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The capacitance of a single-electron wire at high quantizing magnetic fields is studied. We demonstrate that
the capacitance spectroscopy allows us to study the formation of compressible and incompressible stripes
directly. The electron wire is field induced in a metal insulator semiconductor heterostructure beneath a center
gate. The electrostatic potential defining the wire edge is controlled by a tuning-fork-shaped electrode that
encloses the center gate. It is found that the capacitance spectra are very sensitive to the wire edge potential and
show a clear asymmetry of the capacitance minimum at filling factorn52. The experimental results are well
described by a simple model considering the contribution of compressible and incompressible stripes in the
electron channel, to the capacitance signal. The capacitance minima are thus determined in our experiments by
the geometry of the compressible and incompressible stripes in the channel and not by the defect-induced
density of states.@S0163-1829~96!02143-1#

The concept of edge states is presently favorably used to
explain transport properties of two-dimensional electron sys-
tems~2DES’s! in very high magnetic fields.1,2 From the elec-
trostatics at the electron channel edge in a split gate device, it
is found that the filling-factor-dependent screening property
of the electron system leads to the formation of alternating
stripes of compressible and incompressible liquid phases
aligned along the sample edge.3 Transport as well as capaci-
tance studies4,5 have been performed in order to substantiate
the model experimentally. Capacitance measurements are
sensitive to the compressible phases in the channel only, and
thus they can give quite direct information about the geom-
etry of the compressible stripes at the sample edge. Recent
capacitance measurements on two-dimensional electron
channels with gates that overlap the channel edges have been
interpreted on these terms.4 It has been found that at integer
filling factors in the quantized Hall effect regime, the capaci-
tance is proportional to the edge of the sample, indicating
that the edge alone contributes to the capacitance signal. In
the experiment4 it has been essential, that charge injection
into 2DES beneath the gate takes place by lateral transport
within the 2DES alone.6 The differential capacitance is thus
related to edge channels only at integer filling factors where
the diagonal conductivity is sufficiently small. In contrast, in
previous experiments7 the 2DES was charged from a back
electrode with very low mobility so that even at integer fill-
ing factors in the quantum Hall regime the localized states in
the center of the sample can be charged.7 In both cases4,7 the
shape of the capacitance minima is symmetrical, and deter-
mined by the defect-induced density of states~DOS! in the
whole channel.

In the work presented here, similar devices to those used
in Ref. 7 are employed for capacitance measurements, so that
lateral transport in the 2D channel does not play an essential
role. Furthermore, the probed channels are relatively narrow,
so that the contributions of the central region and the channel
edge to the capacitance signal are of comparable size. There-

fore the channel edges dominate the experimental results,
whereas potential fluctuations arising from imperfections
play a minor role. This allows us to analyze quantitatively
the filling factor dependency of the differential capacitance
with a model that is based on the geometry of the edge states
instead of the defect-induced DOS. Furthermore, in our ex-
periments we can control the steepness of the channel edge
potential with a tuning-fork-shaped gate. This allows us to
test the sensitivity of the capacitance spectra on the channel
edge potential.

The design of our samples is illustrated in Fig. 1. The
essential layers of our epitaxially grown heterostrucures con-
sist of a highly doped back electrode, a GaAs spacer layer,
and a front barrier composed of a AlAs/GaAs short-period
superlattice. They are identical to the layers of a previous
publication,8 where the effect of the one-dimensional sub-
band quantization on the capacitance signal in extremely nar-
row quantum wires was investigated. On the crystal surface,
finely structured metal electrodes are defined by electron-
beam lithography and thermal evaporation. A center gate is
formed by a 300-nm-wide and 100-mm-long metal stripe.
This gate is enclosed by two gate stripes each separated by
150 nm from the edge of the center gate. The electron chan-
nel is field induced beneath the central gate at the interface
between the barrier and the GaAs spacer layer if the central
gate is biased with respect to a metallic back electrode at
voltagesV1 that are larger than a distinct threshold voltage
Vth . The form of the electrostatic potential at the channel
edges is controlled by the potentialV2 applied at the side
gates with respect to the back electrode.

Since the sample capacitance is small, the measurements
are performed with a capacitance bridge arrangement where
the sample and reference capacitance are prepared on the
same crystal. This technique is similar to the one applied
previously by Ashooriet al.9 to record the single-electron
charging of a quantum dot. The modulation of the balance
point is detected with a phase-sensitive amplifier via an im-
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pedance transformer which is set up very closely to the
sample. The conversion ratio from voltage signal at the am-
plifier input to the capacitance change in the sample is cal-
culated from the amplification of the impedance transformer
and the parasitic impedance between the balance point and
ground. Since the latter is not well known, the absolute value
of the conversion ratio is cross-checked with the capacitance
calculated for an arrangement of metallic electrodes with a
geometry such as that in the experimental device. For the
calculation the electron channel is assumed to form a purely
metallic electrode with 300-nm width, a value that we expect
to be close to the real one at high electron density. From the
above considerations we expect the conversion ratio not to
deviate by more than 25% from the exact value.

In Fig. 2 we present the differential capacitance of the
electron channel as a function of the center gate voltageV1
at temperature 4 K. The measurement was performed at an
excitation amplitude of 2 mV, a frequency of 100 kHz, and
at a magnetic field of 6.5 T applied perpendicular to the
channel. The potential difference between the center gate and
the side gatesDV5V12V2 was kept constant atDV53.2 V
during the measurement so that the shape of the bare confin-
ing potential induced by the electrodes is approximately kept
constant. At gate voltageV1>Vth50.82 V the electron chan-
nel is created as reflected by an increasing capacitance. We
note that the increase is relatively smooth as compared to
reference measurements in samples with wide gates. A small
capacitance minimum appears atV150.95 V, and a much
more pronounced one is observed aroundV151.1 V. In con-
trast to samples with wide gates, a characteristic property of
the capacitance minima observed in our narrow stripe
samples is a clear asymmetry: a steep decrease of the capaci-

tance signal is followed by a smooth increase.
In the following we discuss the strong minimum at

V151.1 V in a model10 that attributes this minimum to the
creation of an incompressible stripe at filling factorn52 in
the center of the channel. The small minimum atV150.95 V
is associated with the spin gap at filling factorn51, since
the spin gapg*mBB is much smaller than the Landau gap
\vc in GaAs.

According to recently developed models3 in strong mag-
netic fields, the electron channel decomposes into stripes of
compressible and incompressible liquid with local electron
densities between or precisely at integer filling factors, re-
spectively. In the model by Govorov10 the capacitance is
simply given byC5ee0Scomp/d whered is the distance of
the electron channel to the front electrodes. Thus the magne-
tocapacitance signal is proportional to the surface area
Scomp of the compressible phase in the channel. This ap-
proach seems plausible as long as the widths of the com-
pressible and incompressible stripes are large in comparison
to d. Although this assumption may not be perfectly justified
in our experimental system we would like to adopt it, be-
cause of the straightforward analysis that becomes possible
with it. In addition, for the sake of simplicity we would like
to assume, like in Ref. 10, that the spin degeneracy is not
lifted in our experiments.

The gate voltage range covered in our experiment may be
divided into three different regions:Vth,V1,Va where the
compressible stripe of the first Landau level is filled;
Va,V1,Vb , where the first incompressible stripe evolves,
andVb,V1,Vc , where the compressible stripe of the sec-
ond Landau level arises. As depicted in Fig. 2, the voltages
Va andVb coincide with the maximum and minimum in the
capacitance trace, respectively. The voltageVc is beyond the
experimental values shown in our figures.

In the view of our simple model, the gradual increase of
the capacitance signal between the threshold voltageVth and
Va directly reflects the evolution of the width of the com-
pressible stripe. The width rises with the center gate voltage
as long as the density is smaller than a densitynL that cor-
responds to a completely filled spin degenerate Landau level.
The local electron density is highest in the center of the
channel, and gradually decreases to the edge. When the local

FIG. 1. ~a! Cross section of a sample with relevant parameters
for the widths and separation of the gate stripes, the thicknesses of
the barrier and the GaAs spacer layer that separate the interface at
which the electron channel resides from the gate and the back elec-
trode, respectively:d542 nm andD5142 nm.~b! Bare potential
created by the gate electrodes biased atV150.8 V andV2522.4 V
in the plane of the electron channel as calculated by a numerical
integration of the Poisson equation. The lateral scale is chosen to
match with the cross section in~a!.

FIG. 2. The full line presents the differential capacitance of a
sample recorded as function of the gate voltageV1 at DV53.2 V
and a magnetic field ofB56.5 T. The dashed line is calculated
according to a model described in the text.
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electron density in the channel center reachesnL , an incom-
pressible stripe arises that divides the compressible region
into two stripes. At this point the capacitance reaches a local
maximum, since — within reasonable assumptions for the
confinement potential — the area of the compressible stripes
decreases when the incompressible stripe rapidly evolves.

To compare the experimental data with our model, quan-
titatively we have to know the form of the so-called bare
confinement potential in the plane of the electron channel. In
Ref. 10, explicit results for the model were derived assuming
a parabolic confinement potential. However, with a parabolic
potential the experimental traces are poorly described. We
determine the bare potential numerically by solving the Pois-
son equation with boundary conditions dictated by the poten-
tials of the metallic electrodes at the threshold voltage, and
assuming no charges at the semiconductor vacuum interface
between the gate electrodes. The confinement potential for
DV53.2 V thus evaluated is shown in the lower part of Fig.
1. In Ref. 10 a simple recipe is derived to generalize the
model for arbitrary confinement potentials: If the confine-
ment is described by a function f0(x,d* )
5f0(0,d* )2 f (x), the width of the electron channelW and
thus the capacitance are essentially proportional to the in-
verse f * (x) of the function f (x):W52 f * @f0(0,d* )#. In
Ref. 10 the valuef0(0,d* ) was assumed to be equal to the
applied gate voltage~valid for D@d* ). For our device a
geometrical lever arml5D/(D2d* ) has to be introduced
that takes into account the finite distanced* between the
gate and the electron channel:f0(0,d* )5(V12Vth)/l. Here
(x50,z50) points to the middle of the center gate, andd*
is the distance between the center of the electron charge dis-
tribution in the channel and the gate. We derived a value of
d*556 nm from the gate voltage separation of the magne-
tocapacitance minima in reference samples with wide gates.

The capacitance calculated within our model from this
confinement potential is depicted in Fig. 2 together with the
experimental data. The calculated capacitance increases
smoothly above the threshold voltage, similar to the experi-
mental curve and describes the data much better than any
parabolic confinement potential. We would like to point out
that, except forVth , our modeled capacitance contains no
free parameter. In view of the precision with which we can
determine the absolute capacitance value, we thus find very
good quantitative agreement with the experiment.

The capacitance maximum is expected to occur when the
local electron density reachesnL52eB/\ in the center of the
channel. The corresponding gate voltageVa is determined by
Va2Vth5enLd* /ee0, and is thus independent of the lever
arm or the form of the confinement potential. The experi-
mental value coincides well with the calculated one. At a
higher gate voltageVa,V1,Vb , the first incompressible
stripe arises. Since it is expected that the original model10 is
only a first approximation if the width of the incompressible
stripe 2a1 is of order d* , we simulated this situation by
numerical solution of the Poisson equation for variable gaps
between the compressible stripes which are represented by
thin metallic stripes. As expected, we find in our calculations
that the value of the potential minimum between the metallic
stripes is much lower than (V12Va)/l, especially for small
a1. To improve the model we introduce a lever arml(a1)
that is found by our simulation calculation. Since the width

a15 f * @(V12Va)/l(a1)# depends on the lever arml(a1),
the values ofl(a1) and a1 have to be determined self-
consistently for each gate voltage. We use an iteration that
starts withl05D/(D2d* ). With the resulting value for the
gap widtha1

05 f * @(V12Va)/l
0#, we solve Poisson’s equa-

tion to obtain a valuel1 for the next iteration loop. This
procedure converges very fast. The data points denoted by
open circles in Fig. 2 were calculated in this way. The
dashed line represents a guide to the eye atV1.Va . The
value of Vb is given by (Vb2Va)/l(a1)5\vc , with
a15 f * (\vc)547 nm and l(a1)53. We thus find
Vb2Va532 mV, in excellent agreement with the experi-
ment.

At V1.Vb the capacitance rises again as a result of the
formation of the compressible stripe in the second Landau
level. Corresponding to our model, the width of this stripe is
given by f * @(V12Vb)/l(a1)#. We would like to point out
that our simple model nicely explains the clear asymmetry
found in our experimental trace. This asymmetry thus is a
characteristic property of a device where the magnetocapaci-
tance at integer filling factors is no longer dominated by
impurity-related potential fluctuations in the bulk of the
channel, but by the potential and geometry of compressible
phases in the channel.

In Fig. 3 we depict capacitance traces of our device re-
corded at various potential differencesDV between the cen-
ter gate and the side gates. The data clearly show a steeper
onset of the capacitance with decreasing bias at the side
gates. This is expected, since at smallerDV the bottom of the
bare potential becomes flatter, and correspondingly the func-
tion f * rises more rapidly withV1. This is also the reason for
the deeper minima at the smallerDV, which can be clearly
seen in the inset of Fig. 3.

In conclusion, we investigated a narrow 2DES channel
with magnetocapacitance at magnetic fields that suffice for
the development of compressible and incompressible stripes.
In our devices the channel width is comparable to the width
of the compressible stripes. Usually, the shape of the capaci-
tance minima is symmetric in devices where the capacitance
reflects the impurity-related DOS between the Landau levels.

FIG. 3. Capacitance traces of the same device as in Fig. 2 re-
corded at different voltage differencesDV between center gate and
side gates. The bottom trace is recorded atDV53.2 V and the
difference is decreased in steps of 0.6 V. The inset depicts the
behavior at filling factorn52 for DV53.2 V ~full line! and 0.8 V
~dashed line!, respectively.
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In our devices the minima have a clear asymmetry, and it is
demonstrated that the shape of the capacitance spectra is
very sensitive on the channel edge potential. We interpret
our data with a model that directly associates the behavior of
the capacitance as a function of the gate voltage with the
surface area of the compressible and incompressible states.
Thus the asymmetry originates from the electrochemical na-
ture of the magnetocapacitance and the electron-electron in-

teraction, which results in the formation of alternating com-
pressible and incompressible liquids in a 2D magnetoplasma.
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