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Abstract
Quasi-static transport measurements are employed to characterize a few-
electron quantum dot electrostatically defined in a GaAs/AlGaAs heterostruc-
ture. The gate geometry allows observations on one and the same electron
droplet within a wide range of coupling strengths to the leads. The weak cou-
pling regime is described by discrete quantum states. At strong interaction with
the leads, Kondo phenomena are observed as a function of a magnetic field. By
varying the gate voltages the electron droplet can, in addition, be distorted into a
double quantum dot with a strong interdot tunnel coupling while keeping track
of the number of trapped electrons.

(Figures in this article are in colour only in the electronic version)

1. Introduction

Extensive experimental work has recently been aimed towards electrostatically defining and
controlling semiconductor quantum dots [1–5]. These efforts are impelled by proposals for
using localized electron spin [6] or charge states [7], respectively, as qubits, the elementary
registers of the hypothetical quantum computer. The complete control of the quantum dot
charge down to the limit of only one trapped conduction band electron was demonstrated by
monitoring single electron tunnelling (SET) current through the device as well as by a nearby
charge detector [2, 8, 9].

In this paper, we present data on an electron droplet in which the charge can be controlled
all the way to the limit of one electron. The quantum dot is defined electrostatically by using
split gates on top of an epitaxially grown AlGaAs/GaAs heterostructure. We observe a wide
tunability of the electronic transport properties of our device. Recent work focused either on
the case of weak coupling between a quantum dot and its leads [2], or on the Kondo regime of
strong coupling to the leads [9]. Here, we explore a structure that can be fully tuned between
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Figure 1. (a) SEM micrograph of the gate electrodes used to electrostatically define a quantum dot
(marked as QD) and a quantum point contact (marked as QPC). (b) Typical measurement of the
absolute value of the SET current I through the quantum dot as a function of the centre gate voltage
UgC and the bias voltage USD. (c) Differential transconductance GT(UgC) of the QPC measured at
identical parameters as in (b) but for USD = 0. The numerals N = 0, 1, 2, 3 in (b) and (c) depict
the actual number of conduction band electrons trapped in the quantum dot.

these limits. In addition, we demonstrate how the shape of the quantum dot confinement
potential can be distorted within the given gate geometry [10] all the way into a double well
potential describing a double quantum dot [11–13]. The charge of the electron droplet can be
monitored during the deformation process.

The heterostructure used for the measurements embeds a two-dimensional electron system
(2DES) 120 nm below the crystal surface. The electron sheet density and mobility in the 2DES
at the temperature of T = 4.2 K are ns � 1.8×1015 m−2 and μ � 75 m2 V−1 s−1, respectively.
We estimate the 2DES temperature to be of the order T2DES ∼ 100 mK.

Our gate electrode geometry for defining a quantum dot, shown in the scanning electron
microscope (SEM) micrograph of figure 1(a), is designed following a geometry introduced by
Ciorga et al [2]. Because of the triangular shape of the confinement potential, an increasingly
negative voltage on the plunger gate gC depletes the quantum dot and simultaneously shifts
the potential minimum towards the tunnel barriers defined by gates gX and gL, or gX and gR,
respectively. This way, the tunnel barriers between the leads and the electron droplet can be
kept transparent enough to allow the detection of SET current through the quantum dot even
for an arbitrarily small number of trapped conduction band electrons [2].

Figure 1(b) shows a typical colour scale plot of the measured quantum dot SET current |I |
as a function of the gate voltage UgC and the source drain voltage USD. Within the diamond-
shaped light regions in figure 1(b) SET is hindered by Coulomb blockade, and the charge of
the quantum dot is constant. The gates marked gR and gQPC in figure 1(a) are used to define a
quantum point contact (QPC). As demonstrated in [8] and [9], a nearby QPC can provide a non-
invasive way to detect the charge of a quantum dot electron by electron. The result of such a
measurement is shown in figure 1(c), where the transconductance GT = dIQPC/dUgC obtained
using a lock-in amplifier is plotted for USD � 0, along the corresponding horizontal trace in
figure 1(b). Note that figures 1(b) and (c) have identical x axes. The advantage of using a QPC
charge detector is that its sensitivity is almost independent of the quantum dot charge state. In
contrast, the current through the quantum dot decreases as it is discharged electron by electron,
because of an increase of the tunnel barriers between the quantum dot and the leads. This can
be clearly seen by a comparison of the magnitude of the current oscillations in figure 1(b) with
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Figure 2. (a) The dependence of the differential conductance G of the quantum dot on a magnetic
field B⊥ perpendicular to the 2DES and the voltage on gate gC. All other gate voltages are kept fixed
(see main text). (b) The B⊥ dependence of a relative energy corresponding to the local maxima of
G . The traces are numerically obtained from the measurement shown in (a) after a conversion of
the gate voltage to energy and subtraction of an arbitrary but B⊥-independent energy, respectively.
Black arrows mark common features of all traces. The grey vertical line indicates the first ground
state transition of the quantum dot for N � 4. Inset: qualitative prediction for the traces, using a
Fock–Darwin potential and the constant interaction model.

the transconductance minima in figure 1(c)5. The QPC transconductance measurement plotted
in figure 1(c) shows no pronounced local minima corresponding to changes of the quantum
dot charge for UgC < −1 V. This indicates that the quantum dot is here entirely uncharged.
This observation has been confirmed by further careful tests as for example variation of the
tunnel barriers or variation of the QPC lock-in frequency and QPC bias. The inferred number
of conduction band electrons N = 0, 1, . . . trapped in the quantum dot is indicated in the
Coulomb blockade regions in figures 1(b) and (c)6.

In the following we demonstrate the flexibility provided by the use of voltage tunable
top-gates for a lateral confinement of a 2DES. We first focus on the regime of a few-
electron quantum dot weakly coupled to its leads, where the shell structure of an artificial
two-dimensional atom in the circularly symmetric case is described by the Fock–Darwin
states [14, 15]. Secondly, we present measurements with the quantum dot strongly coupled
to its leads. Here we observe Kondo features. Finally, we explore the deformation of the few-
electron droplet into a serial double quantum dot by means of changing gate voltages. The
transport spectrum of this artificial molecule has been described in previous publications for
the low electron number limit (0 � N � 2) [11–13, 16].

2. Weak coupling to the leads

The regime of a few-electron quantum dot weakly coupled to its leads is reached for gate
voltages of UgL = −0.52 V, UgR = −0.565 V, and UgX = −0.3 V. The observed
Coulomb blockade oscillations are shown in figure 2(a), where the differential conductance

5 An apparent double peak structure in figure 1(b) around USD ∼ 0 can be explained by noise rectification effects.
6 The SET current shown in figure 1(b) between N = 0 and 1 cannot be resolved for USD ∼ 0. We ascribe this to an
asymmetric coupling of the quantum dot to the leads.
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G ≡ dI/dUSD of the quantum dot is plotted in a logarithmic (colour) scale as a function
of centre gate voltage UgC and magnetic field perpendicular to the 2DES B⊥. The absolute
number N of trapped electrons within the Coulomb blockade regions, derived by means of the
QPC charge detection, is indicated by numerals.

The characteristic B⊥ dependence of the local maxima of differential conductance in
figure 2(a), marking the Coulomb oscillations of SET, has also been observed via capacitance
spectroscopy of lateral quantum dots [17] and via transport spectroscopy of vertically etched
quantum dots [18].

The addition energy of a quantum dot for each electron number N can be derived from
the vertical distance (in UgC) between the local SET maxima, by converting the gate voltage
scale UgC into a local potential energy. The conversion factor for the present quantum dot
has been obtained from nonlinear transport measurements; a constant conversion factor is
used as a first-order approximation [1]. Accordingly, in figure 2(b) the B⊥ dependence of
the differential conductance maxima positions is plotted after conversion to energy scale. The
traces are obtained by numerically tracking the local SET maxima in figure 2(a). An arbitrary
but B⊥-independent energy is subtracted from each trace, such that all traces are equidistant
at B⊥ = 1 T—i.e. at a magnetic field high enough such that orbital effects are no longer
relevant to the B⊥ dependence of the addition energy. For a direct comparison the inset of
figure 2(b) displays the B⊥ dependence expected within the so-called constant interaction
model [1], that approximates many-particle effects with a classical capacitance term, for the
so-called Fock–Darwin states. These are solutions of the single-particle Schrödinger equation
of a ‘two-dimensional atom’. In detail the vector potential of B⊥ and the Fock–Darwin
potential V = m∗ω2

0r 2/2 are considered. The latter describes a two-dimensional harmonic
oscillator with characteristic frequency ω0 and effective electron mass m∗, at the distance r
from its potential minimum [14, 15]. The harmonic approximation is justified for a few-electron
quantum dot with a relatively smooth electrostatic confinement as usually provided by remote
gate electrodes.

Although not necessarily expected for lateral quantum dots, where the tunnel barriers to
the 2DES leads automatically induce symmetry breaking, for electron numbers 1 � N � 7
the measured B⊥ dependence (figure 2(b)) resembles these model expectations (inset). The
observed and predicted pairing of SET differential conductance maxima corresponds to an
alternating filling of two-fold spin-degenerate levels [18–20].

A local maximum of addition energy is visible at N = 6, which would correspond to a
filled shell in a circular symmetric potential [18]. For 4 � N � 7 the first orbital ground state
transition is visible as cusps at 0.25 T � B⊥ � 0.3 T. The cusps are marked by a vertical
grey line in figure 2(b) and its inset, respectively. The magnetic field at which this transition
happens allows us to estimate the characteristic energy scale of the confinement potential [21]
h̄ω0 = √

2 h̄ωc(B⊥) ∼ 680 μeV. The expected maximum slopes of the E(B⊥) traces are
given by the orbital energy shift and are expected to be of the order of dE/dB⊥ = ±h̄ωc/2B ,
where ωc = eB⊥/m∗ is the cyclotron frequency in GaAs. These expected maximum slopes are
indicated in the upper-left corner of figure 2(b) and agree well with our observations.

For the 4 � N � 5 transition and at a small magnetic field B⊥ � 0.2 T our data exhibit a
pronounced cusp marking a slope reversal, as indicated by the grey ellipsoid in figure 2(b).
This deviation from the prediction of the constant interaction model seems similar to the
consequences of Hund’s rules as observed in quantum dots with high circular symmetry [18].
Along this model the electronic exchange energy would be estimated as J ∼ 90 μeV for
the involved states. However, an according deviation from the constant interaction model for
the 3 � N � 4 transition [18] predicted by Hund’s rules is not observed here. Therefore,
and since a clear rotational symmetry is never present in lateral quantum dots, a definite
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Figure 3. (a) Differential conductance G at strong coupling to the leads as a function of
perpendicular magnetic field B⊥ and gate voltage UgC. A distinct chessboard-like pattern of
enhanced conductance is observed (see dotted lines). Black arrows mark Shubnikov–de Haas
conductance minima of the 2DES in the leads. (b) Conductance traces G(UgC) at constant
B⊥ = 495 mT for different cryostat temperatures. The traces are measured along the vertical line
marked with ‘B’ in (a). (c) Cryostat temperature dependence of the conductance G at B⊥ = 495 mT
and UgC = −0.635 V (vertical grey line in (b)). The solid line is a model curve for a Kondo
temperature of TK = 1.9 K (see text for details).

identification of this ground state transition observed in our measurements is not possible. For
N � 7 the E(B⊥) traces no longer resemble the Fock–Darwin state predictions. We attribute
this to modifications of the transport spectrum caused by electron–electron interactions. In
addition, the measurements plotted in figure 2(a) indicate strong co-tunnelling currents within
the Coulomb blockade regions for N � 7. This can be seen by the growing conductance in the
Coulomb blockade regions as the electron number is increased.

At the magnetic fields of B⊥ � 0.88 T and B⊥ � 1.17 T, all traces exhibit a common
shift, as marked by black arrows in figure 2(b). This may be explained by an abrupt change of
the chemical potential in the leads, since at these magnetic fields the 2DES in the leads reaches
even integer filling factors of ν2DES = 8 and ν2DES = 6, respectively7. The integer filling factors
of the 2DES have been identified in the Coulomb blockade measurements up to ν2DES = 1 at
B⊥ � 7.1 T, whereas, in previous publications [2, 22], a shift at odd ν2DES is also observed
(data not shown)8.

3. Strong coupling to the leads

By increasing the voltages on the side gates UgL and UgR the quantum dot in the few-electron
limit is tuned into a regime of strong coupling to the leads. During this process the position
of the SET differential conductance maxima is tracked so that the quantum dot charge state
remains well known. At strong coupling we observe enhanced differential conductance in
Coulomb blockade regions due to the Kondo effect [23–25].

Figure 3(a) shows part of the transport spectrum of the quantum dot as a function of B⊥
and UgC at UgL = −0.508 V, UgR = −0.495 V, and UgX = −0.3 V. Compared to the weak

7 A step-like feature in the data at B⊥ � 1.75 T can be identified with the filling factor ν2DES = 4 (grey arrow in
figure 2(b)); however, here the observation is far less clear than at ν2DES = 6 and ν2DES = 8. At higher filling factors
ν2DES = 10, 12, . . . (also grey arrows) the effect diminishes and is partially shadowed by the orbital transitions.
8 The magnetic field has in all measurements been stepped towards higher field values. These results are thus
consistent with a shift caused by long-living eddy currents in the 2DES of the leads, as discussed in [22].

5



J. Phys.: Condens. Matter 19 (2007) 236202 A K Hüttel et al

coupling case displayed in figure 2 the SET differential conductance maxima (almost horizontal
lines) are broader in figure 3. This broadening can be explained by a much stronger coupling to
the leads. In addition, a background differential conductance increases monotonically towards
more positive gate voltage UgC. This background is independent of the Coulomb blockade
oscillations. The quantum dot is here near the mixed valence regime where charge quantization
within the confinement potential is lost. Thus, the conductance background is explained by
direct scattering of electrons across the quantum dot. Vertical lines of decreased differential
conductance, marked in figure 3(a) with black arrows, indicate minima in the density of states
at the Fermi energy of the lead 2DES caused by Shubnikov–de Haas oscillations.

Between the maxima of SET differential conductance Coulomb blockade is expected.
Instead we observe a distinct chessboard-like pattern of areas of enhanced or suppressed
differential conductance, in the region highlighted by the white dashed or dotted lines in
figure 3(a). This feature is independent of the Shubnikov–de Haas oscillations (vertical lines).
Similar phenomena have already been observed in many-electron quantum dots and have been
identified as a B⊥-dependent Kondo effect [26]. For the many-electron regime, they have been
modelled such that the magnetic field perpendicular to the 2DES leads to the formation of
Landau-like core and ring states in the quantum dot, as sketched in figure 3(c) [27, 28]. The
electrons occupying the lowermost Landau level effectively form an outer ring and dominate
the coupling of the quantum dot to its leads, whereas the higher Landau-like levels form a
nearly isolated electron state in the core of the quantum dot [27, 29, 30]9. On one hand, with
increasing magnetic field one electron after the other moves from the core into the outer ring,
and hence the total spin of the strongly coupled outer ring can oscillate between S = 0 and
1/2. Only for a finite spin does the Kondo effect cause an enhanced differential conductance.
On the other hand a change in UgC eventually results in a change of the total number and total
spin of the conduction band electrons trapped in the quantum dot.

In addition, charge redistributions between the levels of the quantum dot may influence the
SET maxima positions [9, 27, 30]. The combination of these effects explains the observed
chessboard-like pattern of enhanced and suppressed differential conductance through the
quantum dot. For a higher magnetic field where the filling factor falls below ν = 2 inside
the electron droplet a separation in outer ring and core state cannot exist any longer. The
chessboard-like pattern disappears and the Kondo effect is expected to depend monotonically
on B⊥. Indeed, for B⊥ larger than a field marked by the dashed white line in figure 3(a) the
Kondo current stops oscillating as a function of B⊥. From this we conclude that the dashed
white line in figure 3(a) identifies the ν = 2 transition inside the quantum dot.

Figure 3(b) displays exemplary traces G(UgC) of the differential conductance as a
function of the gate voltage UgC at a fixed magnetic field B⊥ = 495 mT for different
cryostat temperatures. These traces are taken along the black vertical line in figure 3(a)
marked by ‘B’. The vertical line in figure 3(b) marks the expected position of a minimum
of the differential conductance due to Coulomb blockade, as indeed observed for the traces
recorded at high temperature. At low temperature, instead of a minimum an enhanced
differential conductance is measured due to the Kondo effect. Note that the two minima
of the differential conductance adjacent to the Kondo feature in figure 3(b) show the usual
temperature behaviour, indicating that here the Kondo effect is absent (in accordance with
the chessboard-like pattern in figure 3(a)). Figure 3(c) displays the differential conductance
at the centre of the Coulomb blockade region marked by the vertical line in figure 3(b),
as a function of the cryostat temperature. The solid line is a model curve given by

9 As has been shown by the authors of [9], a comparable model based on single-particle Fock–Darwin states still
describes measurements successfully down to the range of low electron numbers 7 � N � 9. In close analogy,
reference [9] describes the transport spectrum in terms of ‘localized’ and ‘extended’ electron states.
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Figure 4. Differential conductance of the electron droplet as a function of UgC (x axis) and the
simultaneously varied side gate voltages UgL ∝ UgR (y-axis). As the gate voltage is decreased
below UgC � −1.2 V lines of conductance maxima form pairs with smaller distance, indicating the
deformation of the quantum dot into a double quantum dot (see text). Insets: a SEM micrograph
of the top gates with sketches of the approximate potential shapes of the quantum dot or double
quantum dot. The third inset shows a sketch of the stability diagram as expected for the case of a
double quantum dot. The thick solid lines are guides for the eye.

G(T ) = G0(T ′2
K /(T 2 + T ′2

K ))s + Goffset with T ′
K = TK/

√
21/s − 1 [25]. The low-temperature

limit of the Kondo differential conductance G0 is taken as a free parameter, as well as an offset
Goffset that has been introduced to take into account the effect of the temperature-independent
background current described above. For s = 0.22 as expected for spin-1/2 Kondo effect [25]
we find best agreement between the model and our data at a Kondo temperature of TK = 1.9 K,
a limit Kondo conductance G0 = 0.41 e2/h and a conductance offset Goffset = 0.73 e2/h.
All nearby areas of enhanced Kondo differential conductance display a similar behaviour with
Kondo temperatures in the range of 1.2 K � TK � 2.0 K.

In addition, the dependence of the differential conductance G on the source–drain voltage
USD has been measured for different regions of the parameter range in figure 3(a) (data not
shown). These measurements are fully consistent with above results. They display a zero-
bias conductance anomaly in the high-conductance ‘Kondo’ regions, that can be suppressed by
changing the magnetic field B⊥.

4. Deformation into a double quantum dot

The shape of the confinement potential of our quantum dot can be modified by changing the
voltages applied to the split gate electrodes. This is a general feature of electrostatically defined
structures in a 2DES. A non-parabolic confinement potential is, for example, discussed by the
authors of [10]. Here, we demonstrate a controlled deformation of the confinement potential,
transforming one local minimum, i.e. a quantum dot, into a double well potential describing
a double quantum dot. Such a transition is shown in figure 4, which plots Coulomb blockade
oscillations of differential conductance (colour scale) as a function of the centre gate voltage
UgC along the x-axis. We aim to transform a quantum dot charged by N = 0, 1, 2, . . . electrons
into a peanut-shaped double quantum dot with the same charge (see insets of figure 4). This
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is done by creating a high potential ridge between gates gX and gC, i.e. by making UgC more
negative. In order to keep the overall charge of our device constant, both side gate voltages UgL

and UgR (y-axis) are changed in the opposite direction than UgC. For the opposed centre gate
gX we choose UgX = −0.566 V, causing a significantly higher potential than in the previous
measurements.

For UgC � −1 V the Coulomb oscillations are to first order quasiperiodic, as can be seen
in the upper-right quarter of figure 4. This is expected for a single quantum dot with addition
energies large compared to the orbital quantization energies. In contrast, for more negative UgC

an onset of a doubly periodic behaviour is observed. That is, along the thick solid horizontal
line in the lower-left corner of figure 4 the distance between adjacent conductance maxima
oscillates, most clearly visible for N < 4. Such a doubly periodic behaviour is expected for
a double quantum dot in case of a symmetric double well potential. This is the case along the
thick solid line in the inset of figure 4 sketching the double quantum dot’s stability diagram. In
a simplified picture, if the double quantum dot is charged by an odd number of electrons the
charging energy for the next electron is approximately given by the interdot Coulomb repulsion
of two electrons separated by the tunnel barrier between the adjacent quantum dots. However,
for an even number of electrons the charging energy for the next electron corresponds to the
larger intradot Coulomb repulsion between two electrons confined within the same quantum
dot. Therefore, the difference between interdot and intradot Coulomb repulsion on a double
quantum dot causes the observed doubly periodic oscillation.

The asymmetry of the double quantum dot with respect to the potential minima of the
double well potential can be controlled by means of the side gate voltages UgL and UgR.
Coulomb blockade results in a stability diagram characteristic for a double quantum dot as
sketched in an inset of figure 4 depending on the side gate voltages [31–33]. Grey lines
separate areas of stable charge configurations. The corners where three different stable charge
configurations coexist are called triple points of the stability diagram. For a serial double
quantum dot with weak interdot tunnel coupling, the charge of both quantum dots can fluctuate
only near the triple points and only here is current expected to flow. The bisector of the stability
diagram (solid bold line in the inset) defines a symmetry axis, along which the double well
potential and, hence, the charge distribution in the double quantum dot is symmetric. In the case
of two (one) trapped conduction band electrons we identify our structure as an artificial two-
dimensional helium (hydrogen) atom that can be continuously transformed into an (ionized)
molecule consisting of two hydrogen atoms.

To prove the presence of a few-electron double quantum dot after performing the described
transition, we plot in figure 5 the measured stability diagram of our device. Figure 5(a) shows
the linear response dc current through the device (USD = 50 μV) as a function of the side gate
voltages UgL and UgR. Figure 5(b) displays the QPC transconductance GT ≡ dIQPC/dUgL.
The areas of stable charge configurations are marked by numerals indicating the number of
conduction band electrons in the left/right quantum dot [11, 12]. Both plots clearly feature
areas of stable charge configurations separated by either a current maximum (in (a)) or a
transconductance minimum (in (b)), respectively. The transconductance measurement confirms
the electron numbers obtained from the single quantum dot case, as even for very asymmetric
confinement potential no further discharging events towards more negative gate voltages UgL

and UgR are observed. In comparison to the grey lines in the inset of figure 4, the edges of the
hexagon pattern are here strongly rounded. This indicates a sizable interdot tunnel coupling
that cannot be neglected compared to the interdot Coulomb interaction [11, 12]. A large
interdot tunnel coupling results in molecular states delocalized within the double quantum dot.
This additionally explains the observation of finite current not only on the triple points of the
stability diagram, but also along edges of stable charge configurations in figure 5(a). Here the
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Figure 5. (a) The dc current through the double quantum dot, and (b) the transconductance
GT ≡ dIQPC/dUgL of the nearby QPC used as a double quantum dot charge sensor, with identical
axes UgL and UgR. The additional gate voltages are in both plots chosen as UgC = −1.4 V,
UgX = −0.566 V, and UgQPC = −0.458 V.

total charge of the molecule fluctuates, allowing current via a delocalized state. In previous
publications the low-energy spectrum of the observed double well potential was analysed and
the tunability of the tunnel coupling demonstrated [11, 12].

5. Summary

Using a triangular gate geometry, a highly versatile few-electron quantum dot has been defined
in the 2DES of a GaAs/AlGaAs heterostructure. The couplings between the quantum dot and
its leads can be tuned in a wide range. For weak quantum dot–lead coupling, the shell structure
of the states for 1 � N � 7 trapped conduction band electrons is observed. The transport
spectrum supports the assumption of a Fock–Darwin-like trapping potential and subsequent
filling of spin-degenerate states. For strong quantum dot–lead coupling, a chessboard pattern
of regions of enhanced zero bias conductance as a function of a magnetic field perpendicular
to the 2DES and the centre gate voltage is observed. The enhanced conductance regions are
explained in terms of the Kondo effect, induced by the formation of Landau-like core and ring
states in the quantum dot. Finally, for strongly negative centre gate voltages, the quantum dot
trapping potential can be distorted at constant charge into a peanut-shaped double quantum dot
with strong interdot tunnel coupling.
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[2] Ciorga M, Sachrajda A S, Hawrylak P, Gould C, Zawadzki P, Jullian S, Feng Y and Wasilewski Z 2000 Phys.
Rev. B 61 16315

[3] Elzerman J M, Hanson R, Greidanus J S, Willems van Beveren L H, De Franceschi S, Vandersypen L M K,
Tarucha S and Kouwenhoven L P 2003 Phys. Rev. B 67 161308

[4] Petta J R, Johnson A C, Marcus C M, Hanson M P and Gossard A C 2004 Phys. Rev. Lett. 93 186802
[5] Pioro-Ladrière M, Abolfath M R, Zawadzki P, Lapointe J, Studenikin S A, Sachrajda A S and Hawrylak P 2005

Phys. Rev. B 72 125307
[6] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[7] van der Wiel W G, Fujisawa T, Tarucha S and Kouwenhoven L P 2001 Japan. J. Appl. Phys. 40 2100
[8] Field M, Smith C G, Pepper M, Ritchie D A, Frost J E F, Jones G A C and Hasko D G 1993 Phys. Rev. Lett.

70 1311
[9] Sprinzak D, Ji Y, Heiblum M, Mahalu D and Shtrikman H 2002 Phys. Rev. Lett. 88 176805

[10] Kyriakidis J, Pioro-Ladrière M, Ciorga M, Sachrajda A S and Hawrylak P 2002 Phys. Rev. B 66 035320
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