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Edge-state transport in finite antidot lattices
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We study electron transport in an antidot superlattice with a finite number of periods. At low carrier
densities and high magnetic fields the electrons travel phase coherently over the entire system in magnet-
ic edge channels and interfere with each other under the influence of the geometry of the antidot poten-
tial landscape. The magnetoresistance displays pronounced Aharonov-Bohm-type oscillations arising
from electrons that travel along the bound states that form around the antidots. The characteristic
period of the oscillations is given by the area defined by the circumference of the antidots.

Antidot superlattices represent a model system to
study electron transport through a periodic potential
landscape.!™* Starting from a high-mobility two-
dimensional electron gas (2DEG), a periodic array of po-
tential pillars can be fabricated by various technological
means. A typical potential landscape is sketched in Fig.
1(a), where the maxima of the potential peak through the
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FIG. 1. Antidot potential with (a) a high Fermi energy and
(b) a very low Fermi energy. The position of the Fermi energy
is depicted by the white planes.
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Fermi energy. So far most experiments have been per-
formed on systems whose extensions are much larger
than the electron mean free path I, as well as the phase
coherence length L ;. Pronounced maxima have been ob-
served in the magnetoresistance arising from ballistic
electron orbits around groups of antidots. The experi-
mental observations have successfully been described by
classical dynamics neglecting the phase of the electrons.’

Effects related to the phase coherence of the electrons
along the classical trajectories have only recently been
observed. Weiss et al. reported so-called quantum oscil-
lations® that rely on the phase coherence on the length
scale of the lattice period. Schuster et al. investigated a
finite antidot lattice whose total dimension is smaller
than L; at low temperatures.’ In this case the classical
commensurability oscillations are superimposed by
strong reproducible fluctuations in the magnetoresistance
that die out at higher magnetic fields where the cyclotron
diameter becomes smaller than the lattice period. The
Fourier analysis reveals an Aharonov-Bohm (AB)-type
effect related to the area enclosed by the respective classi-
cal cyclotron orbit around groups of antidots.

Usually the Fermi energy Ep in the antidot lattices in-
vestigated so far is relatively high [Fig. 1(a)] in the sense
that the filling factor of the Landau levels that arise at
finite magnetic field is typically larger than 10 for the
magnetic fields of interest. Here we focus on a very
different regime of low carrier densities and magnetic
fields around a filling factor v=2. The system now
schematically resembles a shallow lake (Fermi sea) be-
tween the antidot pillars [Fig. 1(b)]. The low Fermi level
and the reduced screening of the electrons lead to rela-
tively large antidots [see the transition from Fig. 1(a) to
Fig. 1(b)]. Transport now occurs predominantly in edge
states that also extend into the bulk of the sample because
of the presence of the antidot lattice. The role of the
classical electron trajectories as described previously is
now taken over by quantum-mechanical edge states.

In order to investigate phase coherence effects in anti-
dot systems we fabricate an array of 9X9 antidots sur-
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rounded by a square geometry (see the inset of Fig. 2).
For very low temperatures where electron-electron
scattering is reduced both L, and I, may exceed the size
of the system.® The electrons now carry a phase and an
amplitude and therefore can interfere with each other.
The fabrication process starts from a
GaAs/Al,Ga,;_,As heterostructure, which contains a
two-dimensional electrons gas 65 nm below the surface.
Its electron density is #,=3X 10" m~2 and the elastic
mean free path is [,=8 um at T=4.2 K. A Hall bar is
defined by wet etching and provided with Ohmic contacts
(AuGe/Ni). The antidots as well as the square confining
geometry pattern is produced by electron beam lithogra-
phy, thus providing an inherently good alignment of the

two structures. The square geometry around the finite

antidot lattice has point contactlike openings at its
corners serving as contacts to the system. The pattern is
then transferred onto the sample by a carefully tuned wet
etching step. The etch rate depends sensitively on the
size of the respective features. In making the width of
the bars that define the square confining geometry larger
than the diameter of the antidots it is guaranteed that the
finite lattice is decoupled from the outside 2DEG before
the antidot potential is actually formed in the 2DEG.
The inset of Fig. 2 shows an atomic force microscope im-
age of the finite antidot lattice with a system size L =2.4
pm and a period @ =240 nm. Each antidot is well
developed and the variation in size is remarkably small.
The whole structure is covered by a gate metal, which al-
lows one to tune the Fermi energy in the system. The
sample is cooled in a dilution refrigerator down to bath
temperatures of T=30 mK. Typical four-terminal mea-
surements of the resistance Ry (B)=(U,—U,)/I;
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FIG. 2. Magnetoresistance traces of a finite antidot lattice at
T'=30 mK at very low carrier densities. The arrow indicates
the classical commensurability maximum. The inset shows an
image taken with an atomic force microscope of a wet etched
surface of a GaAs/Al,Ga,_,As heterostructure with the
characteristic dimensions as indicated. Ohmic contacts are
made to the corners of the square indicated by i, j, k, and 1.
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are made by passing a current I through the contacts i
and j and measuring the voltage drop across the other
two contacts k and 1.

In high magnetic fields the electrons in a homogeneous
2DEG travel along the boundary of the confining
geometry in magnetic edge channels.” The suppression of
backscattering leads to a quantized resistance in the Hall
effect.’® In our antidot samples edge states also develop
along the circumference of the antidots. The electrons in
these states are sensitive to the flux through the antidots
if the phase coherence is maintained along the circumfer-
ence. The edge states that form along the boundary of
the square confining geometry are not sensitive to the flux
through the antidots. However, if the Fermi energy E is
lowered by a very negative gate voltage the constrictions
between the walls and the antidots and between two
neighboring antidots become very narrow. This leads to
a coupling of the edge states that form at the edge of the
confining geometry and the localized states around the
circumference of the antidots.

Figure 2 presents the magnetoresistance R;; ;,(B) for
different negative gate voltages. At low magnetic fields
B=0.3 T the resistance maximum corresponding to a
classical orbit around a single antidot can be seen (see the
vertical arrow). Superimposed on this classical commen-
surability maximum there are oscillations in the magne-
toresistance that reveal an Aharonov-Bohm effect or,
equivalently, a modified Shubnikov—de Haas effect relat-
ed to the area enclosed by the classical cyclotron orbit
that fits around a single antidot.%7 At higher magnetic
fields a wide minimum occurs at about B ~ 1.5 T, which
is related to the minimum of the Shubnikov-de Haas os-
cillations at filling factor v=2. The filling factor defined
as v=nhN, /eB specifies the number of occupied Landau
levels below the Fermi energy. A series of highly period
AB oscillations with a period of AB =~ 100 mT arises in
the magnetoresistance traces just in this v=2 minimum
in the magnetic-field regime 0.7 T<B<1.8 T. The
characteristic area leading to the AB oscillations is
defined by the circumference of the antidots. The role of
the classically pinned trajectories is now taken over by
quantum-mechanical edge states also in the sense of com-
mensurability effects. In single quantum dots such AB
oscillations have bee observed where the electrons are
confined to edge states close to the perimeter of the
dot.!12  Similar results were obtained by Kirczenow
et al., who inserted a single antidot inside a narrow
wire. 2

At high magnetic fields the energy of an edge channel
is determined by its guiding center energy
Eg=Ep—fiw.(n+1)tgupzB, where o, is the cylotron
frequency, n is the Landau level index, and the last term
accounts for spin splitting. The electrons follow the equi-
potential lines V(x,y )=E around the antidots. During
one revolution they accumulate a phase Ap=27® /P,
where ®y=h /e is the elementary flux quantum. The

" resistance oscillations are periodic in B, corresponding to

the addition of the one flux quantum through the en-
closed area A(Eg).

In order to get a quantitative understanding of the os-
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cillations we Fourier transform the magnetoresistance as
displayed in Fig. 3. If the window for the transformation
is chosen around the minimum corresponding to v=2,
pronounced maxima in the Fourier transforms are found.
The maxima shift to higher frequencies f=(e/h)A(Eg)
for more negative gate voltages. This is in agreement
with the simple picture that with decreasing carrier den-
sity the antidots size increases. Consequently, the area
given by the circumference of the antidots and the corre-
sponding frequency of the AB oscillations increases. The
inset of Fig. 3 shows the normalized frequency as a func-
tion of the applied gate voltage. The frequencies ap-
proach a value f=(e/h)Ay~=~11.5T" ), which is deter-
mined by a circular area 4,=(a /2)* with the diameter
equal to the lattice period. If the gate voltage is lowered
further, the edge channels are reflected at the barriers be-
tween the antidots and the resistance diverges.

We have studied the behavior of the minimum in the
magnetoresistance related to filling factor v=2 in more
detail for a different sample whose antidots are almost as
large as the lattice period and are therefore larger than in
sample 1 (Fig. 4). On this second sample the main
features observed are very similar to what was described
before. In particular, the gate voltage dependence of the
AB period or, in other words, the area dependence fol-
lows the same trend. In this second sample the coupling
between the edge channels can be achieved by applying
moderate negative gate voltages. Therefore the mobility
in the unpatterned regions remains comparatively high
and the edge channels are spin resolved. The barrier
height between the antidots can be adjusted by means of
the gate voltage. At V,=—200 mV there are no oscilla-
tions present [lowest trace in Fig. 4(c)]. As the gate voli-
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FIG. 3. Fourier transform calculated from the experimenial-
ly obtained magnetoresistance traces (Fig. 2). The right inset
shows the dependence of the AB frequency on the applied gate
voltage. The frequencies approach a value that is given by the

circular area as indicated in the left inset.
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age becomes more negative the coupling between edge
states becomes apparent. The period of the oscillations in
this case is only AB =50 mT. At very strong depletion
[Fig. 4(a)], we observe a doubling of the period of the os-
cillations. In between there is a transition regime where
every second minimum of the oscillations is only weakly
pronounced [Fig. 4(b)].

In order to explain the occurrence of the period dou-
bling we discuss several possibilities. In general, a factor
of 2 may arise by a transition from & /e to h /2e oscilla-
tions, the latter originating from the interference of
time-reversed trajectories. However, it is not clear why
the h /2e oscillations are only observed in a certain gate
voltage regime. Since all scattering lengths (elastic and
inelastic) decrease with increasing depletion, the h /2e os-
cillations should persist for negative gate voltages while
the 7 /e effect could be averaged out more easily. This is
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FIG. 4. Minimum of the magnetoresistance related to the
filling factor v=2. At very strong depletion (c) every second
minimum of the oscillations is suppressed, which leads to period

doubling.
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in contrast to our experimental observations. Another
possibility is the contribution of edge channels that form
in the region between four antidots. These may, in prin-
ciple, provide an additional frequency. However, since
they will enclose an area similar to the one defined by the
circumference of the antidots, they can only accidentally
provide a double frequency signal corresponding to an
area twice as large.

On this basis we propose that the additional period is
related to resonant processes between two spin-resolved
edge channels. Quantum-mechanically bound states
around the antidots exist if the enclosed flux is a multiple
integer of the flux quantum A(Eg)B =®(j+ 1), which
corresponds to a phase change A@=2sm. This spatial
quantization condition determines the energy E;, of the
bound states around the antidots. Resonant transmission
between bound states occurs if the Fermi energy Er coin-
cides with the energy of the bound states E; ,,. This situa-
tion is the basis of the following discussion. In Fig. 5 a
schematic representation of the edge states at two
different gate voltages is presented. For gate voltages
that lead to low barriers between the antidots, both edge
channels are fully transmitting. The bound states are
spin resolved and are denoted 3, , and ¥, ;. Since spin
is conserved in the resonant tunneling process, the
current flows through states ¢, | ;=¥ g—=Vpm 11,4
and Y, _1u =Yy —>¥m+1,.- The subsequent minima
in the resistance can be attributed to resonant tunneling
of electrons with opposite spin. The observed phase be-
tween the two oscillations could be explained by a possi-
ble Coulomb interaction between the two edge states, as
suggested by Sachrajda et al. for resonant reflection pro-
cesses in a single quantum dot geometry.!? Period dou-
bling has also been observed in single antidot

(a) () Vg2

FIG. 5. Schematic representation of the edge channels for
two different barrier heights between the antidots. The barrier
height is adjusted by the gate voltage (V> ¥, ,). In (a) both
spin-resolved edge channels are fully transmitted, which corre-
sponds to the situation in Fig. 4(c). In (b) the second edge chan-
nel is reflected at the barriers between the antidots correspond-
ing to the experimental trace in Fig. 4(a).
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geometries.’>!* For higher potential barriers the edge
channel with s =d is partly reflected while the s =u chan-
nel is fully transmitted. In this regime every second
minimum is only weakly pronounced. Eventually the
s=d channel is completely reflected and only the s=u
channel contributes to the conductivity {Fig. 5(b)]. Reso-
nant tunneling should in principle be independent of the
thickness of the barrier. Our explanation relies on the as-
sumption that the tunneling probabilities among spin-up
and spin-down edge channels are comparable. For steep
potential walls this could indeed be the case since the spa-
tial separation between edge states could be small. How-
ever, for a more refined analysis one has to consider that
in an antidot lattice each bound state interacts with the
bound states of the four neighboring antidots and that
both resonant tunneling and resonant reflection can
occur.

At higher magnetic fields a series of B-periodic oscilla-
tions arises in the v=1 minimum where only a single
edge state is occupied. The oscillations in this regime

-have only a single period being related to the area of a

single antidot. These observations support the idea that
spin-related processes are responsible for the occurrence
of the additional period. Further experiments may tell us
which type of interpretation can lead to a physical pic-
ture.

Recently Lenssen et al.”” reported on the observation
of quantum interference in a two-dimensional lateral su-
perlattice. They explained their observations by the
phase-coherent coupling of localized classical orbits. Our
experimental results as presented in this paper unambigu-
ously demonstrate that AB oscillations occur in the edge
state regime and that their frequency is related to the lat-
tice period. In the sample as presented in Fig. 3, the Fer-
mi wavelength is about § of the circumference of an anti-
dot. In order to be able to observe Aharonov-Bohm os-
cillations the sample has to be homogeneous at least on
that scale. For higher carrier densities the improved
screening behavior will lead to an even more homogene-
ous sample. This fact, as well as the observation of pro-
nounced fluctuations in the high-density regime,’ implies
that the phase coherence length in our system is at least
of the order of the lattice dimension.

The fact that a four-terminal geometry is used in our
experiment excludes the possibility that only a small frac-
tion of the antidots or even antidots at the corners of the
square predominantly give rise to the observed oscilla-
tions. In that sense the observation of Aharonov-Bohm
oscillations in the edge state regime in a superlattice
clearly constitutes a scenario different from experiments
on single structures.!? 1416

In summary, we have reported on edge state transport
through an antidot lattices with a finite number of
periods (9X9). In the regime of small antidots and large
carrier densities, commensurability oscillations are
known to dominate the low-field magnetoresistance. In
finite antidot lattices pronounced fluctuations are super-
imposed, reflecting the dominant role of chaotic trajec-
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~ tories in phase space.” In the present publication, howev-

er, where we concentrate on the quantum Hall regime,
the survival of regular trajectories is thought to lead to



the transition to quantum-mechanical edge states. This is
achieved with the application of a negative gate voltage,
which lowers the Fermi energy such that the Fermi sea
ends up being a shallow lake that just covers the minima
of the potential. In this regime where transport is dom-
inated by edge states, we observe AB-type oscillations su-
perimposed on the Shubnikov—de Haas minimum corre-
sponding to the filling factor v=2. The characteristic
area for the AB oscillations is given by the circurmnfer-
ences of the antidots. By carefully adjusting the barrier
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height between the antidots, the contribution of spin-
resolved edge states can be observed.
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