersub-

band plasmonvp
10(qi). It is shown

33,34 that in such a situa-
tion this mode is pinned atvp

10(qi50)5V10(0)5V inde-
pendently from the electron density. Whereas Koh
theorem states that the absorption spectrum has only
peak atv5V, the mode spectrum of the freely oscillatin
Q2DEG consists of all types of Q2D plasmons. It should
noted that forqiÞ0 Kohn’s theorem is not valid.

For our experiments we use different samples that h
been cut from one single wafer. On top of these samples
fabricate metal gratings of different periodd and then com-



e
d
se

nt

w
re
ra
m

fe

th

y
-
rr
ro
th
es

s

ll

k

h

e

he

nt

the
les
all

m-
of
ine

le

th a
m-
h is
een

re
,
etic
no
the
a
f the
de-
ting

As

pe-
lly

th

tra
ng
ur-
met-
rly

55 2305OPTICAL RESPONSE OF GRATING-COUPLER-INDUCED . . .
pare their transmission spectra. Any differences in the sp
tra obtained for the different samples thus can be relate
the effect of the different grating couplers. The sample u
in our experiments is a standard PQW~sample PB48 of Ref.
29!, schematically drawn in Fig. 1, in which the Al conte
x was varied during growth betweenx50 in the center of
the well andx50.3 at its edges. To grade the structure,
used the digital alloy technique as described elsewhe28

This structure is grown on a semi-insulating GaAs subst
and consists of the following layers: layer 1 is the 10-n
thick undoped GaAs cap layer (c0), layer 2 is a 200-nm-
thick undoped Ga0.7Al 0.3As layer (c1), layer 3 is a 17-nm-
thick Si-doped (Nd5531017 cm23) Ga0.7Al 0.3As layer
(d0), layer 4 is a 4-nm-thick Si-doped (Nd51.1131018

cm23) Ga0.7Al 0.3As layer (d1), layer 5 is the 20-nm-thick
undoped Ga0.7Al 0.3As spacer layer (s1), layer 6 is the 130-
nm-thick Ga12xAl xAs PQW (L), layer 7 is the 20-nm-thick
undoped Ga0.7Al 0.3As spacer layer (s2), layer 8 is a 4-nm-
thick Si-doped (Nd51.1131018 cm23) Ga0.7Al 0.3As layer
(d2), layer 9 is a 200-nm-thick undoped Ga0.7Al 0.3As layer
(c2), and layer 10 is the 500-nm-thick undoped GaAs buf
layer (b). The substrate is a 500-mm-thick GaAs wafer.
From the growth parameters we calculate the density of
fictitious charge ofn157.431016 cm23, which according to
Eq. ~2! corresponds to an expected resonance energ
about\vp

10(qi50)'11 meV. A semitransparent NiCr elec
trode on top of the sample serves as a gate to vary the ca
density in the well and alloyed In pellets at its corners p
vide Ohmic contacts to the electron system. On top of
NiCr gate a 50-nm-thick rectangular Ag grating with strip
along they axis of widtha, spacingb between the stripes
and periodd5a1b is deposited. For the different sample
investigated here, we used grating periods ofd5 4, 6, 10,
20, 27, 40, and 80mm, respectively. The metallization for a
gratings was chosen so that the mark-to-space ratio~aspect
ratio! is close tot5a/b51 ~one also introduces the mar
fraction f5a/d and the open space fractionr5b/d). For
comparison, also one sample without any grating coupler
been fabricated. To avoid Fabry-Pe´rot-type interference ef-
fects, the sample substrate is wedged by a small angl
approximately 3°.

Magnetotransport measurements revealed a typical s
carrier concentration ofn2DEG5231011 cm22 for all
samples. To be able to directly compare the experime

FIG. 1. Schematic arrangement of the layer structure of
sample containing the PQW used in the experiments.
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results for different samples we made sure that during
actual measurement of the FIR transmission for all samp
n2DEG was exactly the same by eventually applying a sm
correction bias to the gate electrode.35

Our transmission experiments are performed at low te
peratures (T52 K! with the sample mounted in the center
a superconducting solenoid. Experimentally, we determ
the relative change in transmission2DT/T5@T(0)
2T(n2DEG)#/T(0). T~0! is the transmission of the samp
with the well being completely depleted,T(n2DEG) the one at
finite carrier densities. The spectra have been taken wi
Fourier transform spectrometer and a Si composite bolo
eter was used to detect the transmitted radiation, whic
guided by a 10-in-long oversized brass waveguide betw
the sample and the bolometer.

In Fig. 2 we depict the results of our experiments, whe
we plot the relative transmission2DT/T for seven samples
investigated as a function of the frequency for zero magn
field. As expected from the dipole selection rules, there is
detectable absorption at the frequency of the ISR for
sample without grating. With increasing grating period
peak develops at the expected resonance frequency o
ISR. Its line shape and peak height, however, strongly
pend on the grating used in the experiment. For small gra
periods d,lsub, where lsub52pc/(A«sv) is the wave-
length of the FIR radiation at the ISR frequency in the Ga
substrate with static dielectric constant«s , the peak has a
Lorentzian shape and its height increases with increasing
riod. For d5lsub, however, the line shape becomes tota

e

FIG. 2. Experimentally obtained relative transmission spec
for the ISR in a PQW using grating couplers of different grati
periods. With increasing grating period first the height of the occ
ring peak becomes larger, then the lines become strongly asym
ric, and for large grating periods the relative transmission nea
vanishes.
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2306 55L. WENDLER et al.
distorted, indicating some interference effect. For even lar
grating periodsd.lsub the relative transmission rapidly de
creases. Ford540 mm, the resonance is barely detectab
and for a grating with periodd580 mm, no detectable reso
nance is left. It is also interesting to note that the sign of
resonant structure changes when the grating period cro
the conditiond5lsub. Whereas ford,lsub the maximum of
2DT/T is positive, for d.lsub the maximum change in
transmission becomes negative, i.e., it becomes a minim

III. THEORY

For the theoretical investigation of the FIR transmiss
spectra of the PQW structure with grating coupler we use
theory, developed in Ref. 36, which is based on the trans
matrix method of local optics for anisotropic media and a
ply the modal-expansion method to calculate the influenc
the grating. Any details of the theory may be found in th
paper. The combination of both methods results in a ge
ally computationally efficient and stable formalism of th
optical response of multilayer systems with grating.36 As
shown in Fig. 3 the PQW under consideration is modeled
a six-layer systemn51, . . . ,6. Each layer is, in general
characterized by its dielectric tensor«a,b

(n) (x,v), where
a,b5x,y,z, and by its thicknessdn5uzn2zn21u. The layer
z1,z,z0 contains the rectangular-groove grating of heig
h[d1 and periodicityd5a1b. In the grating region we
have for the filled stripes«ab

(1)(x,v)5«j(v)dab , where
j5a if md,x,md1a andj5b if md1a,x,(m11)d,
with m50,61,62, . . . . In theexperiments samples wit
metal gratings are used. In this case we use the local D
dielectric function«a(v)512vpa

2 /v(v1 iga) for the me-

tallic stripes, wherevpa
is the plasma frequency andga is

the phenomenological damping constant, and we assum
the spacing between the stripes«b51. The semiconducto

FIG. 3. Schematic arrangement of the geometry of
multilayer system with grating used in the theoretical calculatio
er
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layers of the quantum-well structure are described by t
different types of dielectric tensors:~i! «ab

(n)(x,v)
5«n(v)dab in zn,z,zn21, if the nth layer is filled by an
isotropic medium and~ii ! «ab

(n)(x,v)5«ab
(n)(v)dab is a diag-

onal tensor if this layer forms the QW and contains t
Q2DEG, which behaves optically uniaxial. This is true in t
absence of an external magnetic field, where we h
«xx
(n)5«yy

(n)Þ0, «zz
(n)Þ0 but «xy

(n)5«yx
(n)5«xz

(n)5«zx
(n)5«yz

(n)

5«zy
(n)50. For the dielectric properties of the background

the GaAs and Ga12xAl xAs layers we use the so-called«s
approximation:«n(v)5«sn , i.e., we neglect the dynamica
properties of the optical phonons, but include their screen
by the static dielectric constant«sn . This is true because th
frequencies of the optical phonons are well above the
quency of the ISR in the studied PQW’s. That layer th
contains the Q2DEG we describe by a macroscopic lo
dielectric tensor, which includes the size-quantization effe
on the electrons in the PQW. The dielectric tensor of
Q2DEG ~nonlocal! is derived in the framework of the
random-phase approximation of the current-response sch
in Ref. 6, wherefrom the nonvanishing components in
optical limit (qi→0) follow in the form

«xx
~n!~v!5«yy

~n!~v!5«snS 12
v0
2

v~v1 i /t i!
D , ~3!

«zz
~n!~v!5«snS 12

v0
2f 10

v22V10
2 1 iv/t'

D , ~4!

where

f 105
2meV10

\
z10
2 ~5!

with

z105E
0

a2DEG
dzw1* ~z!zw0~z!. ~6!

Herein,wK(z), K50,1,2, . . . is theenvelope wave func-
tion of the PQW and we have defined the plasma freque
by v05@n2DEGe

2/(me«0«sna2DEG)#
1/2, where a2DEG is the

effective layer thickness of the Q2DEG. Further,t i and t'

are the phenomenological longitudinal and transverse re
ation times, respectively,V105V10(n2DEG)5(E12E0)/\ is
the subband separation frequency of the two lowest elec
subbands of the effective confining potential~non-parabolic!
of the PQW andf 10 is the oscillator strength of the transitio
0→1. For the PQW under consideration the subband~bot-
tom! energiesEK , the envelope wave functionswK(z), the
Fermi energyEF and the oscillator strengthsf KK8 are calcu-
lated self-consistently in the framework of the Hartree a
proximation using the method described in our rec
paper.34

Assuming monochromatic electric and magnetic fiel
E(x,t)5E(x,v)exp(2ivt) and H(x,t)5H(x,v)exp(2ivt),
respectively, these fields are given by the wave equation

¹@¹•E~x,v!#2~¹•¹!E~x,v!5
v2

c2
«J~x,v!E~x,v!, ~7!

e
.
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and

¹@¹•H~x,v!#2~¹•¹!H~x,v!

52 iv«0¹3@ «J~x,v!E~x,v!#. ~8!

We assume that the incident plane wave travels in the h
spacez.z0 (n50), filled by vacuum, within thex-z plane
in the negative z direction with the wave vecto
k(0)5(kx,0,2kz

(0)), having the components kx
5(v/c)sinQ0 and kz

(0)5(v/c)cosQ0. In this case the here
consideredp polarization~TM waves! with

E~x,zuv!5@Ex~x,zuv!,0,Ez~x,zuv!# ~9!

and

H~x,zuv!5@0,Hy~x,zuv!,0# ~10!

is independent from thes polarization~TE waves!.
According to the Floquet-Bloch theorem we have in t

grating region E(1)(x1md,zuv)5exp(ikx md)E
(1)(x,zuv),

where the Bloch wave-vector componentkx is defined in the
first Brillouin zone: 2p/d,kx<p/d. Whereas in a
multilayer system of homogeneous layerski5(kx ,ky) is a
conserved quantity of the whole system, the periodic str
ture of the grating coupler produces an infinite number
propagating waves withkin5(kxn ,ky), wherekxn5kx1Gn
andGn5(2p/d)n, n50,61,62, . . . is thereciprocal lat-
lf-

c-
f

tice vector. In the presence of the grating the reflected
the transmitted beams are represented by Fourier series~Ray-
leigh expansion37!:

E~x,zuv!5 (
n52`

`

exp~ ikxnx!En~z,v!,

if z.z0 and z,z1 . ~11!

This ansatz has to fulfill the wave equation in each layer
the regionz.z0 we have

E~0!~x,zuv!5A«0
m0

HAp
~0!exp@ i ~kxx2kz

~0!z!#~kz
~0!ex1kxez!

1 (
n52`

`

Bpn
~0!exp@ i ~kxnx1kzn

~0!z!#

3~2kzn
~0!ex1kxnez!J , ~12!

whereAp
(0) is the field amplitude of the incident wave,Bpn

(0) is
the amplitude of thenth diffraction-order reflected wave, an
ea is the unit vector along thea axis. From the dispersion
relation in vacuum kn

(0)5ukn
(0)u5v/c it follows that

kzn
(0)5@v2/c22kxn

2 #1/2. For a layer filled by an isotropic semi
conductor we have
nd

ds
ipe of the

is
E~n!~x,zuv!5A«0
m0

1

«n~v! (
n52`

`

exp~ ikxnx!$Apn
~n!exp@2 ikzn

~n!~z2zn21!#~kzn
~n!ex1kxnez!

1Bpn
~n!exp@ ikzn

~n!~z2zn21!#~2kzn
~n!ex1kxnez!%, ~13!

wherekzn
(n)5@«n(v)v

2/c22kxn
2 #1/2 is valid.Apn

(n) is the amplitude of thenth-order diffracted wave propagating downwards a
Bpn
(n) of that propagating upwards in layern. For the anisotropic layer contaning the Q2DEG it follows that

E~n!~x,zuv!5A«0
m0

1

«xx
~n!~v!

(
n52`

`

exp~ ikxnx!$Apn
~n!exp@2 ikz

~n!~z2zn21!#~kzn
~n!ex1kxnez!

1Bpn
~n!exp@ ikzn

~n!~z2zn21!#~2kzn
~n!ex1kxnez!% ~14!

with kzn
(n)5@«xx

(n)(v)v2/c22«xx
(n)kxn

2 /«zz
(n)#1/2.

In the grating region we represent the fields by the modal-expansion method,38,39 i.e., represent the electromagnetic fiel
as a sum of the eigensolutions of the wave equation in the grating layer. One solves the wave equation in each str
grating and requires the boundary conditionsvEzb50 and vHyb50, wherevAb denotes the change ofA evaluated at the
interface. This results in the dispersion relation of the modes

~«abb!
21~«bba!

2

2«a«bbabb
sin~baa!sin~bbb!2cos~baa!cos~bbb!1cos~kxd!50. ~15!

Equation~15! determines for a given pair (v,kx) a set of eigenvalues$kzl
(1)%. The electromagnetic field in the grating layer

the sum over all eigenfunctions:

E~1!~x,zuv!5
c

v(
l

«j $X1 l~x!kzl
~1!@Al

~1!e2 ikzl
~1!z2Bl

~1!eikzl
~1!z#ex1X2 l~x!bj l@Al

~1!e2 ikzl
~1!z1Bl

~1!eikzl
~1!z#ez%, ~16!

where

X6~x!5HDale
ibal~x2md!6Fale

2 ibal~x2md!, md,x,md1a

Dble
ibbl~x2md2a!6Fble

2 ibbl~x2md2a!, md1a,x,~m11!d
~17!
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andbj l5@«j(v)v
2/c22(kzl

(1))2#1/2.
The electromagnetic fields, given by Eqs.~12!–~14! and

~16! have to fulfill the electromagnetic boundary conditio
vExb50 andvHyb50 at the interfaces between the differe
layers of the multilayer system. The most profitable meth
to represent the results is the transfer-matrix method.
transfer matrix relates the field amplitudes in one layer
that of a different layer. Without the grating coupler the ele
tromagnetic field is characterized by two amplitudes in e
layer and hence, the transfer matrix is a 232 matrix. But in
the presence of the grating coupler the electromagnetic
is represented in each layer by the Rayleigh expansion
an infinite number of field amplitudes. It is therefore nec
sary for practical calculations to restrict on a finite number
scattered modes:2nmax<n<nmax. We arrange the field am
plitudes of the different diffraction orders of the transmitt
and reflected waves in layern in the form of column matri-
ces@(2nmax11)-dimensional vectors#:

Apnmax
~n! 5~Ap0

~n! ,Ap21
~n! ,Ap1

~n! , . . . ,Ap2nmax
~n! ,Apnmax

~n! !, ~18!
re
e

s

he
e
ils
e

d
e
o
-
h

ld
th
-
f

Bpnmax
~n! 5~Bp0

~n! ,Bp21
~n! ,Bp1

~n! , . . . ,Bp2nmax
~n! ,Bpnmax

~n! !. ~19!

Note that the incident wave contains only the zeroth-or
Apnmax
(0) 5(Ap0

(0),0, . . . ,0). The resulting matrix equation

which relates the field amplitudes in layern with that in layer
n11, is given by

S Apnmax
~n!

Bpnmax
~n! D 5S T pnmax11 T pnmax

12

T pnmax
21 T pnmax

22 D S Apnmax
~n11!

Bpnmax
~n11! D , ~20!

where the 2(2nmax11)32(2nmax11)-dimensional transfer
matrix is

Tpnmax
~n,n11!5S T pnmax11 T pnmax

12

T pnmax
21 T pnmax

22 D . ~21!

The submatrices are given by
T pnmax
i j 5S @T pnmax

i j #11 . . . @T pnmax
i j #1~2nmax11!

A A

@T pnmax
i j #~2nmax11!1 . . . @T pnmax

i j #~2nmax11!~2nmax11!

D , ~22!
s in

,

dia
where i , j51,2. These submatrices a
(2nmax11)3(2nmax11)-dimensional matrices, where w
have arranged the elements (n,n850,21,1, . . . ,nmax in the
following manner: @T pnmax

i j #115@T pnmax
i j #n50n850,@T pnmax

i j #12
5@T pnmax

i j #n50n8521, @T pnmax
i j #215@T pnmax

i j #n521n850, . . .

@T pnmax
i j # (2nmax11)(2nmax11)5@T pnmax

i j #n5nmaxn85nmax
. The trans-

fer matrix can be written as

Tpnmax
~n,n11!5@Ppnmax~n!#21@Dpnmax

~n!#21Dpnmax
~n11!,

wherePpnmax(n) is the propagation matrix, which describe

the propagation of the diffracted waves in layern, and
Dpnmax

(n) is the dynamical matrix, which depends on t
polarization of the waves. The different matrices are deriv
explicitly in Ref. 36, where the reader can find any deta
As shown in Ref. 36 the propagation matrix of a homog
neous layer is given by

Ppnmax~n!5S Ppnmax1 ~n! 0

0 Ppnmax
2 ~n!D , ~23!

where the elements of the submatrices read

@Ppnmax
1 ~n!#nn85exp~ ikzn

~n!dn!dnn8 ~24!

and

Ppnmax
2 ~n!5@Ppnmax

1 ~n!#21. ~25!
d
.
-

Herein, we have arranged the elements of the submatrice
the following form: P111 5Pn50,n850

1 ,P121 5Pn50,n8521
1 ,

P211 5 Pn 52 1,n8 5 0
1 . . . ,P1 2nnmax1 1

1 5 Pn 5 0,n8 5 nmax

1 , . . .

P2nmax11 2nmax11
1 5Pn5nmax,n85nmax

1 . The dynamical matrix of

a homogeneous layer is calculated to be

Dpnmax
~n!5S Dpnmax

11 ~n! Dpnmax
12 ~n!

Dpnmax
21 ~n! Dpnmax

22 ~n!D , ~26!

where the elements of the submatrices are given by

@Dpnmax
11 ~n!#nn85@Dpnmax

12 ~n!#nn85dnn8 ~27!

and

@Dpnmax
21 ~n!#nn852@Dpnmax

22 ~n!#nn85
kzn

~n!

«xx
~n! dnn8 . ~28!

Equations~23! – ~28! are valid for any optically uniaxial
medium. The corresponding expressions for isotropic me
follow if one replaces«xx

(n)(v)5«zz
(n)(v)5«n(v).

Defining the transfer matrix of the whole sample by

Tpnmax
G ~0, N11!

5Tpnmax
G ~0,1!Tpnmax

G ~1,2!Tpnmax
~2,3!•••Tpnmax

~N,N11!,

~29!

then field amplitudes (Apnmax
(0) ,Bpnmax

(0) ) in the half-space

z.z0 are related to that in the substratez,zN by
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S Apnmax
~0!

Bpnmax
~0! D 5Tpnmax

G ~0, N11!S Apnmax
~N11!

Bpnmax
~N11! D . ~30!

Herein, the transfer matricesTpnmax
G (0,1) undTpnmax

G (1,2) re-

sult from the two interfaces of the grating with the homog
neous media. Further, the following is valid: The subma
ces that result from the interface between two homogene
media are diagonal, whereas those resulting from the in
faces between the grating and homogeneous media are
diagonal. Also the last one can be represented in the fo
Tpnmax
G (0,1)5@Ppnmax(0)#

21@Dpnmax
(0)#21Dpnmax

G (1) and

Tpnmax
G (1,2)5@Ppnmax

G (1)#21@Dpnmax
G (1)#21Dpnmax

(2). The

matrices@Ppnmax(0)#
21 and@Dpnmax

(0)#21 are the inverse of
the propagation matrix and of the dynamical matrix of t
half-spacez.z0 (n50) given by Eqs.~23! and~26!, respec-
tively, andDpnmax

(2) is the dynamical matrix of layern52
given by Eq.~26!. In the grating region the propagation m
trix Ppnmax

G (0) has the same form as given in Eqs.~23! –

~25!. But the dynamical matrix in the grating region is di
ferent from that describing homogeneous layers. The
namical matrix of the grating is given by

Dpnmax
G ~n!5S Dpnmax

G,11 ~n! Dpnmax
G,12 ~n!

Dpnmax
G,21 ~n! Dpnmax

G,22 ~n!D , ~31!

with

@Dpnmax
G,11 ~n!# ln5@Dpnmax

G,12 ~n!# ln5G ln
1 ~32!

and

@Dpnmax
G,21 ~n!# ln52@Dpnmax

G,22 ~n!# ln5G ln
2 kzl

~n!. ~33!

The different elements of these matrices are

G ln
1 5

1

dE0
d

dxexp~2 ikxnx!X1 l~x!

5 iD al

$12exp@ ia~bal2kxn!#%

bal2kxn
er

te
-
-
us
r-
on-
s

y-

2 iF al

$12exp@2 ia~bal1kxn!#%

bal1kxn

1 iD bl

$12exp@ ib~bbl2kxn!#%

exp~ ikxna!~bbl2kxn!

2 iF bl

$12exp@2 ib~bbl1kxn!#%

exp~ ikxna!~bbl1kxn!
, ~34!

G ln
2 5

1

dE0
d

dxexp~2 ikxnx!
X1 l~x!

«j

5 iD al

$12exp@ ia~bal2kxn!#%

«a~bal2kxn!

2 iF al

$12exp@2 ia~bal1kxn!#%

«a~bal1kxn!

1 iD bl

$12exp@ ib~bbl2kxn!#%

exp~ ikxna!«b~bbl2kxn!

2 iF bl

$12exp@2 ib~bbl1kxn!#%

exp~ ikxna!«b~bbl1kxn!
. ~35!

Herein, the matrix elementsG ln
1 (n50,21,1, . . . ,nmax,

l51, . . . ,2nmax11) are arranged in the form:G11
1

5G l51,n50
1 ,G12

1 5G l51,n521
1 , G21

1 5G l52,n50
1 . . . , G12nmax11

1

5G l51,n5nmax
1 , . . . ,G2nmax112nmax11

1 ,5G l52nmax11,n5nmax
1 .

In the absence of the grating the formalism presented h
reduces to the well-known 232 transfer-matrix method; i.e.
each submatrix of the transfer matrix given in Eq.~20! be-
comes a single complex function or number and the fi
amplitudes, Eqs.~18! and ~19!, reduce to only one~that of
the zeroth order!, respectively:

S Ap0
~n!

Bp0
~n!D 5Tp0~n,n11!S Ap0

~n11!

Bp0
~n11!D . ~36!

with
Tp0~n,n11!5
1

2S @11«xx
~n!kz

~n11!/~«xx
~n11!kz

~n!!#exp~2 ikz
~n!dn! @12«xx

~n!kz
~n11!/~«xx

~n11!kz
~n!!#exp~2 ikz

~n!dn!

@12«xx
~n!kz

~n11!/~«xx
~n11!kz

~n!!#exp~ ikz
~n!dn! @11«xx

~n!kz
~n11!/~«xx

~n11!kz
~n!!#exp~ ikz

~n!dn! D . ~37!
nd

e
of
rom
For a multilayer system with a grating coupler, howev
transmitted waves of the ordern50,61,62, . . .6nmax oc-
cur. The quantity measured in the experiments is the tim
averaged power transmission coefficient, which is calcula
to be

Tp5
1

2«sN11uAp0
~0!u2kz0

~0! (
n,n852nmax

nmax

Apn
~N11!*Apn8

~N11!eifnn8~x,z!

3~kzn
~N11!*1kzn8

~N11!
!, ~38!
,

e-
d

where the asterisk symbol * means complex conjugate a

fnn8~x,z!5x~kxn82kxn!1~z2zN!~kzn
~N11!*2kzn8

~N11!
!. ~39!

The transmission coefficient depends on bothx and z be-
cause the grating produces a diffraction pattern along thx
direction. It is important to note that not all the orders
diffracted waves can propagate through the sample and f
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the sample surface to the detector. Only those waves
which kzn

(0) is real and positive, i.e., if v2/c2

.@(v/c)sinQ01(2p/d)n#2 are propagating waves abov
and below the sample. In the case thatkzn

(0) is pure imaginary,
i.e., if v2/c2,@(v/c)sinQ01(2p/d)n#2 the corresponding
wave is an evanescent wave with the decay len
Ln5(2uImkzn

(0)u) and thus exists only in the near field of th
grating. Because in the experiment the distance between
sample and the detector is usually much larger than the
cay lengths of the evanescent waves, which cannot trans
energy in the negativez direction if the medium below the
sample is nonabsorbing, only the propagating waves are
tected. But it is important that the evanescent waves cou
with the collective excitations of the Q2DEG inside th
PQW, which usually is in the near vicinity of the gratin
leading to a resonant decrease of the reflected and tran
ted radiation. Hence, the measured transmission coeffic
contains, via the boundary conditions at the interfaces of
grating with the homogeneous layers, which couple the
ferent diffracted orders, all information about the evanesc
higher-order diffracted waves. In the typical situation on
the zero-order diffracted wave is propagating in the s
rounding. If in this case the influence of the evanesc
waves below the sample on the transmission coefficien
Eq. ~39! can be neglected then, the transmission coeffic
reads

Tp5
uAp0

~N11!u2kz0
~N11!

«sN11uAp0
~0!u2kz0

~0! . ~40!

With increasing periodd of the grating it becomes possib
that the first-order diffracted waves become propagating
the vacuum above and below the sample this takes plac
d5l0, where l052p/k(0)52pc/v is the vacuum wave-
length at the frequency of the ISR. If this becomes true
transmission spectrum as well as the reflection spect
show the so-called Rayleigh anomaly.37,40–43It consists of a
rapid variation in the amplitudes of the diffracted orders c
responding to the onset~evanescent→ propagating! or dis-
appearance~propagating→ evanescent! of a particular dif-
fracted order. This is true because with the appearance
new order of diffracted wave a rearrangement of the fi
amplitudes of the other propagating diffracted waves
caused. The wavelength where this takes place is called R
leigh wavelengthlR . But in general, two types of anoma
lous effects, called Wood’s anomalies,44 occur:~i! the above
described Rayleigh wavelength type and~ii ! the resonance
type anomaly. The second type of Wood’s anomaly is c
nected with the excitation of a leaky surface wave propag
ing along the metallic grating.41,43,45

If 2n111 waves are propagating below the sample~zero
order plus forward and backward diffracted waves of hig
order!, valid if d>n1l0, it depends on the detector if th
diffraction pattern or the spatial average is measured. U
ally the last one is realized and then the transmission co
cient, which only includes the action of the propagati
waves below the sample, reads

Tp5
1

«sN11uAp0
~0!u2kz0

~0! (
n52n1

n5n1

uApn
~N11!u2kzn

~N11! . ~41!
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The experimental and theoretical investigations p
formed in this work are focused on the question about
coupling efficiency of the grating to excite the ISR of th
Q2DEG synthesized in the PQW with one occupied subb
for a given semiconductor heterostructure. It is known~for
details see Ref. 36! that the coupling efficiency depends o
the one hand on the grating parameters~period, height, mark-
to-space ratio, material! but on the other hand on the prop
erties of the multilayer system~distance between grating an
Q2DEG and between the Q2DEG and the lower boundar
the sample, material, etc.!. Here, we investigate in detail th
coupling efficiency of FIR transmission in dependence
the grating periodd and all the other parameters of th
sample remain fixed.

IV. NUMERICAL RESULTS AND DISCUSSION

The numerical calculations are done for the six-layer s
tem depicted in Fig. 3 with the following material param
eters: layer n51 is a Ag grating layer with
vpa

55.6931015 s21 and ga57.59631013 s21 of height

d15h550 nm; layern52 is a GaAs layer of thicknes
d2510 nm and «s2512.87 and layer n53 is a
Ga12xAl xAs (x50.25) layer with«s3512.21 and of thick-
nessd35241 nm; the fourth layer contains the PQW wi
the bare confining energy\V511 meV, in which the
Q2DEG is synthesized. For simplicity we assume for t
background dielectric constant of this layer a homogene
dielectric constant with the parameters of GaA
«s4512.87 and n2DEG5231011cm22, t i51310211 s,
t'51310212 s, andd45a2DEG518.7 nm. Layern55 is
224 nm thick and consists of Ga12xAl xAs and the layer
n56 is a 500 nm-thick GaAs layer. In the numerical calc
lations the substrate~regionn57) is filled with GaAs and it
is assumed to be of infinite thickness, which is different fro
the experimental situation. In the experimental sample
substrate is wedged with a mean thickness of approxima
500mm. In both theory and experiment this is done to avo
the Fabry-Pe´rot resonances in the substrate.

The numerically calculated relative transmission coe
cient2DT/T is plotted in Fig. 4 for different periodsd of
the grating and fixed mark-to-space ratiot51. The wave
vector transfer from the incident wave to the ISR is as f
lows, for d54 mm: kx151.573104 cm21, kx253.143104

cm21, etc.; d56 mm: kx151.0473104 cm21, kx252.094

3104 cm21, etc.; d510 mm: kx156.2383103 cm21, kx2
51.2563104 cm21, etc.; d520 mm: kx153.143103

cm21, kx256.283103 cm21, etc.; d530 mm: kx152.094

3103 cm21, kx254.1883103 cm21, etc.; and ford540

mm: kx151.573103 cm21, kx253.143103 cm21, etc. It be-
comes obvious from both experiment~Fig. 2! and theory
~Fig. 4! that the efficiency to excite the ISR of a Q2DE
inside a given multilayered-quantum-well system increa
with increasing periodd of the grating coupler. This is true
for the given parameters up tod520 mm with excellent
agreement between theory and experiment. It is seen
analogous to the experimental result, the theoretically ca
lated line shapes of the ISR peak show at smaller period
Lorentzian form, which becomes more and more asymme
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55 2311OPTICAL RESPONSE OF GRATING-COUPLER-INDUCED . . .
with increasing grating period. Ford520 mm we have the
largest magnitude of the maximum in2DT/T, but with an
asymmetric shape. Increasing further the period transfo
the maximum to a minimum that vanishes ford→`. Please
note that in the case of the asymmetric line sha
T(n2DEG).T(0) is valid; i.e., more light is transmitted
through the sample with the Q2DEG.

Because it is difficult to define something like the co
pling efficiency for a strongly disturbed line shape, w
choose the integrated relative transmission of the dete
lines as a measure for it. The result is shown in Fig. 5, wh
we plot the integrated relative transmission of the reson
structures for the measured and calculated spectra as a
tion of the grating period. Ford,lsub we observe a stead
increase of the integrated signal with increasing periodd.
Beyond the vertical dashed line, which indicates the con
tion d5lsub, the integrated relative transmission decrea
very rapidly. It should be noted, however, that our expe
mental setup only integrates over a finite solid angle giv
by the distance between the sample and the waveguide
by the waveguides aperture. This fact might be import
especially for propagating higher-order waves as we p
out below.

In the case considered here ford,17.5 mm only the
zeroth-order diffracted wave is a propagating wave
vacuum and in the GaAs substrate. But for a grating per
of d517.5 mm at v5331013s21 ( n̄[v/(2pc)
5159.3 cm21) the first-order diffracted wave additionall
becomes propagating in the GaAs substrate and

FIG. 4. Relative transmission coefficient2DT/T of the
multilayer system in the near vicinity of the ISR of the Q2DEG f
different periodsd of the grating assuming the regionn57 to be
filled by GaAs.
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d562.83 mm this becomes also true in the region filled b
vacuum. In the framework of the«s approximation the onse
of the propagation of the first-order diffracted wave in t
GaAs substrate, which is effectively formed by the regio
n56 and 7, is just atd5lsub, wherelsub52pc/(A«s6v) is
the wavelength of the FIR light in the substrate at the f
quency of the ISR. In this case it follows fromkz1

(6)50 that
Ex1
(6)50 and thus the electric field of this wave is polariz

pure perpendicular to the interfaces in the substrate and i
the other layers filled with GaAs. The physical situation i
side the PQW is very similar but becomes complicated d
to the resonance structure of the complex dielectric ten
which may vary strongly in the near vicinity of the frequen
of the ISR. The onset of the propagation of the first-ord
diffracted wave in the substrate is seen in the calculated r
tive transmission coefficient. The calculated curves show
d510 mm, d520 mm and d530 mm the Rayleigh
anomaly at v55.331013 s21 ( n̄5281.5 cm21),
v52.631013 s21 ( n̄5138.1 cm21) andv51.731013 s21

( n̄590.3 cm21), respectively. It becomes obvious from th
theoretical and experimental2DT/T curves that just unde
these conditions the transmission peaks begin to deform.
conditions below the onset of the Rayleigh anomaly o
measures only the zeroth-order beam. But the peak in
relative transmission spectrum results from the evanes
higher-order beams which couple with the nonradiative
tersubband plasmons. This situation is changed above
onset of the Rayleigh anomaly, where the first-order d
fracted beam couples with the radiative ISR. Because
collective intersubband excitations are nearly dispersion
in the long-wavelength limit, the resulting ISR peak is a su
of the action of all diffracted beams withkx1 ,kx2 ,kx3 , . . . .
Our detailed numerical analysis shows that for the infinit
thick GaAs substrate only the Rayleigh-wavelength-ty
anomaly is responsible for the deformation of the peak. T
asymmetric line shape is thus caused by the superimpos
of the ISR peak with the Rayleigh anomaly. For the chos
system the resonance-type anomaly is absent in the plo

FIG. 5. Integrated relative transmission of the spectra show
Figs. 2 and 4. As long as the grating periodd is smaller than the
wavelengthlsubof the light corresponding to the intersubband tra
sition, the integrated relative transmission increases. Ford .lsub

the integrated relative transmission rapidly decreases.
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FIG. 6. Relative transmission coefficient2DT/T of the multilayer system in the near vicinity of the ISR of the Q2DEG for differe
periodsd of the grating of heighth510 nm, assuming the regionn57 to be filled by vacuum:~a! d654mm and~b! d65500 nm.
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frequency range; i.e., the comparison of the transmiss
T(0) andT(n2DEG) gives no indication for the excitation of
leaky surface wave carried by the grating. It is noticea
that the diffracted peaks resulting from the excitation of
intrasubband plasmonvp

00(qi) at qi5kx1 ,kx2 ,kx3 , . . . are
always symmetrically shaped.

If one would calculate2DT/T for a sample with GaAs
substrate offinite thickness, at the above-mentioned freque
cies the first-order diffracted wave becomes propagating
the GaAs layers of the sample and slightly below these
quencies in the Ga12xAl xAs layers. Possible anomalies
this case occurring in the optical spectra due the Rayle
wavelength effect we call internal Rayleigh anomalies. Ho
ever, in this frequency range the first-order diffracted wav
an evanescent wave in the vacuum below and above
sample. To answer the question whether these internal R
leigh anomalies are the cause of the asymmetry in the
perimentally detected line shape or not, we investigated
multilayer system of Fig. 3, but assumed the regionn57 to
be filled by vacuum. The relative transmission coefficie
2DT/T is plotted in Fig. 6 for two different thicknesse
d6, assuming here a height of the grating ofh510 nm. It is
seen in Fig. 6~a! that for d654 mm the Lorentzian shape
maximum, which appears ford54 nm, deforms with in-
creasing grating period; quite similar to that shown in Fig.
it becomes asymmetrically shaped and ford540 mm the
maximum is transformed into a minimum. The spectra
n
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Fig. 6~a!, calculated ford520 mm and d530 mm, show
that the internal Rayleigh anomalies are absent and thus
have no significant influence on2DT/T. Here, the question
arises about the mechanism that is responsible for the
nounced asymmetric profiles. In Fig. 6~b! we plotted the cor-
responding relative transmission spectra ford65500 nm. It
becomes obvious that in this case the best coupling e
ciency is obtained ford56mm. For larger grating periods
the peak height decreases but with a nearly stable line sh
It should be noted that whereas the exponential function
the first-order diffracted wave, appearing in the propagat
matrix of layern56, Eq.~24!, is nearly one for smalld6 in
the plotted frequency range, it varies rapidly with the fr
quency for largerd6. Such a rapid variation may caus
Fabry-Pe´rot-like resonances of the first-order diffracted wa
in the multilayer system. Further, we have calculated
total power absorption Ap(n2DEG)512Tp(n2DEG)
2Rp(n2DEG) for the two configurations of Fig. 6 assuming
grating period of d530 mm. From the comparison o
Ap(n2DEG) andAp(0) ~see Fig. 7! it becomes obvious tha
the Ap(0) spectrum shows ford654 mm a maximum,
which we attribute to the excitation of a leaky surface wa
in the Ag grating. This resonance superimposes the ISR r
nance to give the asymmetric line shape of the peak. For
smaller layer thickness,d65500 nm, the resonance assoc
ated with the surface wave is absent in the plotted freque
range. Thus, we attribute the asymmetric line shape for
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finite width substrate due to the resonance-type Woo
anomaly. It should be noted that similar line shapes of
ISR resonance were observed in Ref. 20 for metal-oxi
semiconductor structures of silicon. In this paper the asy

FIG. 7. Total absorption coefficientA(n2DEG) andA(0) for the
multilayer system of Fig. 6:~a! d654 mm and ~b! d65500 nm
calculated for a grating period ofd530 mm.
wo
le

Jr

a

’s
e
-

metric line shape is assumed to be caused by the superim
sition of the ISR with a non-depolarization-shifted ISR. O
rigorous grating-coupler theory, however, shows that the I
is always accompanied by a depolarization shift that can
be ‘‘screened’’ by the grating. Thus, it seems that also in t
early experiment Wood’s anomalies could be responsible
the asymmetric line shape.

V. SUMMARY

In summary, we have measured and calculated the op
response of the ISR of a quasi-two-dimensional electron s
tem in a PQW with different grating couplers on top of th
structure. Using the transfer-matrix method of local opt
and the modal-expansions method to calculate the influe
of the lamellar grating on the electromagnetic fields, the c
culated relative transmission describes very well the m
sured spectrum. It is shown that the coupling efficiency
the grating coupler to excite the ISR increases with incre
ing period of the grating up to a certain value where t
absorption peak starts to deform from a Lorentzian shap
an asymmetric shape. This asymmetric line shape is cau
by both types of Wood’s anomalies, i.e., due to the pro
gating higher-order diffracted waves in the sample beyo
the threshold of the Rayleigh anomaly and due
resonance-type anomaly~excitation of a leaky surface wav
in the grating region!. In this case one excites both radiativ
and nonradiative collective intersubband excitations.
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