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Abstract

Semiconductor quantum dots, so-called artificial atoms, have attracted considerable interest as mesoscopic model systems and

prospective building blocks of the ‘‘quantum computer’’. Electrons are trapped locally in quantum dots, forming controllable and

coherent mesoscopic atom- and moleculelike systems. Electrostatic definition of quantum dots by use of top gates on a GaAs/AlGaAs

heterostructure allows wide variation of the potential in the underlying two-dimensional electron gas. By distorting the trapping potential

of a single quantum dot, a strongly tunnel-coupled double quantum dot can be defined. Transport spectroscopy measurements on such a

system charged with N ¼ 0; 1; 2; . . . electrons are presented. In particular, the tunnel splitting of the double well potential for up to one

trapped electron is unambiguously identified. It becomes visible as a pronounced level anticrossing at finite source drain voltage.

A magnetic field perpendicular to the two-dimensional electron gas also modulates the orbital excitation energies in each individual dot.

By tuning the asymmetry of the double well potential at finite magnetic field the chemical potentials of an excited state of one of the

quantum dots and the ground state of the other quantum dot can be aligned, resulting in a second level anticrossing with a larger tunnel

splitting. In addition, data on the two-electron transport spectrum are presented.

r 2006 Elsevier B.V. All rights reserved.

PACS: 73.21.La; 73.23.Hk; 73.20.Jc
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0. Introduction

Electrostatically defined semiconductor double quantum
dots [1] have over the recent years attracted a large amount
of interest originating from different motivations. On one
hand, quantum dots and coupled quantum dots provide a
fully tunable mesoscopic model system as ‘‘artificial
atoms’’ [1] and ‘‘artificial molecules’’ [2,3], respectively.
Electrons are trapped locally in externally controllable
potential wells. In addition, transport spectroscopy allows
direct observation of many fundamental quantum-mechan-
ical phenomena, ranging e.g. from shell filling [4] and
molecular hybridization [5–7] to interaction with the crystal
lattice [8,9] and coherent motion of electrons [10,11]. On
e front matter r 2006 Elsevier B.V. All rights reserved.
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the other hand, several proposals for using the charge or
spin states of electrons trapped in quantum dots as qubits,
the elementary registers of the proposed quantum compu-
ter, have emerged. Foremost, the use of a single electron
spin provides a well-defined two-level system [12]. In
addition, several other differing schemes for using quan-
tum dots in quantum information processing have been
proposed [11,13–15].
The material system in use is a AlGaAs/GaAs hetero-

structure, forming a two-dimensional electron gas (2DEG)
120 nm below the crystal surface. The electron sheet density
of the 2DEG at T ’ 4:2K is ns ’ 1:8� 1015 m�2, the
electron mobility m ’ 75m2=Vs. Using optical and e-beam
lithography, gate electrodes are deposited on the chip
surface. When a negative voltage is applied to these
electrodes with respect to the 2DEG, the Schottky barrier
between metal and semiconductor prevents current. For a
sufficiently negative gate voltage, the electrical field,
however, raises the conduction band edge in the 2DEG
locally near the electrode above the Fermi energy, leading
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to a depletion of the 2DEG. Using several gate electrodes
(‘‘split gates’’) and adapting the electrode geometry,
conducting islands within an otherwise non-conducting
crystal are formed—the electrostatically defined quantum
dots.
1. Distortion of a quantum dot into a double quantum dot

Fig. 1(a) displays a SEM micrograph of the gate
geometry that has been used in the measurements. The
2DEG itself is contacted outside the depicted region, where
Ohmic contacts have been formed via germanium nþ

doping [16]. The confinement potential within the plane of
the 2DEG is generated by four gate electrodes, marked
with gL, gR, gC, and gX. Two tunnel barriers, between gates
gL and gX, or gR and gX, respectively, connect the
quantum dot to the 2DEG forming the source (S) and
drain (D) leads. The shape of the gate electrodes, adapted
from a geometry first published in Ref. [17], is optimized
such that the size of the quantum dot and thereby the
number of trapped electrons can be decreased strongly
while still maintaining a measurable tunnel rate to the
leads. It has been shown that this and similar gate
geometries allow to measure a single electron tunneling
(SET) current even in the limit of only one trapped electron
in the quantum dot [17,18].

In addition, gates gR and gQPC as marked in Fig. 1(a)
can be used to define a quantum point contact (QPC), i.e. a
one-dimensional constriction of the 2DEG. Conductance
quantization leads here for specific gate voltage ranges to a
strong dependence of the tunnel current through the QPC
on the local electrostatic potential [19,20]. The QPC can
thus be used as a charge sensor, detecting a change of the
number of electrons in the nearby quantum dot [18,21,22].
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Fig. 1. (a) SEM micrograph of the gate electrode geometry used to define

a double quantum dot (DQD) and a quantum point contact (QPC). The

approximate positions of DQD and QPC and the current paths are

indicated in white. (b) Current through the DQD as function of the side

gate voltages UgL and UgR (USD;DC ¼ 50mV, logarithmic color scale).

The black dashed lines trace the gate voltages where the total charge in the

DQD changes by 1e, as detected by the quantum point contact [7].
Measurements of the transport spectrum of the quantum
dot as well as the QPC charge detection prove that the
charge of the observed quantum dot can be controlled all
the way down to a total electron number N ¼ 1. In the few
electron limit the electronic shell structure within the
confinement potential becomes clearly visible [4,23]. In
addition, the confinement potential can be shaped via
adjustments of the top gate voltages. Thus, by application
of increasingly negative gate voltages on the center gates
UgC and UgX, accompanied by appropriate balancing of
the voltages on the side gates UgL and UgR, the electronic
trapping potential can be distorted into a double well
potential [7,23,24]. This way, a double quantum dot is
shaped. During the deformation process, the Coulomb
blockade oscillations can be traced. Between the gate
voltages marking SET current the number of trapped
electrons remains constant, thereby disclosing the charge of
the resulting double quantum dot.
A charge stability diagram of the strongly coupled

double quantum dot is displayed in Fig. 1(b). Here, the
linear response DC current (USD ¼ 50mV) is plotted as a
function of the side gate voltages UgL and UgR. Dashed
lines mark gate voltages where the QPC detects a change of
the total charge in the double quantum dot. In the lower
left region of the plot no further changes in charge
occupation are observed, confirming that here the double
quantum dot is completely emptied of conduction band
electrons [7].
The regular pattern of the stability diagram shows areas

of stable charge configurations caused by Coulomb
blockade, where the electron numbers in both quantum
dots are fixed. In a double quantum dot having weak
interdot coupling these areas correspond to pronounced
hexagons [25,26]. The strong tunnel coupling within the
double quantum dot present in this particular measure-
ment, however, causes a rounding of the hexagon edges by
means of the sizable hybridization energy [2]. Such an
‘‘artificial molecule’’ forms delocalized symmetric (bond-
ing) and antisymmetric (antibonding) states.
In a weakly tunnel-coupled double quantum dot, the

electron number in Coulomb blockade is a fixed integer in
each dot. Then, SET current through a serial double
quantum dot is only possible when the electron number can
fluctuate in both quantum dots, as at the triple points of
the stability diagram [26]. Here, three charge configurations
are energetically degenerate. In the case of strong tunnel
coupling between the two dots, however, the delocalized
molecular states carry SET current. Hence, current is
detected along the hexagon edges of the stability diagram,
along which two charge configurations are degenerate, as
can be observed in Fig. 1(b).

2. One-electron transport spectrum

The transport spectrum in linear response, measured
with a very small source-drain voltage, provides access only
to the quantum mechanical ground state of each charge
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configuration. For obtaining information on excited states,
the source-drain voltage USD has to be sufficient to provide
electrons with an excess kinetic energy larger than the
excitation energy. At finite USD each triple point of the
charge stability diagram expands in a characteristic way
into a larger region where SET current can be observed.
For weak tunnel coupling, these regions form a triangular
shape in the stability diagram [26–28]. A differential
conductance measurement observes the edges of the
triangles.

Fig. 2(a) displays the differential conductance of our
double quantum dot at strong tunnel coupling, for an
applied source-drain voltage USD ¼ �0:75mV. In contrast
to the expectation for weak interdot tunnel coupling the
lines of finite differential conductance observed here do not
trace a single triangle. Instead, the first triple point of the
stability diagram, where the charge configurations with
electron numbers in the left and right quantum dot
NL=NR ¼ 0=0, 0=1, and 1=0 contribute to transport,
expands into three lines marked as I, II, and III. The
distance between lines I and III is increasing with source-
drain voltage. As is also confirmed by DC current
measurements (data not shown), along line I the transport
window of finite SET current opens. Thus, here the
chemical potential corresponding to the molecular ground
state is aligned with the Fermi edge of the 2DEG in the
source contact. Along line III, the transport window closes
again, as the ground state chemical potential is aligned with
the drain chemical potential. Note that by choosing the
energy zero, we can assume this chemical potential

mþð1Þ � Eþð1Þ � Eð0Þ ¼ Eþð1Þ þ const. (1)

to be equal to the molecular ground state energy Eþð1Þ,
since the energy of the empty quantum dot Eð0Þ can be
assumed constant.
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Fig. 2. (a) Differential conductance of the double quantum dot, as

function of the side gate voltages UgL and UgR, around the first triple

point of the stability diagram near charge configurations

NL=NR ¼ 0=0; 1=0; 0=1. A large source-drain voltage USD ¼ �0:75mV

is applied. (b) The same data, plotted in the intrinsic coordinate system of

the double quantum dot (average energy S of the double well potential

and potential asymmetry D, see text). The model expectations for a two-

state system are overlayed.
Line II of enhanced differential conductance in between
lines I and III has to correspond to the opening of an
additional transport channel via an excited state. Its
meaning becomes immediately clear when plotting the
measured data in an intrinsic coordinate system of the
double quantum dot. This has been done in Fig. 2(b),
where the same measurement data as in Fig. 2(a) is plotted
after applying a linear coordinate transformation. Using
additional calibration measurements as well as the data
presented here, the influence of each gate voltage UgL and
UgR on the chemical potentials for adding an electron in
the left quantum dot mL and for adding an electron in the
right quantum dot mR has been calculated. The two axes
now designate the average potential in the two dots S ¼
ðmL þ mRÞ=2 and the potential asymmetry D ¼ ðmR � mLÞ=2.
As can be seen in Fig. 2(b), lines I and II form a level

anticrossing as function of the potential asymmetry D.
They obviously correspond to the symmetric ground state
and the antisymmetric excited state of the single electron
double quantum dot. The anticrossing is well described as a
function of the potential asymmetry D by

E�ð1Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ t20

q
, (2)

defining the white model lines in Fig. 2(b), where 2t0 ¼

0:2meV is the tunnel splitting.
The identification of these lines of enhanced differential

conductance enables us to obtain the dependence of the
tunnel splitting on external parameters in a straightforward
way. Since the distance between lines I and III of enhanced
conductance corresponds to the energy scale of the
externally supplied and controlled source-drain voltage, it
provides a means of energy calibration. By comparing it to
the minimum distance between lines I and II in the same
direction in one of the plots of Fig. 2 and linearly scaling
the energy, the tunnel splitting is obtained. This can be
done for both the raw data (Fig. 2(a)) and the data after
coordinate transformation (Fig. 2(b)), since the linear
transformation preserves the length ratio. Other character-
istic energy values, as e.g. the charging energy for the
second electron E2, can be measured in a similar way.
In addition, information on the time-averaged electron

number within the SET region can be extracted by observing
the quantum point contact charge detection. Since the
effective tunnel rates into and out of the double quantum
dot depend on both the tunnel barrier properties and the
probability density of the electronic wavefunction, by
varying D and thereby shifting the wavefunction informa-
tion on the transmittance of the tunnel barriers coupling the
double quantum dot to the leads is obtained [7].

3. One-electron transport spectrum at high magnetic field

Applying a magnetic field B? perpendicular to the
2DEG modifies the transport spectrum. The decreasing
magnetic length LB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_=jejB?

p
causes a compression of

the electronic wave functions. Thus, the effective tunnel
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rate through all tunnel barriers in the nanoscale structure
decreases. This leads to a uniform decrease of SET current,
which is partly due to the shrinking of the molecular tunnel
splitting. Fig. 3(a) displays a double well potential, where
the center barrier of effective amplitude f defines the
interdot tunnel splitting. We now introduce a simple model
to describe the effect of a perpendicular magnetic field B?
on the interdot tunnel splitting. The center of charge
distance d1 of the two quantum dots is assumed to be
independent of B?. The size of the quantum dots shrinks in
a perpendicular magnetic field, and approaches LB when
the magnetic length becomes smaller than the geometrical
confinement of the quantum dots. Thus, the diameter of
both quantum dots is assumed to scale with the Fock–
Darwin length [29]

LFD ¼
LBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4o2
0=o

2
c

4

q , (3)

where o0 describes the harmonic oscillator potential and
oc ¼ jejB?=m� is the cyclotron frequency. This defines a
magnetic field dependent ‘‘effective tunnel barrier width’’

dðB?Þ ¼ d1 � LFDðB?Þ. (4)

Inserting this expression into the WKB approximation
yields a functional dependence for the tunnel splitting
2t0ðB?Þ. Fig. 3(b) displays the measured tunnel splitting as
well as a model curve (solid line) with o0, d1, and f as fit
parameters [7]. The agreement with our data is satisfactory.

A magnetic field perpendicular to the 2DEG not only
leads to magnetic compression of the quantum states, but
also modifies the orbital level spectrum. In our case for
d

d

LFD

E0

�

0.01

0.1

1

2t
0 

(m
eV

)

0 0.5 1 1.5 2

B⊥(T)

UgC = -1.47V

 Σ
 (m

eV
)

(b)

(a)

(c)

∞

Fig. 3. (a) Scheme of the WKB model for the dependence of the tunnel splittin

the symbols used in the text. (b) Measured dependence of 2t0 on B?. The soli

double quantum dot at B? ¼ 1:4T. Differential conductance G as function of t

potential asymmetry.
B?\1T, an additional excited state enters the transport
window defined by the source-drain voltage [30], as shown
in Fig. 3(c) for B? ¼ 1:4T. Here, the excited state becomes
visible as new line of enhanced conductance marked with
I�. Remarkably, for a large potential asymmetry D ’
0:275meV, a second level anticrossing involving lines I�

and II becomes visible. Whereas the tunnel splitting
2t0 ¼ 0:064meV, as obtained in Ref. [7] for the ground
state–ground state hybridization, is already strongly
decreased at B? ¼ 1:4T, for this second level anticrossing
the splitting remains 2t�0 ’ 0:2meV. The energy level
diagrams that are shown as insets in Fig. 3(c) illustrate
the origin of the observed second anticrossing. In this case,
the ground state of one of the quantum dots and an excited
state of the other dot are energetically aligned, leading to
hybridized molecular states. Consistently, this is also
observed when measuring DC current, where delocaliza-
tion causes a significant increase in SET tunneling, and in
the QPC signal (data not shown).
The situation involving both single dot ground states

and one additional excited state can be modeled by the
Hamiltonian

H¼
:

D �t0 �t�0

�t0 �D 0

�t�0 0 �Dþ ��

0
B@

1
CA, (5)

where D and 2t0 again describe the ground state two-level
system. The excitation energy in one of the two quantum
dots is given by �� and the tunnel splitting caused by
hybridization between this excited state and the ground
state of the other dot is 2t�0. The model curves in Fig. 3(c)
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(solid lines) correspond to this Hamiltonian for
2t0 ¼ 0:064meV, 2t�0 ¼ 0:2meV, and �� ¼ 0:55meV. They
show good agreement with the measured data.2
4. Two-electron transport spectrum

A large body of theoretical literature has been dedicated
to the level spectrum of a double quantum dot occupied
with two electrons, the ‘‘quantum dot hydrogen molecule’’
[12,31–34]. This is to a considerable extent due to the
proposed use of the spin exchange coupling for realizing
controlled two-spin interaction, or ‘‘two-qubit gates’’. The
ground state for N ¼ 2 is at zero magnetic field expected to
be a singlet, the first excited states are given by three spin-
degenerate triplet states. In both cases the two electrons are
predominantly distributed over the double quantum dot.
The energy difference between singlet and triplet is the
effective Heisenberg exchange coupling J. Time-resolved
experiments have recently been successfully used for
quantifying J in the weak coupling limit [11]. However,
few data on direct DC observation of the two electron
levels in GaAs in the strong coupling case is published.

Fig. 4(a) displays a measurement of the transport
spectrum near the triple point for degenerate charge
configurations NL=NR ¼ 1=020=121=1. Here, the
charge of the symmetric double quantum dot varies
between one and two electrons. By means of the voltage
on gate gC, which couples nearly equally to both quantum
dots, the electrostatic potential in both dots is varied
simultaneously keeping the double quantum dot approxi-
mately symmetric. A gradual modification of 2t0 is
naturally expected in this case and has been observed.
In addition, USD can influence the potential asymmetry D.
2The actual value of the parameter 2t0 ¼ 0:064meV is taken from

magnetic field dependent measurements shown in Ref. [7] that also take

into account the data of Fig. 3(c).
A detailed treatment of these effects is, however, outside
the scope of this article. In Fig. 4(a) the conductance is
plotted as function of USD and UgC, displaying diamond-
shaped regions of Coulomb blockade similar as in the case
of a single quantum dot.
From comparisons with measurements as shown in

Fig. 2, the three dominant lines of enhanced differential
conductance can be unambiguously identified. At line IV,
the two-electron ground state enters the transport window.
The source-drain voltage provides sufficient energy that
even an energetically lower-lying electron can leave the
quantum dot, such that the dot remains in the excited
antisymmetric one-electron state. Along line V, this second
transport channel is ‘‘switched off’’, meaning that only the
molecular ground states for N ¼ 1 and N ¼ 2 electrons
contribute to transport. Line VI then again corresponds to
the transition into Coulomb blockade with N ¼ 2. Thus,
these main features directly mirror the data of the first
triple point. At the left edge of the plot, at high source-
drain voltage line III of the first triple point becomes
visible, bordering the two electron tunneling region.
Fig. 4(b) displays the theoretical expectations for the

transport spectrum in this parameter region under the
condition 2t05_o0, as presented in Ref. [32]. As stated
previously, for the first triple point the energy of the one-
electron molecular states can be treated synonymously with
the associated chemical potential mð1Þ ¼ Eð1Þ � Eð0Þ ¼
Eð1Þ þ const: Here, the chemical potential that has to be
aligned with the source or drain Fermi edge is given by the
relation

mð2Þ ¼ Eð2Þ � Eð1Þ, (6)

with Eð2Þ as a two-electron eigenenergy and Eð1Þ as a one-
electron eigenenergy. Thus, both the one and two electron
level spectra are expected to be visible in transport. The
triplet states separated by the exchange energy J from the
singlet state result for certain conditions in a second line of
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finite differential conductance parallel to both line IV and
V [32].

A comparison of experiment (Fig. 4(a)) and theory
(Fig. 4(b)) displays significant differences. In the measure-
ment data of Fig. 4(a), the additional line marked ‘‘?’’ with
an excitation energy D�42� 2t0 probably corresponds to a
higher orbital one-electron excitation. In the lower-energy
range, a pronounced region of negative differential
conductance becomes visible. Although excited states are
observed, a unique identification has not been possible for
most of the lines that involve two electron states. Clearly,
our data do not allow the identification of the exchange
coupling J. A possible reason for this is that the
confinement potential is already quite shallow for the more
positive gate voltages UgC required to reach 1pNp2. For
0pNp1 a higher excited orbital state can e.g. be observed
at an excitation energy D��0:4meV, as indicated in
Fig. 2(a) with a black arrow. At the gate voltages present
in the 1pNp2 region, however, a nearly regular pattern of
two-electron excited states with excitation energies
D��0:2; 0:4; 0:55meV is found. While difficult to recog-
nize in the raw data of Fig. 4(a), where the corresponding
resonances are indicated with white dashed lines, they can
be easily seen in the line plot of Fig. 4(c). Here, the
differential conductance along multiple traces through
Fig. 4(a) starting from line IV and parallel to line VI (as
indicated by the black arrows) is averaged. One-electron
resonances run parallel to line VI and are therefore not
visible in the line plot, whereas two-electron resonances
occur at fixed distances to line IV and are emphasized by
this averaging. Assuming that these regularly spaced
resonances correspond to orbital excitations within the
single quantum dot potential wells and thereby
_o0�0:2meVt2t0, further level hybridizations can take
place, and a complex level spectrum is expected.

Because of the strong tunnel coupling between the double
quantum dot and its leads, it has been possible to observe
Kondo-enhanced differential conductance for the one, two,
and three electron case in the presented double quantum
dot. More details will be published in the near future [35].

5. Summary

Measurements on a strongly coupled double quantum
dot are presented. It is defined by deforming the confine-
ment potential of a single quantum dot in the two-
dimensional electron gas of a GaAs/AlGaAs heterostruc-
ture. For N ¼ 1 trapped electron, the excitation energy of
the first molecular orbital excited state displays a distinct
level anticrossing with the ground state. This enables the
direct identification of the symmetric molecular ground
state and the antisymmetric molecular excited state of the
double well potential in transport spectroscopy.

The effect of a magnetic field B? perpendicular to the
2DEG is discussed. Magnetic compression of the wave-
function leads to a decrease in tunnel splitting, which can
be modeled using the WKB approximation. At high field
B? ¼ 1:4T and high potential asymmetry, a second level
anticrossing becomes visible when an excited state of one
quantum dot hybridizes with the ground state of the other
dot. Further, data on the two-electron transport spectrum
of the double quantum dot are presented, where the strong
coupling and level broadening prevents a non-ambiguous
identification of the quantum states.
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