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Abstract

An analytical formulation of the interband optical transmission and reflectivity spectra of a single
guantum dot embedded in a semiconductor is presented. We consider the effect of the sample surface
as well as other reflecting surfaces on the shape of the spectra near the ground state exciton resonance.
The saturation of the transmission and reflectivity spectra due to the quantum optical saturation of
the transition at higher light power is presented.
© 2004 Elsevier Ltd. All rights reserved.

A quantum dot, very much like an atom, absorbs or scatters light at discrete optical
frequenciesI-3]. The scattering is resonant when the photon energy matches an exciton
energy level §]. A recent development has been thetettion of these resonances in
individual dots using optical transmission and reflection experiments. These experiments
use tunable lasers with narrow spectral lings9. In the existing literature, the analysis
of the transmission spectravery simgified in that the effect of the sample surface and
other interfaces close to the dots has begroied. Furthermore, the non-linear effects
inherent to the saturation of the absorption at high optical power have also been neglected.
In this paper we present a model with which we derive expressions for the single dot
transmission and reflection coefficients. Vdmsider realistic samples containing quantum
dots as can be grown by self-assembly in molacieam epitaxy. We include the effects of
the sample surface, and extend these te#se of a quantum dot interacting with a tunable
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Fig. 1. Schematic view of a dot in the beam of a focusedrlgset. This represents a transmission experiment.
The dectric components of the optical driving fieldseashown. The dot is positioned in the region with the
narrowest beam waist.

Fabry—Perot resonator. We point out that the excitonic optical transition in a single quantum
dot saturates at very modest power densities, and based on the two-level approximation,
we calculate the non-linear behavior of the absorption coefficient as a function of the light
power.

1. Transmission and reflectivity in the weak absor ption limit

In one experimental arrangement desigreetheasure the optical properties of a single
guantum dot, a high numerical aperture objective lens focuses a collimated laser beam
down to a dfraction limited Gaussian spot siz&,[8]. This geometry has the advantage
over nanoeptical techniques involving sub-wavelength apertures that the intensity profile
of the probing beam is very well known. We assume that the probing spot is centered
over a singlequantum dot. In a classical description, the dot is polarizable and can be

driven into resonance by the electric componET@tof the light. The dot responds by

emitting an electromagnetic field with streng%. In a carefully designed transmission
experiment, the detctor should collect the transmittéght in a solid angle corresponding

to the numerical aperture of the illuminating objective. When measuring the reflectivity, the
back-scattered light can be collected with titgective lens which matches naturally the
illumination and reflectivity solid angles. Imansmission, the photagnal is proportional

to |E‘0 + E‘T|2, and in reflectivity, the photo signal is proportional |t1§‘R|2 where we
assume at this stage that the dot is embedded in a homogeneous medium with optical
indexn, far from any reflecting surface. This is obviously not a realistic case for most solid
state quantum dots which are typically located within a few hundred nanometers from
the surface. Nevertheless, we use this id@didon as a necessary staring point, including
subsequently the effects of a free surface.this stage we also assume that the light
intensity is low enough that the dot remains in the linear response regime. In order to
evaluatethe transmission and reflection coeféiots of the dot, we need to calculate the
forward-scattered and back-scattered fields, respectively,

ET=E0+E‘S and ERZEs, (1)

where Es is the amplitude of the scattered fielig. 1 shows thathe dot experiences a
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driving field with a flat phase front over the aréaof the focused spot. In this situation,
the dot is excited essentially by a cuiglane wae with onedot per unit area. This

is a reasonable assumption considering tltitly focused spots are orders of magnitude
larger than the dot itself.

We use he optical theorem1[]] to relate the total amount of forward-scattered light
to the field scattered along the direction of the impinging plane wave. The problem is
now identicalto that of the optical transmission and reflectivity of an infinite plane of
uniformly distributed identical quantum dots with an areal densit%.IThe fieldof such
an oscillating two-dimensional dipole system is given by |

1

- e —
Es=— ~(t — z/0), 2
s A2£ocnr( /C) 2

showing that we need to calculate the time derivative of the dipole oscillation amplitude
The distance is the distance to the ahe of dots. This formula is correct for all even
in the near-field whem « A [11]. The discrete spectrum of the dot’s excitonic resonances
is included in the frequency response of the dipole. A semi-classical analysis of the dot’s
response gives,

P Y ®

o T W —w° — lwlk

where fi is the oscillator strength of the resonance at angular frequegcgnd Tk is the
corresponding dephasing rate for that res@eafor simplicity we will consider here only
the ground state resonanag with a dephaing ratel” and an oscillator strength. If more
than one optical transition has to be considered, the model can be easily extended using the
full summadion given in the formula above. In order to calculate the time derivative of the
dipole cscillation amplitude, we consider an electromagnetic driving field with amplitude
Eo and time-dependence gxgi wt), in which case,

- ef Eo low
T = . 4
Mo a)(z) —w?—iwl @)
This implies that the scattered fieltk is now,
- 1 e2f |0) -
Es= Eo. )

A 2eocmpn w3 — w? —iol

This expression can be conveniently simplified considering the realistic case of sharp
exdton resonances for which « wo, giving,

ag —iy =

Es=—2_—" F, 6
S 28+|y0 (6)

where

§ =w — wo, (7)
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is the detuning (the angular frequency measured from the resonance); atalf the
dephasing rate,

The constandy is given by,
1 €f
_ - 9
*0 A gocmonl”’ ©

which, as we will see shortly, is the absorption at the resonance. The oscillator strength can
be related to the optical dipole moment, of the excitonic transition12],

2m 2
= (e &
Numerically this corresponds to,
f = 26.2h (in eV) {(n12/€) in NM}?, (11)
or equivalently,
(12/€) (in nm) = 0.195( f /7w (in eV)}¥/2. (12)

For example, dr a self-assembled InAs dot grown by molecular beam epitaxy, we have
determined f = 11.8 & photon energyiw = 1.28 eV. This corresponds tp1z/e =
0.59 nm. Several papers refer to the dipole moment in units of Deby&][where
1 Debye = 3.33564x 1030 C m. In the above example, the dipole moment corresponds
to u12 = 284 Deébye. The reasorf is considerably largethan 1 arises because the
dipole is part of a semiconductoratrix. Without eleaton—hole correlations, the oscillator
strength can be related to the Kane matrix elemegt Ep, describes the strength of the
dipole coupling between the s- and p-atomic orbitals. Assuming a perfect overlap of the
electron and hole wave functions in the quantum dot, the resiltis Ep/2hw [4]. Ep
is almost the same for InAs anda@s; taking the GaAs value (2Z5eV), thepredidion is
that f = 10.0 for hw = 1.28 eV, in good agreement with the experimental result. Electron
and hole correlations increase the osciltatoength and although they play a modest role
for self-assembled quantum dots, they increase the oscillator strength for so-called natural
guantum dots¥, 6].

An important point is that the product,

- B
" A2sgcmon A h2eonc’

agy (13)
is a direct measure of themble moment of the exciton. This is true independent of
the dehasing rate and therefore also indegent of the dephasing mechanism. This
product can be directly determined from resonant transmission spectra, yielding a direct
measurement of the dipole moment.

Experimentally, one measures the trarssiun and eflectivity coefficients given by,

Eo+ Es 2

Eo

2
E
rR— |Es

T= d = 14
‘ an Eo (14)
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Using the &pression for the scattered field, we find that,
2
2 2
a ¥ a Y
T=1-——="—— — ), and 15
( 262+y2)+<282+y2> (19)

2\

o

R={—5+—]) . 16
(282+y2) (16)

In presentlyexiging experments p-9], the sc#tering is weak, i.eag < 1, in which case
the expression for the transmission simplifies further to,

2
82+ y?
where it is nowobvious thatg is the maximum contragt T in the transmission spectrum.

The resonance lineshape is a Lorentzian with a full width at half maximum (FWHM) of

I' = 2y. Itis important to note that the corresponding result for the reflectivity with these
assumptions implies that the maximum contrast of the dot reflectivityRs= («g/2)2,

a factorap/2 smdler than AT. This hasdramatic consequences. For instance, in our
experiments §] ao was ypically of the order of 103, implying a reflectivity contrast of

just 5x 107 which would be extremely difficult to gasure. The contrast in transmission

is much higher than in reflectivity because the transmitted field is a coherent superposition
of the driving laser field with the forward-scattered field. Such a superposition is equivalent
to ahomodyne detection. In this sense, a transmission measurement has an automatically
in-built homodyne detection. This homodyne detection is clearly absent in the case of the
back-scattered field assuming, as we have done throughout so far, that the dotis completely
buried in a homogeneous semiconductor. However, a homodyne detection can be included
also in the reflectivity measurement by sypesing coherently thedrk-scattered field

with a reference driving light field. Thisan be achieved in practice simply by using

the aurface of the semiconductor to give a reference back-scattered beam. This has an
advantage over the transmission becauseptiase of the scattered field relative to the
reference field can easily be tuned, allowing interferometry to be carried out on a single
quantum dot. In general, since the dot is astredways located near the sample surface,

the reflectivity is strongly influenced by tharmaple surface, a case we consider in detalil

in Section 4

T=1-ao (17)

2. Radiation damping

The dephasing rate determines the FWHM of the resonance of the transmission
described in Eg. I7). The fundamental limit to the exciton dephasing is given by
the radiation damping. In this case, desing occurs when the exciton relaxes by
spontaneously emittgpaphoton. The dephasing rate is then given by, fL3, 14],

_ 2 et 2n éf
© 3(A/n2gecmon  3x2gocmg’
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or equivalently,

2 2hwo//,§2 872n :“%2
I'sp = 2y5p = = —=. 18b
sp = £¥sp 3(A/N)2 h2ggnc 323 heg (18b)

Numerically, the energy broadening (FWHM) due to spontaneous emission is,

nf
I =0.014 1
h sp (MeV) 0.0 Gm s ( 9)

corresponding to a radiation life time of the exciton

2
Tsp (NS) = Fisp (ng = 452 rg*f‘m)

For an InAs sdlassembled quantum dd][ A = 0.970um, f = 11.8 andn = 3.6 (for

GaAs) from which we determinéy, = 0.66 peV andrsp = 1 ns. Suctsmall values of

the line width have not yet been achieved. Instead, in this experiment the line width was

found to be 2ueV, larger than the limit for radiation dephasing, but still the smallest yet

recorded for a semiconductor quantum dot. The dephasing is most likely dominated by

acoustic phonon scattering at 4 K, the temperature at which the experiments were carried

out.

The limit of radiation broadening determines the maximum possible resonant
absorption. Substituting the relaxation ratg into the expression for the absorption
strength (Eq. (0)), we obtainxsp, the absorfion at the resnance for a radiation damped
exdton,

. (20)

3 (1/m)?
R =
Remarkably, theabove expression shows that when the dephasing is dominated by
radiation damping, the maximum contrast in the transmission and reflectivity spectra no
longer depends on the oscillator strendthWwhen he driving laser has a Gaussian beam
profile of diametegprwym Measured at half maximum intensity, the illumination afeia
given by,

A= 113020 (22)

So, assuming that the dot is placed at the center of the illuminated spot, the numerical value
of the maximum absorption contrast for such an experiment is given by,

)2 . (23)

For thecase of a quantum dot emittingat= 0.970um, beam-vidth of gpwpm = 1.3 um,

andn = 3.6 (the GaAs walue), values appropriate to the experimesjt fhe expected

maximum contrast in transmission would be ideally = 1.82%. We remark here that a

reduction of the laser spot diameter by a factor of about 3 would increase the strength of

the asorption peak to about 20%. This experimental situation has not yet been achieved.
We showedabove in the analysis leading to equation ELf) that the product of the

maximum absorption and the dephasing rate depends only on the oscillator strength and

(21)

osp = 0.423
*® <n¢FWHM



K. Karrai, R.J. Warburton / Superlattices and Microstructures 33 (2003) 311-337 317

w
o
S

(b)
CY

Reflectivity R (x 10‘4)

Transmission T
o
[{e]
[e5)
I
|

0.96 I I I I I I I
-8 -6 -4 -2 0 2 4 6 8

Detuning 3 (ueV)

Fig. 2. Calculated transmission and reflectivity fauantum dot as a function of the photon energy detuning from
the ground state exciton resonance. Curves labeleddapkulated for an exciton life time of 1 ns, and (b) with
alife time of 200 ps. We assumed a Gaussian optical probing spouwof (FWHM). The opttal resonance is
assumed at wavelength= 1 um.

the illumination area. In terms of the width of the resonance,

1 éf
I'sp =apl = — , 24a
splsp = 0 A goCmpn (242)
or equivalently,
1 2hwou?
Olsstp = OlOF = KWH;Z (24b)

For a Gassian spot withA = 1.13p3,,,, the numerical value of the preceding equation
is,
f

n¢IgWHM (um)
Equivalently, the oscillator strength is determined by,
f = 16202y (WM)aohl’ (nev). (26)

We have recently measured the ground stateitenic resonance with a transmission

experiment on a single quantum dot. We find that the maximum absorptian=s0.006

for a Gaussian probing beam withpwnm = 1.3 um. The measuretine width was

I' =2peV, implying f = 11.8, an unambiguous measurement of the oscillator strength.
This analysis is illustrated iRig. 2which shows calculated transmission and reflectivity

spectra for life time broadened excitons. The illumination assumed is a Gaussiamof 1

full width at half maximum. It can be seen that in this fundamental limit, the sizes of the

aohl’ (neV) = 6.17 x 1073 (25)
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Fig. 3. The electric fieldsssocated with the incidentEp), transmitted(Et) and reflected ER) waves. The
dot plane is shown by a dashed linge.is a unit vector along the direction of propagation of the incident
beam.

transmission and reflectivity peaks do not depend on the exciton life time. Also the figure
shows that the maximum reflectivity contrast is about two orders of magnitude smaller
than the contrast seen in the transmisditrstrating the point made about the built in
homodyne detection in the case of the transmission.

3. Super radiant damping of interacting identical dots

The analysis above can lead to unphysical results whehe area of the illumination,
is decreased. For instancan examination of Eq.9) shows thateg can exceed the
theoretical limit of 100% wherA is decreased sufficiently. This highlights the limitations
of the approximations made so far. In the model we considered a uniform sheet of dipole
o<cillators with density 1A. When A decreases, the density increases and the quantum
dot dipoles inevitably interact with each other.€lihteraction, a dipoledipole interaction,
has been ignored so far. We consider in this section the transmission of a two-dimensional
system of dipoles by solving Maxwell’s equations. However, it is clear that this is not
the situation depicted ifrig. 1 Instead, by dsign only one quantum dot is present in
the focal point; a system of interacting dipoles is a theoretical construct. In the case
of just a single quantum dot interacting with a very tightly focused laser beam, the
resolution of the unphysical results fro&ection lis providedonly by considering the
exact electromagnetic field4p, 16]. In other words, the assumption of a plane wave is no
longer valid for a highly focused beam. As the spot size reduces all the spatial frequencies
of the field should be taken into account. Théspbtentially a complicated calculation,
and is beyond the scope of this work. These comments notwithstanding, it is instructive to
pursue the case of a plane wave interacting witamay of identical dipoles. In particular,
the following results apply for a hypothetical sample containing a high density of dots
nearly identical in size where the inhomogeneous broadening in the absorption is small
compared to the exciton life time limited radiation broadening.

We assume thaall quantum dots in are& are similar enough in size that their excitonic
lines are separated by much I#isan the excitonic line width. We retain the assumption of
a plane wave Vth an array of dots in a terdimensional plane. This problem bears many
resemblances to the cyclotron resonance of a two-dimensional electron system where there
is also a dense array of two-dimensional dipol&g [L8]. We considerthe plane wave
fields indicated irFig. 3. The inctent electromagnetic fiellp has the spatial and temporal
form explikz — iwt), anddrives the exciton resonance in the quantum dots leading to a
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transmitted fieldEt with wave vectoik and a reflected fiel®Er with wave vector—Kk.
The sheet of dots is polarizable and the response of the dots to the driving field amounts to
a surhce currenfs in the plane of the sheet.

The two continuity equations for the electromagnetic fields at the plane formed by the
quantum dots are,

(Eo+ ER) =ii- ET,

N

. s - L = (27)
ux (Ho+HR)+ Js=uxHr,

whereu is aunit vector perpendicular to the two-dimensional plane of dots and oriented
along the direction of propagation of the incident beam. Using Maxwell's equation,

V x E = —uodH/ot, (28)
along with the plane wave form of the fields we find,

ik x E = iwuoH. (29)
The continuity equations are then,

E0+ER=ET,
. - (30)
ux (kx ET —k x Eg—k x ER) = wuojs.

In the context of a linear response theory, we assume that the surface current density is
linearly proportional to the total field in the dot plane,

js=oET, (31)

whereo is the dynamic conductivity, which, as we show, is related to the polarizability.
The system of equations now reduces to,

E‘o + E‘R = E"T,
- - - - (32)
Eo+ ErR— ET = —0s/(eoCN) ET,

and can be solved for the transmittance and reflectance coeffiti@nts defined as,

E E
t=—, r=—" (33)
Eo Eo
The results are,
1 Y
=—) r = —L, (34)
1+ o0sY 1+ osY

whereY = 1/(2¢ocn) is the impedance of the medium to an electromagnetic wave. The
transmission and reflectivity coefficients are relatetiaadr by,

T =tt* and R=rr* (35)

The surface current is given by bofls = (—e)Adr/dt and js = osE. The véocity
dr/dt was given above in Eg.4), allowing us to deduce an equation for the dynamic
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conductivity,
ef —lw

Amowg—a)z—iwf.

os (36)

Assuming, as irSection 1 that he exciton transitions are sharp, hamely thak< wg
which is dearly the case at cryogenic temperatures, the conductivity simplifies to,

_ ef —iwo

= . , 37
s Amg 2wo(wg — @) — i wol’ (37)
which can be conveniently expressed in real and imaginary parts as,
2
~ . 8y
2Ycrs=a082+y2 +Ia082+y2. (38)
CalculatingT = tt* we obtain,
32 2
_ (wo . w)+y 2’ (39)
(wo — w)* + (f2sr + ¥)
where,
1 é*f o0
f2sRr = — (40)

= 4Agocmon | 27
Eq. 39 should be compared with the results fr&@action 1Eq. (L7). It can be seen that
the new result descrilea Lorentzin-shaped transmission resonance but with an increased
line width. The increase in the line width arises from the continuity equations of the
electromagnetic fields at the interface, eqléwdly from the dipoledipole interactions
in the plane. Similarly, the new expression for the reflectivity is,
2
R= 5 :
(@0 — ®)2 + (2R + ¥)?
The absorption Abs is determined from energy conservation4ABs+ R = 1, giving,
B 20y
(@0 -2+ (2 +y)?
The above results foF, R and Abs can also be expressed by using the definitioAsgf
in Eq. 40):

(41)

Abs

(42)

__aoy*(1+ao/4)
82 + y2(1+4 ag/2)2
a§y2/4
R=
82 + y2(1+4 ap/2)?
B agy?
2+ y2(1+a0/2)?
Whenag « 1, these results are identical to the ones derivegiation 1 Deviaions arise
whengg becomes large. In fact, in the limit of largg, we haveT = 0, R = 1 and Abs

(43)

Abs
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Fig. 4. Transmission and reflectivity as a function loé tphoton energy detuning from the exciton resonance.
The number of identical dots illuminated in the probing optical spot in increased from 1 to 221 in steps of 20.
We assumed a Gaussian spot size of FWHM ofirh such that the maximum density of dots corresponds to
2.2 x 10'0/cm?. We assumed a exdton absorption wavelength = 1 um.

vanistes like 4ap. In contrast tathe results irSection 1 the soldions are well behaved in
the limit of largewo.

The transmission and absorption have Lorentzian-shaped resonances with EAVHM
I'(1 + @o/2). Thenew relaxation rate is larger than the intrinsic dot radiation damping
rate I" by factor(1 + «g/2). This width enhancement is negligible whep « 1, a case
which is representative of cumeexperiments. However, wher > 1, theline width is
equal tol'«p/2 which gales asf/ A, nanely with the density of quantum dots in the sheet
and the oscillator strength of the dot. This gives the clue to the origin of the broadening
mechanism: it arises through a coherent coupling of the dipoles, and is a manifestation of
super radiance.

Fig. 4illustrates the resonances obtained in transmission and reflectance from identical
dots located in a im wide Gawsian opiial spot. As the number of identical dots is
increased, the amplitude of the resonanioeseases. At the same time, the resonances
broaden due to super radiance.

As a final @mment on the analysis of transmission and reflectivity from a quantum dot
in ahomogeneous medium, we note that implicit in the analysis so far is the assumption
that the transmission and reflectivity measuents are not influenced by the light re-
emitted by the quantum dot, the scattergthti This is no longer true when the numerical
aperture of all the lenses in the optical system approaches 1. If the exciton dephasing
is limited by radiation, there cannot be any significant non-radiative processes, so that
ewvery absorbed photon will eventually be retigted. In a CW experimd, both original
lase photons and scattered photons contribute to the reflectivity and transmission signals,



322 K. Karrai, R.J. Warburton / Superlattices and Microstructures 33 (2003) 311-337

Reflected Transmitted

’
i

7
'

'
i
T
v

\
| \
\ \\
\
\
)y
d

Vacuum

I
'
'
'
1
\

Fig. 5. Schematic view of a quantum dot near the sample surface. The focused laser beam is assumed to have a
depth of field much larger than the separation betweentlantum dot and the semiconductor surface so that the
electromagnetic field can be approximated with a plaage both in the quantum dot plane and at the sample

suface.

changing the expected contrast in the traizsion and reflectivity. Assuming that the
power is low so that spontaneous re-emission dominates over stimulated emission, the
re-emitted photons are equally likely to be elgted by the transmission and reflectivity
photo detectors. Under thesenditions, we expect new valudgw and Rcw for the
transmission and reflectivity given by,

Tcw =T + Abs/2 and Rcw = R+ Abs/2. (44)

As expectedlcw + Rcw = 1 and Abgw = 0. In this scenario, the contrast in the
transmission at resonance is very small. Whpilesent experiments are far from this limit
(the effective numerical aperture in the semiconductor is 0.15 in our experifea}, [
this point should be borne in mind as attempts are made to decrease the spot size.

4. Surface proximity effects

Up until now, the dot was considered to be embedded in a homogeneous medium with
optical indexn. This isnot the typical case in practice. In most samples, the dot is located a
small distancel beneath the sample surface. Typicallyanges from 10 to several 100 nm.

In this case, the back-scattdigght from the dot now adds coherently to the reflected light
from the sample surface. We show now that such an effect can modify substantially the
intensity and the resance line shape of the reflected signal. In addition, we find the free
surface has also a significant effect on the transmitted signal.

The experimental configuration is shown schematicallyFig. 5 We retin the
approximation that near the focus, the fields can be considered in a first approximation
as plane waves. We need to calculate the transmittarcEr / Eg and the reflectanae=
ERr/Ep of the plane waves shown Fig. 6. To do this, we employ #aformdism exphined
in [19]. This formalism, based on optical transfer matrices, rigorously takes account of
the multiple reflections between the dot layer and the sample surface. The details of this
calculation are given ilppendix A In theexperiments 4-9], a differential technique is
employed by switching the dot absorption on and off either by the Stark effect or by Pauli
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Fig. 6. The electromagnetic waveppropriate to the situation iRig. 3, assumingplane waves.

blocking. To model the experiments, we therefore calculate the transmission (reflectivity)

contrast, the difference between the transmission (reflectivity) with and without the exciton

resonance normalized to the transmission (reflectivity) without the exciton resonance. For
the transnssion the result is,

AT y2 [ 1—n( 5 . ﬂ
—_— = 1-— cos4p + — sin , 45
o0 > o 2 , 2 (45)

whereg = 27nd/A is the phase shift between a wave reflected from the sample surface
and one reflected from the dot layer. For= 1, we recover our previous result as in
this case the dot is located mhomogeneous medium, namely the vacuum. However,
for n > 1 which isthe case in thexperiments, the transmission contrast is modified by
the second term, a consequence of the interfee between the dot layer and the surface.
The interference depends on the dot to surface separdttbrough the phase term.

This changes both the transmission line shape and the contrast at zero detuning. For a dot
located at the sample surface, ide= 0, the resulting transmission mimics that of a dot in
ahomogeneous medium with indém + 1)/2, a result we used to analyze our ensemble
measurementdl]. For non-zeral, the transrission ontrast depends significantly on the
interference term. For instance, in the particular case of gas 2-1, the line shape is still

a synmetic Lorenzian but with a modified amplitude:

AT 1—n 2
T’:“—(l:tl_'_n)aoaziyz for cos2p = £1. (46)
Sincen = 3.6 for GaAs, we see that the amplitude of the differential transmission can
vary between 0.44 and 1.56 times the result for a dot completely buried in GaAs. This
point must be carefully considered when one determines the dot oscillator strength from
the measured data. In the worst case, an errdrdan lead to an error larger than 300% in
the oscillator strength.

A similar analysis can be made for the differential reflectivity. We find that,
AR 4n y2

— = cosdp — — sm 47

R n2 _ 1 82 + 2 < 20 2(:0) ( )

In the case of a buried dot, the reflectivity contrast was the square of the transmission
contrast, and therefore very small. Now that the dot is considered to be close to the
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Fig. 7. Transmission and reflectivity as a function of eton energy detuning from the exciton resonance for
five different values ofl, the distance between the quantum dot and the sample surface. Thepphdsedn/A
relates this distance to the exciton optical transition wavelength and the sample optical indé¥e assumed a
Gaussian spot size of FWHM ofiim andA = 1 um with radiation broadening corresponding to an exciton life
time of 1 ns.

suface, Eq. 47) denonstrates that the reflectivity coast is much increased, and is in
fact comparable to the contrast in transmission. For example,

AT n—lAR]c 1 dAT’V n—lAR]c 1(48

T = > R or cos2 = lan T = o R or cosS2p = (48)
which shav that for n = 3 and cos 2 = +1, both transmission and reflectivity resonances
are of equal magnitude. The form of the reflectivity signal depends strongly B¢hen
cog2¢p) = +1, the dfferential reflectivity has a Loremtan shape typical to an absorption
resonance. Conversely, when sin2 41, the dfferential reflectivity is purely dispersive.
While there are assawied changes in the line shape of the differential transmission,
the differential transmission retains an absorption character fap.allhesepoints are
illustrated inFig. 7, which showscalculated transmission and reflectivity of a quantum
dot with alife time limited exciton transition. The calculated data are obtained for dots
placed at different distances from the sampldame. A clear feature is that the differential
reflectivity can be made to follow either the real part or the imaginary part of the excitonic
polarizability depending on the value df Thisillustrates the point that by controlling the
phase difference between the interfering waitas possible to access experimentally the
full permittivity tensor.

5. Interferometry of a single quantum dot

The above section demonstrates that the results, particularly for the reflectivity, are
particularly dependent on the optical path difference between the quantum dot and the
sanple surface. It is difficult to vary this opticahth in an experiment, making it difficult
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Fig. 8. Schematics of the plane wave approximation & quantum dot positioned behind a Fabry—Perot
etalon. The two mirrors of the etalon are the digieetvacuum interface and the vacuum-semiconductor
interface.

to exploit the idea of using the reflectivity to determine both the real and imaginary parts
of the polarizability. An alternative is to consider the sample as forming one mirror of

a Fabry—rot cavity. The other mirror of the cavity can be some distance away, and
can be simply an air—dielectric interface.€lllea is that both the laser wavelength and

the dot resonance can be tuned through the resonances of the Fabry—Perot cavity. The
physics of the problem, sketched schematicallfig. 8 remain very similar to that in
Section 4except that it is no longer possible to express the differential transmission and
reflectivity with simple formulae. Analytical results are still possible however. After a
lengthy calculation given iAppendix B weobtain the following results for the differential
reflectivity and transmission coefficients,

AT &+ o 1- G, (49)
T ~ a082+y2 ¢ 5

AR y2

— =ag—=——-=G(p, DH (D), 50
= = 05— Gl DH(®) (50)

where thefunctionsG andH are defined as,
1)
G(p, @) = {(1+ rf)rz [cosZp — —sin er} +r1 [cos Ao+ D)
14

S5 . S5 .
—Zsin2p+ @)] +rar? [COSZ(p — @) — —sin2p — f.li):“
Y Y
x {r?r2 4 14 2rirpcos 2671
and,
r24r2—rZr2-1

H(®) = :
r2 412+ 2rrpcos 20

where the first and second interface reflectances are,
np—1 1—n

= 0 > 0, o =
no+1

r (51)
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Fig. 9. Interferometry on a singlguantum dot. The transmission and reflectivity as a function of the photon
energy detuning from the exciton resonance aalculated for five different values @, the distance between

the two mirrors in the Fabry—Perot cavity. The phase= 27 D/ relaes this distance to the exciton optical
transition wavelength. The phage= 2w dn/A defines the distance of the dot behind the sample surface. We have
taken herey = /2. The interferometer mirror is assumed to be dielectric and highly reflecting with a reflectivity
of 96%. We assumed a Gaussian spot size of FWHM @fhlandi = 1 um, and adiation broadening with an
exadton life time of 1 ns.

The cavity lengthD and the distancd between the dot and thersale surfaceleternine
the phases,

27D 2mdn
== and ¢ = T (52)
The equations above show that it is possible to perform interferometry on a single quantum
dot by adjusting the cavity length or the laser wavelength, both of which are included
in the phase tern®. Fig. 9 illustrates the behavior of the differential transmission and
reflectivity resonances for a single quantwaot for different separations between the
mirrors in the Fabry—Perot arrangement. For the parameters chosen here, the transmission
exhibits two distinct behaviors, namely, a resonance in the shape of an absorption curve
and a resonance in the shape of a dispersion curve. Such an experiment would allow a
determination of both the real and imaginary parts of the permittivity of the dot.

¢

6. Saturation of the optical absorption

In thelimit of a strong driving field, it is well known that the absorption of a two-level
system saturated B, 14]. The saturation is characteed by a decrease in the absorption
at resonance, a decrease in the spectrally iatedrabsorption intensity and an increase
in the line width. The latter effect is referred to as power broadening. We can anticipate
the same effects in a quantum dot becausdeast in the spectral range close to the
exciton resonance, the quantum dot behaves like a two-level system where each state has a
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confined, atom-like character. We show here how the saturation behavior can be exploited
to determine the Rabi frequency of the ground state exciton in a resonant laser field.

The origin of the saturation lies in the dynamics of the interaction of an exciton with a
resonant laser field. Once an exciton has been excited in a quantum dot, the exciton energy
will be dissipated. For an excited exciton, the exciton first relaxes to its ground state, and
then decays radiatively by spontaneous emissigriij this case, the relaxation step takes
the exciton out of resonance with the driving laser field. However, for the ground state
exciton, there is no relaxation pathway such ttet exciton remains in resonance with the
laser field. At low laser power, the exciton decays through spontaneous emission. However,
at higher laser power, there is an increaskdnce of decay through stimulated emission.
Since the photon originating from stimulated emission is identical to an incoming photon,
the process daenot contribute to any contrast in differential transmission. This causes
the absrption to saturate. Alsathe life time of an exciton is decreased by stimulated
emission, causing the transmission resonance to broaden. We anticipate that a saturation
of the resonance takes place as soon as stimulated emission dominates over spontaneous
emission.

The starting point for our analysis of the saturation properties is the result for the optical
scattering cross-section, integrated over all angles, as calculated for a two level system
from the optical Bloch equations in the rotating wave approximatl@14]. The optical
scattenng crosssectionXry is,

P

2
R.N
2y2

_3(n/m)? ve

==
JT
82+ y&, <1+

(53)

Here the relaxation rate through spontaneous emissignis given in Egs. 184 or (18b),
and(2r \ is the Rabi frequency for an electric fieleh corresponding téN photons:
n12EN

£ = . 54
RN P (54)

The proportion of scattered photons is givendiy) = X'/ A whereA is the area of the
focused laser beam as introduced jwesgly. We determine the scattering,

% .
Sp

13(x/n)2 S

a(d) = =
82+ & <1+

A 2m (59)

2
RN
2y2

In the idealized model in which the dot is embedded in a homogeneous medium of optical
indexn, the transrission and the reflectivity are,

T=1-a@®) and R=I[a()/2]% (56)

Eq. 65 showshow the absorption at the resonande=£ 0) and the lire width of
the re®nance increase as the Rabi frequencydases. The square of the Rabi frequency
is proportional to the laser intensity, résog in the phenomenon of saturation. In the
limit of a very high Rabi frequency (§) tends to zero and the width of the resonance is
proportional to the Rabi frequency.
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Itis clearlyimportant to calculate?% n as afunction of the spot focus geometry and the
characteristics of the excitonic dipole. & klassical relation beteen the field amplitude
due toN photons and the light powé? at quantum dot position is,

1 P
S= ZggenEZ = —. 57

5608 A (57)
We assume for now a spdbcus of areaA in which we consider the electric component of
the electromagnetic field to be constant. Using n? and rearranging the above formula
to,
2P 1 2Nhwg 1
gonc A gonc A’

R (58)

whereN = dN/dt is the number of photon flowing in the focused spot. We determine the
saturation prameter,

2 .
Q&an N hoous,

= — . 59
27/52p A yszphzsonc (59)

We now make e of Eq. {8b) for ysp,
QN N3G/n? 1 (©0)

Furthemore, making use aksp in Eqg. 21), we find a simplerelation for the saturation
parameter,

0% N 0 1[N
—R’ZN = —asp or R’ N = — asp , (61)
2Vsp Vsp I'sp 2\ I'sp

showing how the saturationapameter depends on the ratio of the absorption rate in
the absence of saturation effects to the rate of spontaneous emission. We can use this
expression in the expression for the scattering,

Vszp
82+ y& (1 +aspf)’

where we define a dimensionless saturation coeffiggamhich is a ratio of the incoming
photon flux to the rate of spontaneous emission,

a(8) = asp (62)

N N
f=—=2—. (63)
Vsp Fsp
The maximum scattering at resonance is then,
(Xsp
o2(0) = opmax = ———, 64
(0) = amax 1+ aspf (64)

and the resonance FWHM is broadened to,

I' = zysp\/ 1 + (Xspﬂ. (65)
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The area under the resonance is proportional to the product of peak size and width, so that,

r_l e f 1 (66)
o = — s
MEC T A socmon /T + aspB
or equivalently,
1 2hwop? 1

Z\ ﬁ280nC A/ 1 + aspﬁ .

The strength of the resonance normalized to its value at low power in the linear response
regime is simply given by,

r 1
OMax _ (68)

(emaxNo T+ aspB’
Sinceg is proportional to the laser intensity we see that the total scattered intensity inte-
grated over frequency decreases like the inverse square root of the laser intensity. The term
aspf governs the satation of the ofical transition. So let us express it in terms of the
o<cillator strength of the exciton and the laser power density outside the s&g)ple We
find,

9 gomg 2n \? /2\° Po : 4n Po
=——“n|— — ] —, wherewe usedN = ————. (69
aspb = 43 he2 <n+1> (n) A nt D2hw &9

This expression shows that for a given power density, saturation{pg.>> 1) is easily
reached for a transition with a small oscillator strength in a medium with a high optical
indexn. The epression is very sensitive #0so quantum dots emitting at long wavelength
will tend to saturate much more rapidly than those emitting at short wavelength.

Fig. 10illustrates the calculated changes in the resonance peak amplitude and its width
for the life time limited resonant ground stadxcitonic transition éa single quantum dot
subjected to increasing laser power densities.

7. A gquantum dot in an ideal cavity

Should the dot be confined in a perfect cavity, the value of the Rabi frequency used in
the analysis can beonsiderably enhanced. We estiméig y as a function of cavity size
for the interacting photon two-level system. Here again the starting point is the relation of
the Rabifrequency to the light field experienced by the exciton, Bd).(In a cavity, the
total average electromagnetic energy is given by,

1 / (e0e| ED)? + u Y BO)DF = ho(N + 1/2), (70)

whereN is the number of photons confined in the cavity. The case- 0, thatis when
the cavity is empty of photons, still leads tdimite Rabi energy due to the coupling of the
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Fig. 10.Lower panel: power saturation of the differential transmission peak size as a function of incident photon
power density. The data are normalized to the maximum differential transmissiéh=fo@. The power density
indicated here is in vacuum outside thedium in which the dot is embedded (here= 3.6). Curve (a) is
calculated for an exciton life time af = 1 ns with an optical emission wavelength ofuin, (b) is obtained for

an exciton life time of 100 p2Jpper panel: corresponding power broadening showing the relative change in the
full width taken at half maximum of the optical transition resonance.

exdton resonance with the vacuuraro point fluctuations. We equate the field energy with
guantized photon energy assuming a one-dimensional Fabry—Perot ideal cavity,

N 2
/808|EN|20052 fzdxdydz = hao(N + 1/2). (71)
z

We assume a cavity volum¥ = AL, whereL; is the cavity length and\ is its in-plane
area. The field experienced by the dot l@zhin an electric field maximum is then,

2(N + 1/2)hwo 1

E2 = , (72)
£0€ AL,

so that,

Q&N _ 15y (N +1/2)hwo 1 (73)

2 K2 £0€ AL,

Making use of Egs.18) and 1), we find the ginple rdation,

N

= (ZN + 1)(Xspj/spl), (74)

wherev is the oscillation frequency of the photon reflected back and forth along the
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cavity axis:

c/n

U=2—L2.

(75)

We see that the square of the Rabi frequensyaoportional to the number of photomé
present in the cavity and to the product of the spontaneous radiation rate divided by the
time it takes the photon to cross the cavity. We can now evaluate the contribution to the
line broadening and maximum scattering intensity due to the Rabi frequency generated by
N photons in the focal spot,

22 v
% = aspf = 2N + Dagp—. (76)
Vsp Vsp

Let us consider the case of a loss-less cavity with a lebhgtl 1 um, devoid of photons

(N = 0), embelded in a medium of optical index = 3.6. For a lderal aea of the
cavity of about Jum? and an exciton oscillator strength of about &g = 0.001. The
corresponding radiative recombination rate is then 2 10°/s. We deterrime for the
above set of parameters thapSsp = 30 showing that vacuum quantum fluctuations alone
can lead to a very large Rabi frequency. In this particular case it corresponds to 5.5 times
the ratural line width of the ground state exciton resonance. In the limit of strong coupling
the resonant scattering line width is given by,

FWHM = 2 /2N + Dorsp—. 77)
Vsp

and the peak scattering is,

1 1 y
B @N+1Dv’
It is an outstanding challenge to demtrate these results experimentally.

(78)

OMax =

8. Conclusions

We havepresented an analytical frameworkthvwhich absorptia experiments on
single quantum dots can be understood and interpreted. In particular, we have shown
how the dephasing rate can be determined from the line width and how the oscillator
strength can be determined from the integratesbanf the resonance. In the determination
of the oscillator strength, the proximity ¢iie dot to the semiconductor surface must be
taken into account as we find significant inteefiece effects between the surface-reflected
and quantum dot-reflected plane waves. The interference is particularly marked in the
reflectivity which can have either an absorptive or a dispersive line shape depending on the
nature of the interference. While it is not obus how to vary the nature of this interference
in an experiment on a particular quantum,deé diggest an alternative. By positioning
the dot justoutside a Fabry—Perot cavity, we show how the phase difference between the
quantum dot reflectance and the cavity mode can be controllably changed by varying the
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cavity length. This experiment should allow interferometry to be performed on a single
guantum dot.

A very significant point for a single quantum dot experiment is that the absorption
becomes non-linear at a modest power density. We show that this leads to a saturation
behavior in the absorption and an increase in the line width. Quantitatively, these effects
depend on the Rabi frequency. Finally, we comment that the Rabi frequency can be
considerably enhanced by positioning the quantum dot in the anti-node of the electric field
distribuion in a micro-cavity.

Acknowledgements

We graefully acknowledge the contributions of our co-workers Alexandegéelé,
Benito Alén and Pierre Petroff to this work. The work was funded by the DFG under project
number SFB 631, the Bavarian-Californian Technology Center and by the EPSRC, UK.

Appendix A

We calculate the transmittande= E1/Eg and the reflectance = Egr/Eg of the
electric fields for the situation shown Fig. 4. We use thedrmdism of [19] based on
optical transfer matrices. In this approadte electric field in each element is represented
by a vector consisting of two elements, the forward and backward propagating plane waves.
A 2 x 2 matrix propagates this vector through the structure. REJ] §ives tre matrix
elements for any layered system includingtdimensional dynamic conductivities at their
interfaces.

In the case irFig. 4, theoptical transér matrix is,

Eo mi1 M2 || Er
= ) Al
[ER} [mzl mzz“ 0} (A1
From the &dove matrix one deduces immediately that,
Er 1 _t
Eo ma
A2
Er_ma_ -
Eo mu

The transmission and the reflectivity of the sample are giveh by tt* andR = rr* so

we only need to determine the matrix elememtg andms1. We have two interfaces to
consider, namely that of the sample surface and that of the dot-layer. For this reason, the
matix [m;jj] is a product of two matrices, one for the semiconducfar;j]) and one for the

dot layer([bij1). The matix elements are:

a11=e_i‘p(1+ ny/2 bi1=1+0Y
ap=e"?(1—ny/2 b1 =+0Y
ajl= eﬁi(p(l— ny/2 bo1 = —0oY

a1=e"?1+n)/2 bu=1-0Y

(A3)
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where, as beforgg = 2xnd/x andY = 1/(2neqc). We find,

1 1 1 1
T omup anbintadbyr annl+oY(d—ap/an)’

In the absence of dot absorption we set= 0 which inpliest = tg = 1/a11, and the
reldive transmission is,

t 1
to 1+oY(1-ar/ar)
where we have assumed a weak absorptioh« 1. The transmission is therefore,

(A4)

=1-o0Y(1—aip/a11), (A5)

2
=14 201Y [Re(arp/a1) — 1] — 202YIm(agz/a11), (A6)

to

whereo; andoy are the real and imaginary part of the dot dynamical conductivity. The
differential transmission is given by,

2

AT _T@-TO 11" (A7)
T T(0) to

Using,

a2 _ g,1-n

a1, _ | A8

a1y 1+n -
we determine,

AT n-1

S =20+ D 2¥[ogsin2p - oycos ). (A9)

From the results for the conductivity of a two level system,
2

~ Y ~ Sy
we obtain our final result for the differential transmission,
AT y2 1—n 5 .
— = 1-— cos —sin . All
T a052+y2[ 1+n( 2p+y 24))} (A1)

A similar analysis can be made for the differential reflectivity. For this we have first to
determine the reflectance of the system:

p_ M a21b11 +azabpr @211+ 0Y (1 —az/a)
mi1  aitbii+adbpys  anl+oY(1—ap/ain)’

(A12)
In the absence of dot absorption, the reflectance of the sample 4s az1/a;1. The
reflectance relative ty is then,

r_1+o0Yd-ax/a)
ro 14+oY(1—aiz/an)

= 1-oY(arz/a11 — ax2/a1), (A13)
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where we again assumael’ < 1. The relative reflectivity is,

2
a a, a: a
| =142y [alRe(iz - iz) — ooIm <i2 - 3)} . (A14)
ro ailr a1 ail a1

The differential reflectivity is defined as,
2

AR R(o) - R(0
AR _R@)-RO _|r _1 (A15)
R R(0) ro
so that,
AR
AR~ oy [@?e(y - a—zz) — olm (a—“ - @ﬂ . (A16)
R a1 ap1 ail  ax
The term involving the matrix elements is,
a2 a2 _(1-n_ 14n giw_ieﬁw (A17)
a1 ap; \1+n 1-—n n2-1"

allowing us to determine the explicit form of the differential reflectivity, namely,

AR 4n .
? = mZY (O']_ COSZp — 02SIn 2§0) . (A18)
Finally this leads to
AR 4n Y s
— = ———ap———5 | COS — —sin . Al9
! n2—1a082+y2< - pr) (A19)

Appendix B

The analysis fromAppendix A can be extended to the case showrFig. 6, a dot
situakd beneath a Fabry—Perot etalon. Since we have one more interface to consider, the
total optical transfer matrix is a product of three matrices;j]1 = [ fij1[a;1[bi; 1 where
[ f] refers to the dielectric—vacuum interface dadl and[b] are defined imMppendix A
Using the results in19],

fi1=e€"%(no+1)/2
fio = e“@(no —-1)/2
fi1=e"?(ng — 1)/2
f11=e"?(ng +1)/2
where ¢ = 27 D/A. D is the separation between thelgctric—vacuum and vacuum-—

saniconductor interfaces. As imAppendix A we determine the transmittance and
reflectance using,

(B1)

Er_ 1 .
Eo mu

B2
ErR  ma1 (B2)

—_— = — =,
Eo mu
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where now,

my1 = fra(a11b11 + a10b21) + for(az1bir + azoboy).,

B3
mp1 = fr1(a11b11 + a10b21) + foo(az1bi1 + azoboy). (B3)

Only the elements dhjj ] contain the dot dynamic conductivity:

f_ f21811 4+ fozap1 + o Y{far(a11 — a12) + f22(az1 — a22)}
frian1 + fioaz1 + o Y{f11(a11 — a12) + fiz(a21 — azo)}
In the absence of a dot resonance, the nominal reflectance is,

(B4)

o= fo1a11 + f22a21.
fraarr + fioapy
Likewise we determine the transmittance,
. 1
-~ fuann + froaz 4 o Y{ fi(anr — a12) + fiz(az1 — az2)}’
such that in the absence of a dot resonance, the nominal transmittance is,
. 1
-~ fiann + fioap
The relative reflectance and transmittance are,
r 1+ A(cY t 1
fo 1+ BEUY; and T 1T BOY)
where,

(BS)

(B6)

to (B7)

(B8)

f f
A—1_ 21812 + 22a22’ (B9)
fora11 + fooa21

and,
_ fnap+ fioaz
fi1a11 + f10a21

We now use th expression of the matrix elements to determfand B as a function of
the interferometer properties. After some algebra we find,

B = (B10)

_ ezi‘prlrze‘2i 241

A - B11

and,
Cred? 4y
B=1_efw 1€ _*tr2 (B12)
r1r2e2' @ +1
wherer; andr; are the first and second mirror reflectances, respectively,
np—1 1-—n
ry 0 0 and ro= <0 (B13)

= >
no+1 1+n
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We can further develop the expressionfandB. We find,
A A+ r2)ry 41120+ P 4 ryr2e?ie=®)

1- , B14
rZ+r2+ 2rirpcos 20 (B14)
and,
1412 4+r12@tP) 4 rir2e2ito—9)
1_B:(( + 1)222-1-1 +rars ‘ (B15)
ryr5 + 1+ 2rirocos 29
In thelimit oY « 1,
r
- =1+ A@0Y)—B@Y)=1+0Y(A-B), (B16)
0
allowing after some algebra the differential reflectivity to be calculated as,
AR _ o Y G(g, ®)H (D) (B17)
where

G(p, @) = {(1+ rlz)rz [cosi{o — gsin 24 +ry [cosZcp + @)

—g sin 2(¢ + @)} +rar? [coquJ - P) — ;sin 2Ap — @)“

x (r?r2 414 2rirpcos 2671
and
2,2 2.2
r{+rs—rirs -1

H(®) = .
@ rZ 412+ 2rirpcos 20

The relative transmission is obtained from the relation for the differential reflectance by
setting the functiorA to 0 (see Eq.B10))
To)-T
%0)(0) ~ —201YRe&B) + 20oYIm(B) (B18)

allowing us to reach after some algebraic nparation the final result for the differential
transmission,

AT y2

— = —apg———= (1 — ?)). Bl

T a052+y2( G(p, ) (B19)
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