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Abstract

An analytical formulation of the interband optical transmission and reflectivity spectra of a single
quantum dot embedded in a semiconductor is presented. We consider the effect of the sample surface
as well as other reflecting surfaces on the shape of the spectra near the ground state exciton resonance.
The saturation of the transmission and reflectivity spectra due to the quantum optical saturation of
the transition at higher light power is presented.
© 2004 Elsevier Ltd. All rights reserved.

A quantum dot, very much like an atom, absorbs or scatters light at discrete optical
frequencies [1–3]. The scattering is resonant when the photon energy matches an exciton
energy level [4]. A recent development has been the detection of these resonances in
individual dots using optical transmission and reflection experiments. These experiments
use tunable lasers with narrow spectral lines [5–9]. In the existing literature, the analysis
of the transmission spectra isvery simplified in that the effect of the sample surface and
other interfaces close to the dots has been ignored. Furthermore, the non-linear effects
inherent to the saturation of the absorption at high optical power have also been neglected.
In this paper we present a model with which we derive expressions for the single dot
transmission and reflection coefficients. We consider realistic samples containing quantum
dots as can be grown by self-assembly in molecular beam epitaxy. We include the effects of
the sample surface, and extend these to thecase of a quantum dot interacting with a tunable
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E0

Fig. 1. Schematic view of a dot in the beam of a focused laser spot. This represents a transmission experiment.
The electric components of the optical driving fields are shown. The dot is positioned in the region with the
narrowest beam waist.

Fabry–Perot resonator. We point out that the excitonic optical transition in a single quantum
dot saturates at very modest power densities, and based on the two-level approximation,
we calculate the non-linear behavior of the absorption coefficient as a function of the light
power.

1. Transmission and reflectivity in the weak absorption limit

In one experimental arrangement designed to measure the optical properties of a single
quantum dot, a high numerical aperture objective lens focuses a collimated laser beam
down to a diffraction limited Gaussian spot size [7, 8]. This geometry has the advantage
over nano-optical techniques involving sub-wavelength apertures that the intensity profile
of the probing beam is very well known. We assume that the probing spot is centered
over a singlequantum dot. In a classical description, the dot is polarizable and can be

driven into resonance by the electric component0 of the light. The dot responds by

emitting an electromagnetic field with strengthT . In a carefully designed transmission
experiment, the detector should collect the transmittedlight in a solid angle corresponding
to the numerical aperture of the illuminating objective. When measuring the reflectivity, the
back-scattered light can be collected with theobjective lens which matches naturally the
illumination and reflectivity solid angles. In transmission, the photo signal is proportional

to | 0 + T |2, and in reflectivity, the photo signal is proportional to| R |2 where we
assume at this stage that the dot is embedded in a homogeneous medium with optical
indexn, far from any reflecting surface. This is obviously not a realistic case for most solid
state quantum dots which are typically located within a few hundred nanometers from
the surface. Nevertheless, we use this idealization as a necessary staring point, including
subsequently the effects of a free surface. Atthis stage we also assume that the light
intensity is low enough that the dot remains in the linear response regime. In order to
evaluatethe transmission and reflection coefficients of the dot, we need to calculate the
forward-scattered and back-scattered fields, respectively,

T = 0 + S and R = S, (1)

whereES is the amplitude of the scattered field.Fig. 1 shows that the dot experiences a
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driving field with a flat phase front over the areaA of the focused spot. In this situation,
the dot is excited essentially by a quasi plane wave with onedot per unit areaA. This
is a reasonable assumption considering that tightly focused spots are orders of magnitude
larger than the dot itself.

We use the optical theorem [10] to relate the total amount of forward-scattered light
to the field scattered along the direction of the impinging plane wave. The problem is
now identicalto that of the optical transmission and reflectivity of an infinite plane of
uniformly distributed identical quantum dots with an areal density 1/A. The fieldof such
an oscillating two-dimensional dipole system is given by [11],

S = 1

A

e

2ε0cn
(t − z/c), (2)

showing that we need to calculate the time derivative of the dipole oscillation amplituder .
The distancez is the distance to the plane of dots. This formula is correct for allz, even
in the near-field whenz � λ [11]. The discrete spectrum of the dot’s excitonic resonances
is included in the frequency response of the dipole. A semi-classical analysis of the dot’s
response gives,

= −e 0

m0

∑
k

fk

ω2
k − ω2 − iωΓk

, (3)

where fk is the oscillator strength of the resonance at angular frequencyωk , andΓk is the
corresponding dephasing rate for that resonance. For simplicity we will consider here only
the ground state resonanceω0 with a dephasing rateΓ and an oscillator strengthf . If more
than one optical transition has to be considered, the model can be easily extended using the
full summation given in the formula above. In order to calculate the time derivative of the
dipole oscillation amplitude, we consider an electromagnetic driving field with amplitude
E0 and time-dependence exp(−iωt), in which case,

= e f 0

m0

iω

ω2
0 − ω2 − iωΓ

. (4)

This implies that the scattered fieldES is now,

S = 1

A

e2 f

2ε0cm0n

iω

ω2
0 − ω2 − iωΓ

0. (5)

This expression can be conveniently simplified considering the realistic case of sharp
exciton resonances for whichΓ � ω0, giving,

S = α0

2

−iγ

δ + iγ
0, (6)

where

δ = ω − ω0, (7)
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is the detuning (the angular frequency measured from the resonance), andγ is half the
dephasing rate,

γ = Γ/2. (8)

The constantα0 is given by,

α0 = 1

A

e2 f

ε0cm0nΓ
, (9)

which, as we will see shortly, is the absorption at the resonance. The oscillator strength can
be related to the optical dipole momentµ12 of the excitonic transition [12],

f = 2m0ω0

�

(µ12

e

)2
. (10)

Numerically this corresponds to,

f = 26.2�ω (in eV) {(µ12/e) in nm}2, (11)

or equivalently,

(µ12/e) (in nm) = 0.195{ f/�ω (in eV)}1/2. (12)

For example, for a self-assembled InAs dot grown by molecular beam epitaxy, we have
determined f = 11.8 at photon energy�ω = 1.28 eV. This corresponds toµ12/e =
0.59 nm. Several papers refer to the dipole moment in units of Debye [5, 6] where
1 Debye= 3.335 64× 10−30 C m. In the above example, the dipole moment corresponds
to µ12 = 28.4 Debye. The reasonf is considerably largerthan 1 arises because the
dipole is part of a semiconductor matrix. Without electron–hole correlations, the oscillator
strength can be related to the Kane matrix elementE p. E p describes the strength of the
dipole coupling between the s- and p-atomic orbitals. Assuming a perfect overlap of the
electron and hole wave functions in the quantum dot, the result isf = E p/2�ω [4]. E p

is almost the same for InAs and GaAs; taking the GaAs value (25.7 eV), theprediction is
that f = 10.0 for �ω = 1.28 eV, in good agreement with the experimental result. Electron
and hole correlations increase the oscillator strength and although they play a modest role
for self-assembled quantum dots, they increase the oscillator strength for so-called natural
quantum dots [5, 6].

An important point is that the product,

α0γ = 1

A

e2 f

2ε0cm0n
= 1

A

�ω0µ
2
12

�2ε0nc
, (13)

is a direct measure of the dipole moment of the exciton. This is true independent of
the dephasing rate and therefore also independent of the dephasing mechanism. This
product can be directly determined from resonant transmission spectra, yielding a direct
measurement of the dipole moment.

Experimentally, one measures the transmission and reflectivity coefficients given by,

T =
∣∣∣∣ E0 + ES

E0

∣∣∣∣
2

and R =
∣∣∣∣ ES

E0

∣∣∣∣
2

. (14)
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Using the expression for the scattered field, we find that,

T =
(

1 − α0

2

γ 2

δ2 + γ 2

)2

+
(

α0

2

γ δ

δ2 + γ 2

)2

, and (15)

R =
(

α0

2

γ 2

δ2 + γ 2

)2

. (16)

In presentlyexisting experiments [5–9], the scattering is weak, i.e.α0 � 1, in which case
the expression for the transmission simplifies further to,

T ∼= 1 − α0
γ 2

δ2 + γ 2
, (17)

where it is nowobvious thatα0 is the maximum contrast�T in the transmission spectrum.
The resonance lineshape is a Lorentzian with a full width at half maximum (FWHM) of
Γ = 2γ . It is important to note that the corresponding result for the reflectivity with these
assumptions implies that the maximum contrast of the dot reflectivity is�R = (α0/2)2,
a factor α0/2 smaller than �T . This hasdramatic consequences. For instance, in our
experiments [8] α0 was typically of the order of 10−3, implying a reflectivity contrast of
just 5× 10−7 which would be extremely difficult to measure. The contrast in transmission
is much higher than in reflectivity because the transmitted field is a coherent superposition
of the driving laser field with the forward-scattered field. Such a superposition is equivalent
to a homodyne detection. In this sense, a transmission measurement has an automatically
in-built homodyne detection. This homodyne detection is clearly absent in the case of the
back-scattered field assuming, as we have done throughout so far, that the dot is completely
buried in a homogeneous semiconductor. However, a homodyne detection can be included
also in the reflectivity measurement by superposing coherently the back-scattered field
with a reference driving light field. Thiscan be achieved in practice simply by using
the surface of the semiconductor to give a reference back-scattered beam. This has an
advantage over the transmission because the phase of the scattered field relative to the
reference field can easily be tuned, allowing interferometry to be carried out on a single
quantum dot. In general, since the dot is almost always located near the sample surface,
the reflectivity is strongly influenced by the sample surface, a case we consider in detail
in Section 4.

2. Radiation damping

The dephasing rate determines the FWHM of the resonance of the transmission
described in Eq. (17). The fundamental limit to the exciton dephasing is given by
the radiation damping. In this case, dephasing occurs when the exciton relaxes by
spontaneously emitting aphoton. The dephasing rate is then given by [11, 13, 14],

Γsp = 2γsp = 2π

3(λ/n)2

e2 f

ε0cm0n
= n

2π

3λ2

e2 f

ε0cm0
, (18a)
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or equivalently,

Γsp = 2γsp = 2π

3(λ/n)2

2�ω0µ
2
12

�2ε0nc
= 8π2n

3λ3

µ2
12

�ε0
. (18b)

Numerically, the energy broadening (FWHM) due to spontaneous emission is,

�Γsp (µeV) = 0.0146
n f

λ2 (µm)
, (19)

corresponding to a radiation life time of the exciton

τsp (ns) = 1

Γsp
(ns) = 45

λ2 (µm)

n f
. (20)

For an InAs self-assembled quantum dot [8], λ = 0.970µm, f = 11.8 andn = 3.6 (for
GaAs) from which we determineΓsp = 0.66 µeV andτsp = 1 ns. Suchsmall values of
the line width have not yet been achieved. Instead, in this experiment the line width was
found to be 2µeV, larger than the limit for radiation dephasing, but still the smallest yet
recorded for a semiconductor quantum dot. The dephasing is most likely dominated by
acoustic phonon scattering at 4 K, the temperature at which the experiments were carried
out.

The limit of radiation broadening determines the maximum possible resonant
absorption. Substituting the relaxation rateγsp into the expression for the absorption
strength (Eq. (10)), we obtainαsp, the absorption at the resonance for a radiation damped
exciton,

αsp = 3

2π

(λ/n)2

A
. (21)

Remarkably, theabove expression shows that when the dephasing is dominated by
radiation damping, the maximum contrast in the transmission and reflectivity spectra no
longer depends on the oscillator strengthf . When the driving laser has a Gaussian beam
profile of diameterφFWHM measured at half maximum intensity, the illumination areaA is
given by,

A ∼= 1.13φ2
FWHM. (22)

So, assuming that the dot is placed at the center of the illuminated spot, the numerical value
of the maximum absorption contrast for such an experiment is given by,

αsp ∼= 0.423

(
λ

nφFWHM

)2

. (23)

For thecase of a quantum dot emitting atλ = 0.970µm, beam-width ofφFWHM = 1.3 µm,
and n = 3.6 (the GaAs value), values appropriate to the experiment [8], the expected
maximum contrast in transmission would be ideallyαsp = 1.82%. We remark here that a
reduction of the laser spot diameter by a factor of about 3 would increase the strength of
the absorption peak to about 20%. This experimental situation has not yet been achieved.

We showedabove in the analysis leading to equation Eq. (13) that the product of the
maximum absorption and the dephasing rate depends only on the oscillator strength and
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Fig. 2. Calculated transmission and reflectivity for aquantum dot as a function of the photon energy detuning from
the ground state exciton resonance. Curves labeled (a) arecalculated for an exciton life time of 1 ns, and (b) with
a life time of 200 ps. We assumed a Gaussian optical probing spot of 1µm (FWHM). The optical resonance is
assumed at wavelengthλ = 1 µm.

the illumination area. In terms of the width of the resonance,

αspΓsp = α0Γ = 1

A

e2 f

ε0cm0n
, (24a)

or equivalently,

αspΓsp = α0Γ = 1

A

2�ω0µ
2
12

�2ε0nc
. (24b)

For a Gaussian spot withA = 1.13φ2
FWHM, the numerical value of the preceding equation

is,

α0�Γ (µeV) = 6.17× 10−3 f

nφ2
FWHM (µm)

. (25)

Equivalently, the oscillator strength is determined by,

f = 162nφ2
FWHM (µm)α0�Γ (µeV). (26)

We have recently measured the ground state excitonic resonance with a transmission
experiment on a single quantum dot. We find that the maximum absorption isα0 = 0.006
for a Gaussian probing beam withφFWHM = 1.3 µm. The measuredline width was
Γ = 2 µeV, implying f = 11.8, an unambiguous measurement of the oscillator strength.

This analysis is illustrated inFig. 2which shows calculated transmission and reflectivity
spectra for life time broadened excitons. The illumination assumed is a Gaussian of 1µm
full width at half maximum. It can be seen that in this fundamental limit, the sizes of the
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Fig. 3. The electric fields associated with the incident(E0), transmitted(ET ) and reflected(ER) waves. The
dot plane is shown by a dashed line.u is a unit vector along the direction of propagation of the incident
beam.

transmission and reflectivity peaks do not depend on the exciton life time. Also the figure
shows that the maximum reflectivity contrast is about two orders of magnitude smaller
than the contrast seen in the transmissionillustrating the point made about the built in
homodyne detection in the case of the transmission.

3. Super radiant damping of interacting identical dots

The analysis above can lead to unphysical results whenA, thearea of the illumination,
is decreased. For instance,an examination of Eq. (9) shows thatα0 can exceed the
theoretical limit of 100% whenA is decreased sufficiently. This highlights the limitations
of the approximations made so far. In the model we considered a uniform sheet of dipole
oscillators with density 1/A. When A decreases, the density increases and the quantum
dot dipoles inevitably interact with each other. The interaction, a dipole–dipole interaction,
has been ignored so far. We consider in this section the transmission of a two-dimensional
system of dipoles by solving Maxwell’s equations. However, it is clear that this is not
the situation depicted inFig. 1. Instead, by design only one quantum dot is present in
the focal point; a system of interacting dipoles is a theoretical construct. In the case
of just a single quantum dot interacting with a very tightly focused laser beam, the
resolution of the unphysical results fromSection 1is providedonly by considering the
exact electromagnetic fields [15, 16]. In other words, the assumption of a plane wave is no
longer valid for a highly focused beam. As the spot size reduces all the spatial frequencies
of the field should be taken into account. This is potentially a complicated calculation,
and is beyond the scope of this work. These comments notwithstanding, it is instructive to
pursue the case of a plane wave interacting with anarray of identical dipoles. In particular,
the following results apply for a hypothetical sample containing a high density of dots
nearly identical in size where the inhomogeneous broadening in the absorption is small
compared to the exciton life time limited radiation broadening.

We assume thatall quantum dots in areaA are similar enough in size that their excitonic
lines are separated by much lessthan the excitonic line width. We retain the assumption of
a plane wave with an array of dots in a two-dimensional plane. This problem bears many
resemblances to the cyclotron resonance of a two-dimensional electron system where there
is also a dense array of two-dimensional dipoles [17, 18]. We considerthe plane wave
fields indicated inFig. 3. The incident electromagnetic fieldE0 has the spatial and temporal
form exp(ikz − iωt), anddrives the exciton resonance in the quantum dots leading to a
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transmitted fieldET with wave vectork and a reflected fieldER with wave vector−k.
The sheet of dots is polarizable and the response of the dots to the driving field amounts to
a surface currentjS in the plane of the sheet.

The two continuity equations for the electromagnetic fields at the plane formed by the
quantum dots are,

· ( 0 + R) = · T ,

× ( 0 + R) + �jS = × T ,
(27)

whereu is aunit vector perpendicular to the two-dimensional plane of dots and oriented
along the direction of propagation of the incident beam. Using Maxwell’s equation,

× = −µ0∂ /∂ t, (28)

along with the plane wave form of the fields we find,

i × = iωµ0 . (29)

The continuity equations are then,

0 + R = T ,

× ( × T − × 0 − × R) = ωµ0 �jS.
(30)

In the context of a linear response theory, we assume that the surface current density is
linearly proportional to the total field in the dot plane,

�jS = σ T , (31)

whereσ is the dynamic conductivity, which, as we show, is related to the polarizability.
The system of equations now reduces to,

0 + R = T ,

0 + R − T = −σS/(ε0cn) T ,
(32)

and can be solved for the transmittance and reflectance coefficientst andr defined as,

t = ET

E0
, r = ER

E0
. (33)

The results are,

t = 1

1 + σSY
, r = − σSY

1 + σSY
, (34)

whereY = 1/(2ε0cn) is the impedance of the medium to an electromagnetic wave. The
transmission and reflectivity coefficients are related tot andr by,

T = t t∗ and R = rr∗. (35)

The surface current is given by bothjS = (−e)Adr/dt and jS = σS E . The velocity
dr/dt was given above in Eq. (4), allowing us to deduce an equation for the dynamic
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conductivity,

σS = e2 f

Am0

−iω

ω2
0 − ω2 − iωΓ

. (36)

Assuming, as inSection 1, that the exciton transitions are sharp, namely thatΓ � ω0
which is clearly the case at cryogenic temperatures, the conductivity simplifies to,

σS ∼= e2 f

Am0

−iω0

2ω0(ω0 − ω) − iω0Γ
, (37)

which can be conveniently expressed in real and imaginary parts as,

2YσS ∼= α0
γ 2

δ2 + γ 2 + iα0
δγ

δ2 + γ 2 . (38)

CalculatingT = t t∗ we obtain,

T = (ω0 − ω)2 + γ 2

(ω0 − ω)2 + (ΩS R + γ )2
, (39)

where,

ΩS R = 1

4A

e2 f

ε0cm0n
= α0

2
γ. (40)

Eq. (39) should be compared with the results fromSection 1, Eq. (17). It can be seen that
the new result describes a Lorentzian-shaped transmission resonance but with an increased
line width. The increase in the line width arises from the continuity equations of the
electromagnetic fields at the interface, equivalently from the dipole–dipole interactions
in the plane. Similarly, the new expression for the reflectivity is,

R = Ω2
S R

(ω0 − ω)2 + (ΩS R + γ )2
. (41)

The absorption Abs is determined from energy conservation, Abs+ T + R = 1, giving,

Abs = 2Ωγ

(ω0 − ω)2 + (Ω + γ )2
. (42)

The above results forT, R and Abs can also be expressed by using the definition ofΩS R

in Eq. (40):

T = 1 − α0γ
2(1 + α0/4)

δ2 + γ 2(1 + α0/2)2

R = α2
0γ 2/4

δ2 + γ 2(1 + α0/2)2

Abs = α0γ
2

δ2 + γ 2(1 + α0/2)2
.

(43)

Whenα0 � 1, these results are identical to the ones derived inSection 1. Deviations arise
whenα0 becomes large. In fact, in the limit of largeα0, we haveT = 0, R = 1 and Abs
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Fig. 4. Transmission and reflectivity as a function of the photon energy detuning from the exciton resonance.
The number of identical dots illuminated in the probing optical spot in increased from 1 to 221 in steps of 20.
We assumed a Gaussian spot size of FWHM of 1µm such that the maximum density of dots corresponds to
2.2 × 1010/cm2. We assumed an exciton absorption wavelengthλ = 1 µm.

vanishes like 4/α0. In contrast tothe results inSection 1, the solutions are well behaved in
the limit of largeα0.

The transmission and absorption have Lorentzian-shaped resonances with FWHM=
Γ (1 + α0/2). The new relaxation rate is larger than the intrinsic dot radiation damping
rateΓ by factor(1 + α0/2). This width enhancement is negligible whenα0 � 1, a case
which is representative of current experiments. However, whenα0 � 1, theline width is
equal toΓα0/2 which scales asf/A, namely with the density of quantum dots in the sheet
and the oscillator strength of the dot. This gives the clue to the origin of the broadening
mechanism: it arises through a coherent coupling of the dipoles, and is a manifestation of
super radiance.

Fig. 4 illustrates the resonances obtained in transmission and reflectance from identical
dots located in a 1µm wide Gaussian optical spot. As the number of identical dots is
increased, the amplitude of the resonancesincreases. At the same time, the resonances
broaden due to super radiance.

As a final comment on the analysis of transmission and reflectivity from a quantum dot
in a homogeneous medium, we note that implicit in the analysis so far is the assumption
that the transmission and reflectivity measurements are not influenced by the light re-
emitted by the quantum dot, the scattered light. This is no longer true when the numerical
aperture of all the lenses in the optical system approaches 1. If the exciton dephasing
is limited by radiation, there cannot be any significant non-radiative processes, so that
every absorbed photon will eventually be re-emitted. In a CW experiment, both original
laser photons and scattered photons contribute to the reflectivity and transmission signals,
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Fig. 5. Schematic view of a quantum dot near the sample surface. The focused laser beam is assumed to have a
depth of field much larger than the separation between thequantum dot and the semiconductor surface so that the
electromagnetic field can be approximated with a planewaveboth in the quantum dot plane and at the sample
surface.

changing the expected contrast in the transmission and reflectivity. Assuming that the
power is low so that spontaneous re-emission dominates over stimulated emission, the
re-emitted photons are equally likely to be detected by the transmission and reflectivity
photo detectors. Under these conditions, we expect new valuesTC W and RC W for the
transmission and reflectivity given by,

TC W = T + Abs/2 and RC W = R + Abs/2. (44)

As expected,TC W + RC W = 1 and AbsC W = 0. In this scenario, the contrast in the
transmission at resonance is very small. Whilepresent experiments are far from this limit
(the effective numerical aperture in the semiconductor is 0.15 in our experiment [7–9]),
this point should be borne in mind as attempts are made to decrease the spot size.

4. Surface proximity effects

Up until now, the dot was considered to be embedded in a homogeneous medium with
optical indexn. This isnot the typical case in practice. In most samples, the dot is located a
small distanced beneath the sample surface. Typically,d ranges from 10 to several 100 nm.
In this case, the back-scattered light from the dot now adds coherently to the reflected light
from the sample surface. We show now that such an effect can modify substantially the
intensity and the resonance line shape of the reflected signal. In addition, we find the free
surface has also a significant effect on the transmitted signal.

The experimental configuration is shown schematically inFig. 5. We retain the
approximation that near the focus, the fields can be considered in a first approximation
as plane waves. We need to calculate the transmittancet = ET /E0 and the reflectancer =
ER/E0 of the plane waves shown inFig. 6. To do this, we employ the formalism explained
in [19]. This formalism, based on optical transfer matrices, rigorously takes account of
the multiple reflections between the dot layer and the sample surface. The details of this
calculation are given inAppendix A. In theexperiments [4–9], a differential technique is
employed by switching the dot absorption on and off either by the Stark effect or by Pauli
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Fig. 6. The electromagnetic waves appropriate to the situation inFig. 3, assumingplane waves.

blocking. To model the experiments, we therefore calculate the transmission (reflectivity)
contrast, the difference between the transmission (reflectivity) with and without the exciton
resonance normalized to the transmission (reflectivity) without the exciton resonance. For
the transmission the result is,

�T

T
∼= −α0

γ 2

δ2 + γ 2

[
1 − 1 − n

1 + n

(
cos 2ϕ + δ

γ
sin 2ϕ

)]
, (45)

whereϕ = 2πnd/λ is the phase shift between a wave reflected from the sample surface
and one reflected from the dot layer. Forn = 1, we recover our previous result as in
this case the dot is located ina homogeneous medium, namely the vacuum. However,
for n > 1 which isthe case in theexperiments, the transmission contrast is modified by
the second term, a consequence of the interference between the dot layer and the surface.
The interference depends on the dot to surface separationd through the phase termϕ.
This changes both the transmission line shape and the contrast at zero detuning. For a dot
located at the sample surface, i.e.d = 0, the resulting transmission mimics that of a dot in
a homogeneous medium with index(n + 1)/2, a result we used to analyze our ensemble
measurements [4]. For non-zerod, the transmission contrast depends significantly on the
interference term. For instance, in the particular case of cos 2ϕ = ±1, the line shape is still
a symmetric Lorenzian but with a modified amplitude:

�T

T
∼= −

(
1 ± 1 − n

1 + n

)
α0

γ 2

δ2 + γ 2
for cos 2ϕ = ±1. (46)

Sincen = 3.6 for GaAs, we see that the amplitude of the differential transmission can
vary between 0.44 and 1.56 times the result for a dot completely buried in GaAs. This
point must be carefully considered when one determines the dot oscillator strength from
the measured data. In the worst case, an error ind can lead to an error larger than 300% in
the oscillator strength.

A similar analysis can be made for the differential reflectivity. We find that,

�R

R
∼= 4n

n2 − 1
α0

γ 2

δ2 + γ 2

(
cos 2ϕ − δ

γ
sin 2ϕ

)
. (47)

In the case of a buried dot, the reflectivity contrast was the square of the transmission
contrast, and therefore very small. Now that the dot is considered to be close to the
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Fig. 7. Transmission and reflectivity as a function of thephoton energy detuning from the exciton resonance for
five different values ofd, the distance between the quantum dot and the sample surface. The phaseϕ = 2πdn/λ

relates this distanced to the exciton optical transition wavelength and the sample optical indexn. We assumed a
Gaussian spot size of FWHM of 1µm andλ = 1 µm with radiation broadening corresponding to an exciton life
time of 1 ns.

surface, Eq. (47) demonstrates that the reflectivity contrast is much increased, and is in
fact comparable to the contrast in transmission. For example,

�T

T
∼= −n − 1

2

�R

R
for cos 2ϕ = 1 and

�T

T
∼= −n − 1

2n

�R

R
for cos 2ϕ = −1 (48)

which show that for n = 3 and cos 2ϕ = +1, both transmission and reflectivity resonances
are of equal magnitude. The form of the reflectivity signal depends strongly onϕ. When
cos(2ϕ) = ±1, the differential reflectivity has a Lorentzian shape typical to an absorption
resonance. Conversely, when sin 2ϕ = ±1, the differential reflectivity is purely dispersive.
While there are associated changes in the line shape of the differential transmission,
the differential transmission retains an absorption character for allϕ. Thesepoints are
illustrated inFig. 7, which showscalculated transmission and reflectivity of a quantum
dot with a life time limited exciton transition. The calculated data are obtained for dots
placed at different distances from the sample surface. A clear feature is that the differential
reflectivity can be made to follow either the real part or the imaginary part of the excitonic
polarizability depending on the value ofd. This illustrates the point that by controlling the
phase difference between the interfering waves, it is possible to access experimentally the
full permittivity tensor.

5. Interferometry of a single quantum dot

The above section demonstrates that the results, particularly for the reflectivity, are
particularly dependent on the optical path difference between the quantum dot and the
sample surface. It is difficult to vary this opticalpath in an experiment, making it difficult
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Fig. 8. Schematics of the plane wave approximation for a quantum dot positioned behind a Fabry–Perot
etalon. The two mirrors of the etalon are the dielectric–vacuum interface and the vacuum–semiconductor
interface.

to exploit the idea of using the reflectivity to determine both the real and imaginary parts
of the polarizability. An alternative is to consider the sample as forming one mirror of
a Fabry–Perot cavity. The other mirror of the cavity can be some distance away, and
can be simply an air–dielectric interface. The idea is that both the laser wavelength and
the dot resonance can be tuned through the resonances of the Fabry–Perot cavity. The
physics of the problem, sketched schematically inFig. 8, remain very similar to that in
Section 4except that it is no longer possible to express the differential transmission and
reflectivity with simple formulae. Analytical results are still possible however. After a
lengthy calculation given inAppendix B, weobtain the following results for the differential
reflectivity and transmission coefficients,

�T

T
∼= −α0

γ 2

δ2 + γ 2 (1 − G(ϕ,Φ), (49)

�R

R
= α0

γ 2

δ2 + γ 2
G(ϕ,Φ)H (Φ), (50)

where thefunctionsG andH are defined as,

G(ϕ,Φ) =
{
(1 + r2

1)r2

[
cos 2ϕ − δ

γ
sin 2ϕ

]
+ r1

[
cos 2(ϕ + Φ)

− δ

γ
sin 2(ϕ + Φ)

]
+ r1r2

2

[
cos 2(ϕ − Φ) − δ

γ
sin 2(ϕ − Φ)

]}
× {r2

1r2
2 + 1 + 2r1r2 cos 2Φ}−1

and,

H (Φ) = r2
1 + r2

2 − r2
1r2

2 − 1

r2
1 + r2

2 + 2r1r2 cos 2Φ
,

where the first and second interface reflectances are,

r1 = n0 − 1

n0 + 1
> 0, r2 = 1 − n

1 + n
< 0. (51)
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Fig. 9. Interferometry on a singlequantum dot. The transmission and reflectivity as a function of the photon
energy detuning from the exciton resonance are calculated for five different values ofD, thedistance between
the two mirrors in the Fabry–Perot cavity. The phaseΦ = 2π D/λ relates this distance to the exciton optical
transition wavelength. The phaseϕ = 2πdn/λ defines the distance of the dot behind the sample surface. We have
taken hereϕ = π/2. The interferometer mirror is assumed to be dielectric and highly reflecting with a reflectivity
of 96%. We assumed a Gaussian spot size of FWHM of 1µm andλ = 1 µm, and radiation broadening with an
exciton life time of 1 ns.

The cavity lengthD and the distanced between the dot and the sample surfacedetermine
the phases,

Φ = 2π D

λ
and ϕ = 2πdn

λ
. (52)

The equations above show that it is possible to perform interferometry on a single quantum
dot by adjusting the cavity lengthD or the laser wavelength, both of which are included
in the phase termΦ. Fig. 9 illustrates the behavior of the differential transmission and
reflectivity resonances for a single quantumdot for different separations between the
mirrors in the Fabry–Perot arrangement. For the parameters chosen here, the transmission
exhibits two distinct behaviors, namely, a resonance in the shape of an absorption curve
and a resonance in the shape of a dispersion curve. Such an experiment would allow a
determination of both the real and imaginary parts of the permittivity of the dot.

6. Saturation of the optical absorption

In thelimit of a strong driving field, it is well known that the absorption of a two-level
system saturates [13, 14]. The saturation is characterized by a decrease in the absorption
at resonance, a decrease in the spectrally integrated absorption intensity and an increase
in the line width. The latter effect is referred to as power broadening. We can anticipate
the same effects in a quantum dot because, at least in the spectral range close to the
exciton resonance, the quantum dot behaves like a two-level system where each state has a
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confined, atom-like character. We show here how the saturation behavior can be exploited
to determine the Rabi frequency of the ground state exciton in a resonant laser field.

The origin of the saturation lies in the dynamics of the interaction of an exciton with a
resonant laser field. Once an exciton has been excited in a quantum dot, the exciton energy
will be dissipated. For an excited exciton, the exciton first relaxes to its ground state, and
then decays radiatively by spontaneous emission [7]. In this case, the relaxation step takes
the exciton out of resonance with the driving laser field. However, for the ground state
exciton, there is no relaxation pathway such thatthe exciton remains in resonance with the
laser field. At low laser power, the exciton decays through spontaneous emission. However,
at higher laser power, there is an increasedchance of decay through stimulated emission.
Since the photon originating from stimulated emission is identical to an incoming photon,
the process does not contribute to any contrast in differential transmission. This causes
the absorption to saturate. Also, the life time of an exciton is decreased by stimulated
emission, causing the transmission resonance to broaden. We anticipate that a saturation
of the resonance takes place as soon as stimulated emission dominates over spontaneous
emission.

The starting point for our analysis of the saturation properties is the result for the optical
scattering cross-section, integrated over all angles, as calculated for a two level system
from the optical Bloch equations in the rotating wave approximation [13, 14]. The optical
scattering cross-sectionΣT is,

ΣT = 3(λ/n)2

2π

γ 2
sp

δ2 + γ 2
sp

(
1 + Ω2

R,N

2γ 2
sp

) . (53)

Here the relaxation rate through spontaneous emission,γsp, is given in Eqs. (18a) or (18b),
andΩR,N is the Rabi frequency for an electric fieldEN corresponding toN photons:

ΩR,N = µ12EN

�
. (54)

The proportion of scattered photons is given byα(δ) = Σ/A whereA is the area of the
focused laser beam as introduced previously. We determine the scattering,

α(δ) = 1

A

3(λ/n)2

2π

γ 2
sp

δ2 + γ 2
sp

(
1 + Ω2

R,N

2γ 2
sp

) . (55)

In the idealized model in which the dot is embedded in a homogeneous medium of optical
indexn, the transmission and the reflectivity are,

T = 1 − α(δ) and R = [α(δ)/2]2. (56)

Eq. (55) showshow the absorption at the resonance (δ = 0) and the line width of
the resonance increase as the Rabi frequency increases. The square of the Rabi frequency
is proportional to the laser intensity, resulting in the phenomenon of saturation. In the
limit of a very high Rabi frequency,α(δ) tends to zero and the width of the resonance is
proportional to the Rabi frequency.
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It is clearlyimportant to calculateΩ2
R,N as a function of the spot focus geometry and the

characteristics of the excitonic dipole. The classical relation between the field amplitude
due toN photons and the light powerP at quantum dot position is,

S = 1

2
ε0εnE2

N = P

A
. (57)

We assume for now a spotfocus of areaA in which we consider the electric component of
the electromagnetic field to be constant. Usingε = n2 and rearranging the above formula
to,

E2
N = 2P

ε0nc

1

A
= 2Ṅ�ω0

ε0nc

1

A
, (58)

whereṄ = dN/dt is the number of photon flowing in the focused spot. We determine the
saturation parameter,

Ω2
R,N

2γ 2
sp

= Ṅ

A

�ω0µ
2
12

γ 2
sp�2ε0nc

. (59)

We now make use of Eq. (18b) for γsp,

Ω2
R,N

2γ 2
sp

= Ṅ

A

3(λ/n)2

2π

1

γsp
. (60)

Furthermore, making use ofαsp in Eq. (21), we find a simplerelation for the saturation
parameter,

Ω2
R,N

2γ 2
sp

= Ṅ

γsp
αsp or

ΩR,N

Γsp
= 1

2

√
Ṅαsp

Γsp
, (61)

showing how the saturation parameter depends on the ratio of the absorption rate in
the absence of saturation effects to the rate of spontaneous emission. We can use this
expression in the expression for the scattering,

α(δ) = αsp
γ 2

sp

δ2 + γ 2
sp(1 + αspβ)

, (62)

where we define a dimensionless saturation coefficientβ which is a ratio of the incoming
photon flux to the rate of spontaneous emission,

β = Ṅ

γsp
= 2

Ṅ

Γsp
. (63)

The maximum scattering at resonance is then,

α(0) = αMax = αsp

1 + αspβ
, (64)

and the resonance FWHM is broadened to,

Γ = 2γsp
√

1 + αspβ. (65)
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The area under the resonance is proportional to the product of peak size and width, so that,

αMaxΓ = 1

A

e2 f

ε0cm0n

1√
1 + αspβ

, (66)

or equivalently,

αMaxΓ = 1

A

2�ω0µ
2
12

�2ε0nc

1√
1 + αspβ

. (67)

The strength of the resonance normalized to its value at low power in the linear response
regime is simply given by,

αMaxΓ
(αMaxΓ )0

= 1√
1 + αspβ

. (68)

Sinceβ is proportional to the laser intensity we see that the total scattered intensity inte-
grated over frequency decreases like the inverse square root of the laser intensity. The term
αspβ governs the saturation of the optical transition. So let us express it in terms of the
oscillator strength of the exciton and the laser power density outside the sampleP0/A. We
find,

αspβ = 9

4π3

ε0m0

�e2 f
n

(
2n

n + 1

)2(λ

n

)5 P0

A
, where we useḋN = 4n

(n + 1)2

P0

�ω
. (69)

This expression shows that for a given power density, saturation (i.e.αspβ � 1) is easily
reached for a transition with a small oscillator strength in a medium with a high optical
indexn. The expression is very sensitive toλ so quantum dots emitting at long wavelength
will tend to saturate much more rapidly than those emitting at short wavelength.

Fig. 10 illustrates the calculated changes in the resonance peak amplitude and its width
for the life time limited resonant ground state excitonic transition of a single quantum dot
subjected to increasing laser power densities.

7. A quantum dot in an ideal cavity

Should the dot be confined in a perfect cavity, the value of the Rabi frequency used in
the analysis can beconsiderably enhanced. We estimateΩR,N as a function of cavity size
for the interacting photon two-level system. Here again the starting point is the relation of
the Rabifrequency to the light field experienced by the exciton, Eq. (64). In a cavity, the
total average electromagnetic energy is given by,

1
2

∫
(ε0ε| ( )|2 + µ−1| ( )|2)d = �ω(N + 1/2), (70)

whereN is the number of photons confined in the cavity. The caseN = 0, thatis when
the cavity is empty of photons, still leads to afinite Rabi energy due to the coupling of the
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Fig. 10.Lower panel: power saturation of the differential transmission peak size as a function of incident photon
power density. The data are normalized to the maximum differential transmission forP = 0. The power density
indicated here is in vacuum outside the medium in which the dot is embedded (heren = 3.6). Curve (a) is
calculated for an exciton life time ofτ = 1 ns with an optical emission wavelength of 1µm, (b) is obtained for
an exciton life time of 100 ps.Upper panel: corresponding power broadening showing the relative change in the
full width taken at half maximum of the optical transition resonance.

exciton resonance with the vacuumzero point fluctuations. We equate the field energy with
quantized photon energy assuming a one-dimensional Fabry–Perot ideal cavity,∫

ε0ε| N |2 cos2
2πz

Lz
dxdydz = �ω0(N + 1/2). (71)

We assume a cavity volumeV = ALz whereLz is the cavity length andA is its in-plane
area. The field experienced by the dot located in an electric field maximum is then,

E2
N = 2(N + 1/2)�ω0

ε0ε

1

ALz
, (72)

so that,

Ω2
R,N

2
= µ2

12

�2

(N + 1/2)�ω0

ε0ε

1

ALz
. (73)

Making use of Eqs. (18) and (21), we find the simple relation,

Ω2
R,N

2
= (2N + 1)αspγspν, (74)

where ν is the oscillation frequency of the photon reflected back and forth along the
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cavity axis:

ν = c/n

2Lz
. (75)

We see that the square of the Rabi frequency is proportional to the number of photonsN
present in the cavity and to the product of the spontaneous radiation rate divided by the
time it takes the photon to cross the cavity. We can now evaluate the contribution to the
line broadening and maximum scattering intensity due to the Rabi frequency generated by
N photons in the focal spot,

Ω2
R,N

2γ 2
sp

= αspβ = (2N + 1)αsp
ν

γsp
. (76)

Let us consider the case of a loss-less cavity with a lengthLz = 1 µm, devoid of photons
(N = 0), embedded in a medium of optical indexn = 3.6. For a lateral area of the
cavity of about 1µm2 and an exciton oscillator strength of about 12,αsp = 0.001. The
corresponding radiative recombination rate is then 2γ = 109/s. We determine for the
above set of parameters thatαspβsp = 30 showing that vacuum quantum fluctuations alone
can lead to a very large Rabi frequency. In this particular case it corresponds to 5.5 times
the natural line width of the ground state exciton resonance. In the limit of strong coupling
the resonant scattering line width is given by,

FWHM = 2
√

(2N + 1)αsp
ν

γsp
, (77)

and the peak scattering is,

αMax = 1

β
= 1

(2N + 1)

γ

ν
. (78)

It is an outstanding challenge to demonstrate these results experimentally.

8. Conclusions

We havepresented an analytical framework with which absorption experiments on
single quantum dots can be understood and interpreted. In particular, we have shown
how the dephasing rate can be determined from the line width and how the oscillator
strength can be determined from the integrated area of the resonance. In the determination
of the oscillator strength, the proximity ofthe dot to the semiconductor surface must be
taken into account as we find significant interference effects between the surface-reflected
and quantum dot-reflected plane waves. The interference is particularly marked in the
reflectivity which can have either an absorptive or a dispersive line shape depending on the
nature of the interference. While it is not obvious how to vary the nature of this interference
in an experiment on a particular quantum dot, we suggest an alternative. By positioning
the dot justoutside a Fabry–Perot cavity, we show how the phase difference between the
quantum dot reflectance and the cavity mode can be controllably changed by varying the
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cavity length. This experiment should allow interferometry to be performed on a single
quantum dot.

A very significant point for a single quantum dot experiment is that the absorption
becomes non-linear at a modest power density. We show that this leads to a saturation
behavior in the absorption and an increase in the line width. Quantitatively, these effects
depend on the Rabi frequency. Finally, we comment that the Rabi frequency can be
considerably enhanced by positioning the quantum dot in the anti-node of the electric field
distribution in a micro-cavity.
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Appendix A

We calculate the transmittancet = ET /E0 and the reflectancer = ER/E0 of the
electric fields for the situation shown inFig. 4. We use the formalism of [19] based on
optical transfer matrices. In this approach, the electric field in each element is represented
by a vector consisting of two elements, the forward and backward propagating plane waves.
A 2 × 2 matrix propagates this vector through the structure. Ref. [19] gives the matrix
elements for any layered system including two-dimensional dynamic conductivities at their
interfaces.

In the case inFig. 4, theoptical transfer matrix is,[
E0

ER

]
=
[

m11 m12

m21 m22

] [
ET

0

]
. (A1)

From the above matrix one deduces immediately that,

ET

E0
= 1

m11
= t

ER

E0
= m21

m11
= r.

(A2)

The transmission and the reflectivity of the sample are given byT = t t∗ andR = rr∗ so
we only need to determine the matrix elementsm11 andm21. We have two interfaces to
consider, namely that of the sample surface and that of the dot-layer. For this reason, the
matrix [mij ] is a product of two matrices, one for the semiconductor([ai j ]) and one for the
dot layer([bi j ]). The matrix elements are:

a11 = e−iϕ(1 + n)/2 b11 = 1 + σY

a12 = e+iϕ(1 − n)/2 b12 = +σY

a11 = e−iϕ(1 − n)/2 b21 = −σY

a11 = e+iϕ(1 + n)/2 b11 = 1 − σY

(A3)
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where, as before,ϕ = 2πnd/λ andY = 1/(2nε0c). We find,

t = 1

m11
= 1

a11b11 + a12b21
= 1

a11

1

1 + σY (1 − a12/a11)
. (A4)

In the absence of dot absorption we setσ = 0 which implies t = t0 = 1/a11, and the
relative transmission is,

t

t0
= 1

1 + σY (1 − a12/a11)
∼= 1 − σY (1 − a12/a11), (A5)

where we have assumed a weak absorption,σY � 1. The transmission is therefore,∣∣∣∣ t

t0

∣∣∣∣
2 ∼= 1 + 2σ1Y [Re(a12/a11) − 1] − 2σ2Y Im(a12/a11), (A6)

whereσ1 andσ2 are the real and imaginary part of the dot dynamical conductivity. The
differential transmission is given by,

�T

T
= T (σ ) − T (0)

T (0)
=
∣∣∣∣ t

t0

∣∣∣∣
2

− 1. (A7)

Using,

a12

a11
= e2iϕ 1 − n

1 + n
, (A8)

we determine,

�T

T
∼= −2σ1Y + n − 1

n + 1
2Y [σ2 sin 2ϕ − σ1 cos 2ϕ] . (A9)

From the results for the conductivity of a two level system,

2Yσ1 ∼= α0
γ 2

δ2 + γ 2
and Yσ2 ∼= α0

δγ

δ2 + γ 2
, (A10)

we obtain our final result for the differential transmission,

�T

T
∼= −α0

γ 2

δ2 + γ 2

[
1 − 1 − n

1 + n

(
cos 2ϕ + δ

γ
sin 2ϕ

)]
. (A11)

A similar analysis can be made for the differential reflectivity. For this we have first to
determine the reflectance of the system:

r = m21

m11
= a21b11 + a22b21

a11b11 + a12b21
= a21

a11

1 + σY (1 − a22/a21)

1 + σY (1 − a12/a11)
. (A12)

In the absence of dot absorption, the reflectance of the sample isr0 = a21/a11. The
reflectance relative tor0 is then,

r

r0
= 1 + σY (1 − a22/a21)

1 + σY (1 − a12/a11)
∼= 1 − σY (a12/a11 − a22/a21), (A13)
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where we again assumeσY � 1. The relative reflectivity is,∣∣∣∣ r

r0

∣∣∣∣
2 ∼= 1 + 2Y

[
σ1Re

(
a12

a11
− a22

a21

)
− σ2Im

(
a12

a11
− a22

a21

)]
. (A14)

The differential reflectivity is defined as,

�R

R
= R(σ ) − R(0)

R(0)
=
∣∣∣∣ r

r0

∣∣∣∣
2

− 1, (A15)

so that,

�R

R
∼= 2Y

[
σ1Re

(
a12

a11
− a22

a21

)
− σ2Im

(
a12

a11
− a22

a21

)]
. (A16)

The term involving the matrix elements is,

a12

a11
− a22

a21
=
(

1 − n

1 + n
− 1 + n

1 − n

)
e2iϕ = 4n

n2 − 1
e2iϕ, (A17)

allowing us to determine the explicit form of the differential reflectivity, namely,

�R

R
= 4n

n2 − 1
2Y (σ1 cos 2ϕ − σ2 sin 2ϕ) . (A18)

Finally this leads to

�R

R
∼= 4n

n2 − 1
α0

γ 2

δ2 + γ 2

(
cos 2ϕ − δ

γ
sin 2ϕ

)
. (A19)

Appendix B

The analysis fromAppendix A can be extended to the case shown inFig. 6, a dot
situated beneath a Fabry–Perot etalon. Since we have one more interface to consider, the
total optical transfer matrix is a product of three matrices,[mij ] = [ fi j ][ai j ][bi j ] where
[ f ] refers to the dielectric–vacuum interface and[a] and[b] are defined inAppendix A.
Using the results in [19],

f11 = e−iΦ (n0 + 1)/2

f12 = e+iΦ (n0 − 1)/2

f11 = e−iΦ (n0 − 1)/2

f11 = e+iΦ (n0 + 1)/2

(B1)

whereΦ = 2π D/λ. D is the separation between the dielectric–vacuum and vacuum–
semiconductor interfaces. As inAppendix A, we determine the transmittance and
reflectance using,

ET

E0
= 1

m11
= t,

ER

E0
= m21

m11
= r,

(B2)
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where now,

m11 = f11(a11b11 + a12b21) + f21(a21b11 + a22b21),

m21 = f21(a11b11 + a12b21) + f22(a21b11 + a22b21).
(B3)

Only the elements of[bi j ] contain the dot dynamic conductivity:

r = f21a11 + f22a21 + σY { f21(a11 − a12) + f22(a21 − a22)}
f11a11 + f12a21 + σY { f11(a11 − a12) + f12(a21 − a22)} . (B4)

In the absence of a dot resonance, the nominal reflectance is,

r0 = f21a11 + f22a21

f11a11 + f12a21
. (B5)

Likewise we determine the transmittance,

t = 1

f11a11 + f12a21 + σY { f11(a11 − a12) + f12(a21 − a22)} , (B6)

such that in the absence of a dot resonance, the nominal transmittance is,

t0 = 1

f11a11 + f12a21
. (B7)

The relative reflectance and transmittance are,

r

r0
= 1 + A(σY )

1 + B(σY )
and

t

t0
= 1

1 + B(σY )
, (B8)

where,

A = 1 − f21a12 + f22a22

f21a11 + f22a21
, (B9)

and,

B = 1 − f11a12 + f12a22

f11a11 + f12a21
. (B10)

We now use the expression of the matrix elements to determineA andB as a function of
the interferometer properties. After some algebra we find,

A = 1 − e2iϕ r1r2e−2iΦ + 1

r1e−2iΦ + r2
, (B11)

and,

B = 1 − e2iϕ r1e2iΦ + r2

r1r2e2iΦ + 1
, (B12)

wherer1 andr2 are the first and second mirror reflectances, respectively,

r1 = n0 − 1

n0 + 1
> 0 and r2 = 1 − n

1 + n
< 0. (B13)
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We can further develop the expression ofA andB. We find,

1 − A = (1 + r2
1)r2 + r1e2i(ϕ+Φ) + r1r2

2e2i(ϕ−Φ)

r2
1 + r2

2 + 2r1r2 cos 2Φ
, (B14)

and,

1 − B = ((1 + r2
1)r2 + r1e2i(ϕ+Φ) + r1r2

2e2i(ϕ−Φ)

r2
1r2

2 + 1 + 2r1r2 cos 2Φ
. (B15)

In thelimit σY � 1,
r

r0

∼= 1 + A(σY ) − B(σY ) = 1 + σY (A − B), (B16)

allowing after some algebra the differential reflectivity to be calculated as,

�R

R
= α0

γ 2

δ2 + γ 2 G(ϕ,Φ)H (Φ) (B17)

where

G(ϕ,Φ) =
{
(1 + r2

1)r2

[
cos 2ϕ − δ

γ
sin 2ϕ

]
+ r1

[
cos 2(ϕ + Φ)

− δ

γ
sin 2(ϕ + Φ)

]
+ r1r2

2

[
cos 2(ϕ − Φ) − δ

γ
sin 2(ϕ − Φ)

]}
× {r2

1r2
2 + 1 + 2r1r2 cos 2Φ}−1

and

H (Φ) = r2
1 + r2

2 − r2
1r2

2 − 1

r2
1 + r2

2 + 2r1r2 cos 2Φ
.

The relative transmission is obtained from the relation for the differential reflectance by
setting the functionA to 0 (see Eq. (B10))

T (σ ) − T (0)

T (0)
∼= −2σ1Y Re(B) + 2σ2Y Im(B) (B18)

allowing us to reach after some algebraic manipulation the final result for the differential
transmission,

�T

T
∼= −α0

γ 2

δ2 + γ 2 (1 − G(ϕ,Φ)). (B19)
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