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We report on the behavior of Coulomb-blockade oscillations in a semiconductor quantum dot, when
its coupling to the leads is strong, i.e., of the order of the dot’s energy-level separation. Under magnetic
fields 0.75<B <4 T, we find a periodic amplitude modulation of both the peaks and the valleys of the
conductance resonances. Assuming that only the lowest edge channel carries current, we apply 2 model,
describing partly coherent and partly incoherent electron transport, to explain these modulations.
Within this model, the period of the amplitude modulation reflects the filling factor inside the dot. The
amplitude of the envelope function is determined by the fraction of electrons scatiered inelastically in
the dot, the electron temperature, and the transmission of the tunnel barriers that couple the dot to the
reservoirs, We show that it is only in the strong coupling regime where we can distinguish between
thermal broadening and broadening as a consequence of inelastic scattering. We use this model to esti-
mate the electron temperature as well as the phase-coherence length inside the quantum dot. The modu-
lation of the conductance valleys is related to a periodic modulation of cotunneling rates.

L INTRODUCTION

State-of-the-art lithography enables two-dimensional
electron systems, formed in a GaAs-Al,Ga;_, As hetero-
structure, to be structured on a submicron length scale.
Electrostatically defined small conducting islands (quan-
tum dots) have become subject of a tremendous amount
of both experimental and theoretical work.! If the cou-
pling " of the quantum dot to the nearby electron gas is
smaller than the attempt frequency, the number of elec-
trons on the island becomes a well-defined quantity,? and
single-electron charging effects** can be observed, pro-
vided the charging energy E,=e%/2€5 necessary to add
one single electron to the island is larger than kzT. Here
@5 denotes the total capacitance of the island to the envi-
ronment, and T the electron temperature. One striking
effect is the observation of conductance oscillations as a
function of an external gate voltage, so-called Coulomb-
blockade (CB) oscillations.>~7 For very low electron oc-
cupation numbers of the dot and under strong magnetic
fields, elaborate models have been developed to describe
the electronic structure,® which are in good agreement
with experiments.’ For higher occupation numbers and
moderate magnetic fields, wusually the constant-
interaction picture is used.'® The quantum dot can be
modeled by a circular disk with a parabolic confinement
potential, whose eigenspectrum is known as the Darwin-
Fock'! spectrum. Here the energy eigenvalues E 'mi obey

E,;=2m +|l[[+ 1)#V (0} +0? /4)+ Lo, , (1)
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where / is the angular momentum quantum number, m
the radial quantum number, w, the cyclotron frequency,
and @, characterizes the confining potential of the quan-
tum dot.

The width of the dot eigenstates is determined by the
coupling of the dot to the leads and by the inelastic
scattering rate inside the dot. For a quantum dot in the
diffusive regime, it has been shown that electron-electron
interactions are the dominant broadening mechanism.!?
For a ballistic quantum dot in the low-coupling regime,
the width of the energy states can be obtained by fitting
the CB oscillation resonances with a thermally broadened
Lorentzian.!> Since the temperature is low, the only in-
elastic (i.e., phase destroying) process is electron-electron
scattering.

In this paper, we report on amplitude modulations and
large-scale envelopes of CB oscillations in the regime of
strong coupling of the dot to the leads (i.e., the transmis-
sion T of the tunneling barriers is 0.1 <7 < 1) and under
magnetic fields of 1 T<B <4 T. The occupation number
is typically 100, although widely tuned (::70). Periodic
modulations of CB oscillations were observed by Staring
et al.'* who performed a model calculation, assuming
different coupling constants of dot states belonging to
different Landau levels (LL’s), which qualitatively ex-
plained their data. In the present work, we develop a
method that models the amplitude modulations quantita-
tively. Our model is based upon a formalism developed
by Biittiker,'® and explicitly includes the electron temper-
ature, inelastic scattering inside the dot, and, via the indi-
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vidual tunnel barrier transmissions, the coupling I" of the
dot to the leads. We show in a model calculation how
these contributions broaden the amplitude modulations.
We measured [ and show that, in the regime of strong
coupling, we can distinguish between thermal broadening
and broadening by inelastic scattering. Within our mod-
el, the electron temperature and the fraction of in-
coherent transport can thus be extracted from a fit of the
amplitudes of the CB oscillations.

The outline of the paper is as follows: In Sec. II, we
discuss the experimental setup. In Sec. III, the experi-
mental data are presented. In Sec. IV, the model is intro-
duced and applied to our measurements; the range of va-
lidity of this approach is discussed. In Sec. V, we focus
attention on an interpretation of the valley conductance
modulation. We conclude with a summary in Sec. VI.

II. EXPERIMENTAL DETAILS

The measurements were performed in a modulation-
doped GaAs-Al 3,Gag ¢gAs heterostructure with an elec-
tron sheet density of 3.6 X 10!° m ™2 and a mobility of 120
m?/Vs at T=4.2 K, which corresponds to an elastic
mean free path of 11.3 um. A surface gate structure
(100-nm Au on 10-nm NiCr) was made using electron-
beam lithography. A quantum dot of radius 200 nm was
defined by application of negative voltages to the Finger
gate F, gates Q;, Q,, and C (left inset in Fig. 1). The gate
geometry enabeled us to sweep the electrochemical po-
tential of the quantum dot by varying the voltage applied
to the center gate V. In contrast to most samples, this
structure was not inspected with an electron microscope
after fabrication, in order to avoid possible radiation
damage. Instead, a dummy sample was processed in
parallel for control purposes. The sample was inserted
in a *He-*He dilution refrigerator with a base tempera-
ture of 25 mK. We have studied the transport properties
of the structure in a two-terminal configuration by apply-
ing a low-frequency bias voltage (31 Hz, 4.3 pV) and
measuring the current with a standard op-amp current-
to-voltage conversion circuit. The current resolution in
this configuration was 200 fA. A magnetic field up to 14
T could be applied perpendicular to the plane of the two-
dimensional electron gas.

Each electrical connection to the sample was fed
through a separate ratio-frequency/high-frequency filter.
A damping of at least —75 dB in the frequency range be-
tween 1 MHz and 3 GHz was measured for these filters.

II1. EXPERIMENTAL OBSERVATIONS

If the conductance of the two quantum point contacts
(QPC’s), formed by gates F, Qq, and Q,, drops below
2¢2/h (or e%/h, when spin splitting is resolved), all the
electrons on the island are localized, and their number N,
becomes well defined. A sweep of Vg, the voltage applied
to the center gate C, changes N, and leads to periodic CB
oscillations.

Figure 1 shows CB oscillations as observed in our
structure at various magnetic fields. They set in as soon
as the area underneath the center gate is depleted, i.e.,
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FIG. 1. Measured Coulomb blockade oscillations as a func-
tion of the center gate voltage ¥ under various magnetic fields.
The curves are offset by e2/A. Left inset: gate structure for the
quantum dot. The gates are labeled F, Q,, @5, and C. Right in-
set: a section of the measurement under B =1 T. The CB oscil-
lations show a modulation of the peak envelope function PEF as
well as a modulation of the conductance valleys (valley envelope
function VEF).

around V~—200 mV. A rich variety of different am-
plitude modulations and envelopes is observed. The right
inset in Fig. 1 shows a section of the measurement at
B =1 T. The CB oscillations have a period of about 5
mV in this range of V. Their peak conductance shows a
quasiperiodic envelope with a higher period (ten CB os-
cillations per modulation period on average in this case).
In the present paper, we focus on a quantitative explana-
tion of this peak envelope function. Moreover, we quali-
tatively explain the valley envelope function, which is in
phase with the peak envelope function. Both envelope-
function amplitudes can exceed the amplitudes of the CB
oscillations themselves. Although the peak envelope-
function amplitudes are very high over the whole range
of V¢, the valley envelope function, very pronounced in
the regime of high overall conductance, is strongly
suppressed at lower center gate voltages. Furthermore,
the valley envelope-function amplitude decreases with in-
creasing magnetic field, in contrast to the peak modula-
tion. Both envelope functions follow a smooth large-scale
envelope in addition.

Although the change of the energy of the conduction-
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FIG. 2. The peak separation of the CB oscillations as a func-
tion of V. The linear fits for AV¢( V) are almost independent
of the magnetic field. Lower inset: The number Jmax of CB o0s-
cillations per modulation period for different magnetic fields.
The measurement points are obtained by averaging over all the
modulations observed at a particular magnetic field. The model
curve is a fit by using Eq. (9). Upper inset: a typical measure-
ment of the influence of the center gate voltage on the transmis-
sion of the individual QPC’s, formed by gates F znd Q, and by
Fand Q,, respectively.

band bottom inside the dot is the dominant effect of a
variation of V¢ the individual transmissions of QPC’s 1
and 2 are also influenced, due to the stray field of Ve at
the site of these tunnel barriers. This dependence can be
measured by adjusting one QPC to its working point
while keeping the Q gate not used grounded, and measur-
ing its transmission as a function of V.. We denote these
functions by T;(¥¢), i =1 and 2 (upper inset in Fig. 2).
These functions resemble a Fermi distribution function,
as expected for a saddle-point potential barrier in strong
magnetic fields.!$ T,(V¢) varies smoothly for all magnet-
ic fields. The measurements presented in Fig. 1 hence
correspond to a study of the behavior of CB oscillations
under a smooth transition from high to low coupling of
the dot to the leads.

IV, DESCRIPTION OF THE MODEL
AND ITS APPLICATION

In this section, we develop a quantitative description
for the peak envelope function. Following the interpreta-
tion of Ref. 14, we assume that only states belonging to
the first LL couple to the reservoirs and that the change
of the occupation number of higher LLs has to occur via
excitation of LL 1 states. This LL-index dependent cou-
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pling of the dot states to the leads is, within our model,
the origin of the amplitude modulations. Note that this
assumption has a pronounced effect on the density of
states. Only the states associated with LL 1 are
broadened by the nonzero transmission of the tunneling
barriers. States belonging to higher LL’s have a much
sharper density of states, and broaden exclusively as a
consequence of inelastic scattering.

For sufficiently high magnetic fields, the LL 1 states of
the energy spectrum [Eq. (1)] can be thought of as circu-
lating edge states (i.e., one-dimensional states). We con-
sider the variations in transport through these dot states
as their energies are tuned by a sweep in V.

The LL 1 states inside the dot can be described as cir-
culating edge states as soon as the cyclotron diameter be-
comes smaller than the dot radius, that is, when
2w0p<,." For our sample, this condition is fulfilled for
B 20.65T. In this approximation, the energy separation
of adjacent LL 1 states inside the dot can be written as!”

)

)

Within a coherent resonant-tunneling model, we deter-
mine the phase difference of adjacent circulating edge
states of LL 1 from the phase-matching condition
A® =27, where A®, the phase difference electrons accu-
mulate during one round trip inside the dot at different
energies, is given by

27me,
A=
i

AE (3)

2
Q

We now quantitatively describe the peak envelope
function by calculating the transmission of LL 1 states in-
side the dot as a function of ¥, B, the electron tempera-
ture T, and the fraction B of electrons that suffer an in-
elastic scattering event inside the dot. This model is
based on the work of Biittiker, who developed a formal-
ism for calculating transmission probabilities of one-
dimensional (1D) systems coupled to reservoirs via tunnel
barriers.!® Since we are only considering the circulating
edge states of LL 1, this model is appropriate for our
case. We use T as well as B as fitting parameters.
Biittiker models inelastic scattering as a phase-
coherence-destroying reservoir between the two tunnel
barriers. In our sample, we expect that electron-electron
scattering is the only relevant phase-breaking mecha-
nism.

In detail, we assume that the total transmission
coefficient of the quantum dot can be written as the sum
of a coherent and an incoherent part, i.e.,

TV )=Toon(Ve)+ T (V) . 4)

At zero temperature and without inelastic scattering
inside the dot, the coherent part is given by an Airy for-
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mula,'® similar to the description of the transmission of
optical resonators.!”” In the same way as finite coupling
to the leads does, inelastic scattering events homogene-
ously broadens the LL 1 states and thus influence the

_df(E)

Teon(Ve)= [ [(1=B)T (Vo) Ty (V)
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coherent transmission. To take into account the finite
electron temperature, we integrate over the thermally
smeared Fermi function f(E). In this general case, the
coherent part is given by’

dE , (5)

2 /Z(VC,E)

with

and

2ro,
#iar

OV, E)=

[E _Ed( Vc)'—%ha)c] . (6)

The LL 1 states are described by the phase the electrons accumulate inside the dot, ®(V,, E) [Eq. (6}], broadened by the
nonzero transmission of the tunnel barriers, and by inelastic scattering events. Furthermore, E;(V) is the energy of
the conduction-band bottom inside the quantum dot at the position of the maxima of the CB oscillation resonances.
The determination of this function from the experimental data is described below.

For fully incoherent transport at T =0, T, is given by the product of the probability for the electron to enter the
dot, which is equal to the backscattering probability S;, times the fraction of scattered electrons emerging from the
scatterer in the forward direction.!® If we denote the forward-scattering probability by S > this fraction can be written
as Sy /(Sp+Sy). Here we assume that the electrons suffer only a single scattering event while inside the dot. Since we
expect the electron-electron-scattering length to be large compared to the dot size, this assumption is well justified. In-

cluding a finite temperature leads to the incoherent part

Tinc( VC )

= {be‘Vc’m |—ij;§g—E) ]dEHfoWc,E) l—% ldE]/ [f[Sb(Vc,E)+Sf(VC,E)] —% dEl
)

with
Sy Ve, EY=BT 1 ,(V ) {1+ (1=B) 1T, (V) } /Z(V(, E) . (®)

Equation (8) is derived in detail in Ref. 15, and represents
the sum over all possible paths that lead to backscatter-
ing or forward scattering, respectively.

Note that S and T;(V.) enter symmetrically in
Z(E,V¢) as well as in S}, /(E, V). These contributions
to the broadening of the LL 1 states are thus indistin-
guishable. Hence, in order to extract 3, it is essential to
measure T; (V).

The QPC transmissions T;( V) are, in principle, also
dependent upon E. Experimentally, however, we are
only able to measure the coefficients T;(V) and T(¥V).
Since the energy scale over which the transmission of the
QPC’s varies, given by the 1D subband separation within
the QPC’s, is much larger than kT for the temperatures
present in our studies, we neglect the influence of a finite
temperature on T;( V). Hence we use T;( V) in our cal-
culations, the experimentally determined functions. The
thermal smearing of the Fermi function cannot, however,

be neglected inside the quantum dot. Here the mean
energy-level separation is comparable to kz7, which
makes thermal excitations significant.

In the following paragraph, we focus on the effects of
temperature and inelastic scattering on the peak envelope
functions. For completely coherent transport at zero
temperature, we expect sharp peak envelope-function res-
onances with a peak value of 1, as shown in Fig. 3(a),
broadened only by the nonzero transmission of the tun-
neling barriers. For this model calculation, we have as-
sumed T;(V¢) to be Fermi functions, as shown in the in-
set of Fig. 3(a). Both finite temperature [Fig. 3(b)] and in-
elastic scattering [i.e., B> 0, Fig. 3(c)] reduce the ampli-
tude of the peak envelope function. However, at high
coupling, a finite temperature only smears out the peak
envelope-function resonances. In contrast, inelastic
scattering also reduces the average transmission. The

physical interpretation of this effect is straightforward:



16 642

for the coherent fraction of the electron transport, the
average transmission T, of the structure is given just by
the transmission of one of the two tunneling barriers.
The incoherent fraction, however, sees the two barriers in
series, which leads to a reduction of T,. Roughly, T, can
be estimated by T, ~T;[(1—B)+B/2]. For completely
incoherent transport, the oscillation in the peak envelope
function vanishes, and T, is half the transmission of a
single barrier [Fig. 3(c)]. This distinct difference at high
coupling enables us to distinguish between thermal
broadening and broadening as a consequence of
inelastic-scattering events.”’ Furthermore, according to
Eq. (2), we expect a reduction of the amplitude of the
peak envelope-function oscillations for increasing mag-
netic fields.

Experimentally, we find a significantly broadened peak
envelope-function amplitude (Fig. 1). The peak transmis-
sion decreases smoothly approximately one order of mag-
nitude when V. is reduced from —200 to —800 mV.
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The peak envelope function can be modeled by fitting T
and 3 to the measurements. A separate analysis of the
temperature dependence of the linewidth of the CB oscil-
lation resonances!? (not shown) implies that the electron
temperature is roughly 100 mK.

To link the model to the experimental data, we extract
the dot Fermi energy E, and the confinement potential
strength w, from fitting the observed number of CB oscil-
lations per modulation period to the magnetic-field
dependence of the number of occupied LL’s, j For a

Jmax‘

parabolic confinement potential, j_,. is given by
2 | Ep+0.50,

fio, | 1+owi/o?

Jmax =INT

} . o

in Eq. (9), INT denotes rounding to the nearest integer
value. The fit shown in the lower inset of Fig. 2 yields
Ep=17.81 meV and w,=7.08X 10" s™!. The spin is tak-
en into account by the factor of 2. Each value for j,,. in

Fig. 2 is an average over all peak envelope-function
modulations in a center gate voltage sweep at a fixed
magnetic field. We do not find a systematic dependence

of Jmax On V¢, indicating that the filling factor inside the
“"dot remains unchanged Magnetoconductance oscilla-

tions in this regime?! show a period of AB =36 mT, cor-
responding to a dot radius of r;~200 nm, in very good
agreement with a calculation of r; using our fit values for
Er and w,.

Furthermore, we have to determine E;(¥). The peak
positions of the CB oscillations provide points E,; at
V¢,;» where i is the index of a CB peak. For our calcula-
tions, we make E (V) continuous between these points

~'of relevance by interpolating between the CB oscillation

peaks “and integrating dE, (V)= (AE,/AV (V))dV e
over V. Here AE, denotes the energy shift of the
conduction-band bottom under a change of the dot’s oc-
cupation number by 1, and is obtained from our dot mod-
el [Eq. (2)], AE; =#®}/j ax .. The corresponding center
gate voltage difference AV (the CB oscillation peak sep-
aration) is, to a good approximation, a linear function of

‘ o l(c)l1'=o

0.8 8=0.25 7
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FIG. 3. Calculated peak envelope function. A Fermi energy
of 11.6 meV and a confining potential characterized by

@=1.2X10" 57! has been assumed. (a) Completely coherent
transmlssmn at T =0, inset: the assumed transmission of the
QPC’s as a function of the dot energy. (b) Effect of a finite tem-
perature. (c) Effect of inelastic scattering at T=0. Note the
distinct difference between (b) and (c), namely the reduction of
the average transmission at high QPC conductances in (c) com-
pared to (b).

V¢ (Fig. 2). This linear dependence of AV, on Vg

=~reflects the change of the capacitance between the center

gate and the dot when V. is varied.

Gate voltage characteristics of a single quantum point
contact (i.e., simultaneous sweeps of gate F and one of the
Q gates w1th the second Q gate and gate C grounded)
show spin splitting in the lowest one-dimensional sub-
band for B>2 T (not shown). We thus assume that
below 2 T, the two spin states of LL 1 couple equally
from the reservoirs to the dot, and for higher magnetic
fields only LL 1 states with spin-up have a nonzero cou-
pling. The QPC’s were adjusted to equal conductances
(upper inset in Fig. 2), since asymmetries between T, (V)
and T,(V() reduce the amplitude of the resonances in
the peak envelope function [Eqs. (5) and (6)]. After re-
scaling the QPC transmission functions to an energy scale
by the method described above, we use them in Egs.
(5)-(8). Figure 4 shows fits for different magnetic fields.
Results of our fits are summarized in Table I. From our
calculations, we estimate an effective electron tempera-
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FIG. 4. Fits of the measured peak envelope function at B =1
T (a), 2 T (b), and 4 T (¢). The CB oscillations have been res-
caled to an energy scale as described in the text. In (b), we show
the fits used to estimate the uncertainty of the inelastic fraction.

ture of T=(60-+30) mK. The uncertainty is comparable
to that we obtain from an analysis of the temperature
dependence of the line shape of individual CB oscillation
resonances. The parameter 3 decreases significantly with
increasing magnetic field. This indicates that the phase-
coherence length inside the quantum dot increases rapid-
ly when B is increased. The fact that the oscillation am-
plitude of the peak envelope function does not decrease
under increasing B, as expected from Eq. (2), can thus be
traced back to the increased coherence of the transport.
Further measurements are necessary to determine this

TABLE I. Summary of the parameters as obtained from the
fits of the peak envelope function and the estimated phase
coherence length .

Electron
Magnetic field (T) temperature (mK) B Iy (pum)
1 60130 0.3+0.05 3.5
2 60125 0.25+0.05 4.35
3 50420 <0.05 >24.4
4 40x10 <0.05 >244
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dependence in greater detail. An increased I4 with in-
creasing B has also been found by Liu et al. 22 by analyz-
ing the Fourier amplitudes of Aharanov-Bohm-type oscil-
lations in mesoscopic rings in the case of CB being ab-
sent. Note that our model assumes that the phase is com-
pletely randomized in a single electron-electron-
scattering event, as measured in the ballistic regime.?

We can find the inelastic-scattering length I, from the

expression (1—pB)=exp(—2mr; /1) (see Table I).

To bring the calculated peak envelope functions in
phase with the measurements, we shifted the calculated
transmission in energy by small amounts. We attribute
the necessity of such a shift due the influence of the volt-
age applied to Q, on the transmission of QPC;, and vice
versa. This shift is, however, not experimentally accessi-
ble without the quantum dot being formed. Since these
gates are much farther separated from each other than
‘the Q gates from the center gate, we believe this to be a
small effect.

We would like to point out that the model developed
here is for intermediate magnetic fields and not too small
occupation numbers. At higher magnetic fields, the
quantum dot develops an additional internal struc-
ture.”?* Due to the modulation of the screening proper-
ties of the electron gas, compressible regions are formed,

_separated by incompressible stripes. The condition for

this internal structure to occur is that the magnetic
length is larger than the width of these incompressible
stripes.?* Most strikingly, frequent magnetoconductance
oscillations are observed® for v<2 a regime where the
constant-interaction picture predicts very infrequent
energy-level crossings as a function of the magnetic field.
At low magnetic fields, on the other hand, the model of
circulating edge states is no longer justified. As B goes to
zero, the characteristic splitting of the states with high T
approaches hw, Indeed, for small magnetic fields, we
find huge, reproducible amplitude modulations that dom-
inate over the CB oscillations for high T" (Fig. 5).

Strong electron-electron interactions at low dot occu-
pation numbers provide another limiting factor. In this
case, the assumption of a single-particle spectrum is no
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FIG. 5. CB oscillations in a weak magnetic field. Nonperiod-
ic, reproducible conductance fluctuations with huge amplitude
are observed. The CB osciliations are modulated and dominate
the measurement for Vo < —400 mV.
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longer justified, although recently it has been shown that
even in an interacting system composed of only 2 or 3
electrons, there exist quasiselection rules that provide a
preferential coupling of center-of-mass modes to the
leads.” It would thus be very interesting to investigate
the behavior of CB oscillation amplitude modulations in
extremely small quantum dots.

V. MODULATION OF THE CONDUCTANCE VALLEYS

The observed valley envelope function (Fig. 1) is in
phase with the peak envelope function, indicating a simi-
lar physical origin. It is, however, much more strongly
suppressed than the peak envelope function at both high
magnetic fields and low coupling [Fig. 6(a)]. Since CB is
established, we interpret the valley modulation as a

consequence of cotunneling currents.?’” Inelastic cotun-

neling generates an excitation in the dot, and the trans-
port is incoherent. A periodic valley envelope function
due to inelastic cotunneling can only occur when two LL
1 states take part in the transport. Their energy separa-
tion is, however, large compared to both the temperature
as well as the bias voltage. We conclude that elastic co-
tunneling is the origin of the modulation of the conduc-
tance valleys, and is of the same order of magnitude as in-
elastic cotunneling in our experiments. For a quantita-
tive description, the finite temperature is significant. We
thus restrict ourselves to a qualitative interpretation. To
illustrate our explanation, we consider the case of a filling
factor of 2 [Figs. 6(b) and 6(c}]. If we assume, as above,
that only states belonging to LL 1 couple to the leads,
elastic cotunneling also occurs preferentially via these
states. If the peak envelope function is maximum, a LL 1
state is in resonance with the Fermi energy in the leads,
and hence we can expect a correspondingly high cotun-
neling current in the conductance valley nearby, i.e., a
maximum in the valley envelope function [Fig. 6(b)]. If
the peak envelope function, however, is in a minimum,
the energy between E in the reservoirs and the closest
LL 1 state is maximized, which leads to a reduction in
the cotunneling current as well [Fig. 6(c)]. Since the co-
tunneling currents?’ scale with I'?, these valley modula-
tions are much stronger suppressed than the peak modu-
lation (which scales with I') when the coupling is re-
duced. The decrease of the oscillation amplitude of the
valley envelope function under increasing magnetic field
is expected from Eq. (2). The energy separation of LL 1
states decreases under increasing magnetic field, and vir-
tual excitations in these states are less suppressed.

V1. SUMMARY

We investigated CB oscillations in a strongly coupled
quantum dot in magnetic fields from 1 to 4 T. We found
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FIG. 6. (a) The ratio of the oscillation amplitude of the valley
envelope function to that of the peak envelope function for
different magnetic fields. The valley modulations are much
more strongly suppressed than the peak modulations under de-
creasing coupling as well as under increasing magnetic field, in-
dicating the virtual character of the valley current. (b) and (c)
Suggested origin of the valley envelope function oscillations: if
the lowest empty state inside the dot is a LL 1 state, we expect,
as a consequence of its high coupling to the leads, a high rate of
elastic cotunneling (b). If the lowest unoccupied state belongs
to a higher LL, cotunneling currents arise from excitation into a
LL 1 state nearby (c) and are thus strongly reduced.

amplitude modulations of both the CB oscillation peaks
and valleys. We have developed a quantitative model for
the peak envelope function, based upon previous theoreti-
cal work of Biittiker. We used this method to determine
the electron temperature and the fraction of electrons
that are scattered inelastically while traversing the dot,
giving an estimated phase-coherence length. We found
strong evidence for an increased phase-coherence length
as the magnetic field increases. Modulation of the con-
ductance valleys has its origin in a partly phase coherent
cotunneling current.
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