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We develop a quantum theory of the nonlinear interaction between intense surface acoustic waves
and electrons in a quantum well in the regime of moving quantum wires and dots. In the quantum
nonlinear regime, the sound attenuation exhibits quantum oscillations and dramatically decreases with
increasing quantization. In the case of dynamically created electron dots formed by two acoustic waves,
the waves can propagate without any dissipation in the limit of high sound intensity and, hence, the
electron quantum film acts as an acoustically quasitransparent material.
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Electronic systems with reduced dimensionality and dra-
matically changed electron density of states due to the
quantum confinement effect can be created in semicon-
ductor crystals employing modern fabrication techniques.
Prominent examples of such low-dimensional systems are
quantum films (2D), quantum wires (1D), and quantum
dots (0D). Compared to the classical bulk system (3D),
all of the above low-dimensional systems have a consider-
ably altered density of states. This fundamental property
of low-dimensional electronic systems has technologically
been exploited in the recent past. One of the best known
examples is the semiconductor laser [1], in which the re-
duction in a density of states results in greatly improved
characteristics [2].

Here, we demonstrate that also the acoustic properties
of semiconductor nanostructures exhibit some very inter-
esting and fascinating properties, which have no classical
counterparts. Interestingly enough, one of the first theo-
retical considerations of low-dimensional effects in semi-
conductors was based on acoustically induced quantization
and band structure effects [3], but so far, this approach has
not been followed in great detail. In this Letter, we show
how dramatically the acoustic transparency of mobile elec-
trons changes when an acoustic wave creates dynamically
defined 1D and 0D electron states from a formally homo-
geneous 2D quantum film.

When an acoustic wave propagates through a plasma
of mobile electrons in a solid, it decays due to excita-
tions in the continuum of electron states and also induces
a “dragging” effect [4,5]. In application to semiconductor
nanostructures, one of the most important mechanisms of
the interaction between mobile electrons and sound origi-
nates from the piezoelectric (PE) effect. Presently, the
acoustoelectric (AE) interactions involving the PE effect
are studied in GaAs-based nanostructures mostly for the
linear regime of small signals [6,7]. This is due to a weak
piezoelectricity of GaAs. A greatly enhanced AE interac-
tion has recently been observed in semiconductor-PE struc-
tures [8,9] which contain a semiconductor quantum well
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tightly bonded to a strongly PE host crystal (Fig. 1). The
PE potential induced by a surface acoustic wave (SAW)
in these hybrid structures is strong enough to break up
an initially homogeneous electron plasma into moving
wires. The strongly nonlinear phenomena observed in
hybrid structures [9,10] at room temperature are well de-
scribed by a nonlinear theory based on hydrodynamic
equations [10,11]. However, for low temperatures, the

FIG. 1. (a) Cross section of a hybrid structure with traveling
SAW’s. The 2D electron density is controlled by the gate voltage
Vt . (b) The moving PE potential of a SAW and the energy
structure of moving quantum wires. (c) Sketch of a system with
two SAW’s and moving quantum dots (top view); vs � �cs, cs�
and cs is the SAW velocity.
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classical description can no longer hold because of the
quantization induced by an intense SAW [3,12].

Here, we develop a quantum theory of the AE inter-
action in a 2D system for the strongly nonlinear regime
of SAW-induced moving electron wires and dots. We
show that the quantum AE interaction results in self-
induced transparency for the transmission of surface
acoustic waves. Along with a dramatic suppression of the
sound dissipation we found the regimes of SAW intensi-
ties, where quantum oscillations in the SAW transmission
can be observed. Our calculations were performed for
realistic experimental parameters.

In our model, an intense SAW propagating along a 2D
system of mobile electrons (Figs. 1a and 1b) dynamically
creates moving quantum wires. Hence, in the presence
of this intense SAW an initially homogeneous density of
states of a 2D quantum well (Fig. 2a) turns into a 1D den-
sity of states, being strongly peaked at the quantization
energies [13]. Further transformation into a quasi-zero-
dimensional (0D) system is possible involving two SAW’s
[14] with perpendicular momenta (Fig. 1c). Here, the elec-
tron motion is confined in both in-plane directions and
moving quantum dots with a fully quantized spectrum are
dynamically created. In this case, the density of states is
a set of delta functions. Thus, intense SAW’s reduce the
electron density of states from 2D toward 1D and even 0D
(Fig. 2a).

A simple picture of the AE effects is as follows: The
effective “friction” force for a sound wave originates from
the dissipative electric current js in the plane of a quantum
well induced by the PE field of a SAW. The electrons
scatter by crystal defects, i.e., by impurities, and in such a
way heat the crystal lattice. The sound energy dissipation
per unit time and area is given by

FIG. 2. (a) Density of states in 2D, 1D, and 0D electron sys-
tems. (b) Intersubband and intrasubband transitions induced by
impurities in a moving 1D wire.
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Q � �js�r , t�ESAW�x, t��r , (1)

where �. . .�r means averaging over surface area of a macro-
scopic sample and ESAW is the PE field induced by a SAW.
r � �x, y� is the in-plane coordinate and t is the time. In
our model, the Rayleigh SAW propagates in the x direc-
tion (Fig. 1a). The dissipative current js implies electron
transitions in the continuum of states near the Fermi en-
ergy. The energy transfer in such transitions is small since
the velocity of sound cs is typically much less than the
electron Fermi velocity yF . So, these quasielastic transi-
tions are possible only near the Fermi surface. Using this
argument, we can conclude that in 2D and 3D systems the
sound dissipation is quite effective because of the strong
electronic scattering in the continuum of states near the
Fermi level. The situation in 1D and 0D systems can be
very different since the distribution of the density of states
over the energy is strongly inhomogeneous (Fig. 2a). The
sound attenuation can dramatically be suppressed when the
density of states near the Fermi level becomes small (1D)
or even vanishes (0D) and electrons near the Fermi level
cannot scatter anymore.

We now consider the case when an intense SAW creates
moving electron wires with a quantized energy spectrum in
the x direction. It is convenient to discuss this problem us-
ing a moving coordinate system �x0 � x 2 cst, y�, where
the PE potential of the SAW appears to be static. Near
its minima, we approximate this PE potential FSAW �
F

0
SAW cos�kx 2 vt� � F

0
SAW cos�kx0� by a parabolic

function and consider a single wire for simplicity. Here,
k and v represent the sound momentum and frequency,
respectively. The energy spectrum of a wire contains 1D
subbands: Epy ,n � En 1 p2

y�2m�, where En � h̄V0�n 1

1�2�, h̄V0 is the quantization energy, n is the subband
number, py is the momentum along a wire, and m� is the
effective electron mass. At relatively small intensity of
sound, electrons occupy many 1D subbands and the system
is quasi-2D with almost continuous density of states. In
the latter case, the sound dissipation is expected to be high.
The main contribution to the dissipation Q comes from
quasielastic transitions between closely located subbands.
However, the quantization energy increases with the PE

potential: h̄V0 ~

q
F

0
SAW. For a fixed number of electrons

and sufficiently high intensity of sound, the electrons
fill only the few lowest subbands (Fig. 2b) and quantum
effects start to play a major role. In this regime, the SAW
dissipation basically reflects the density of states and oscil-
lates with increasing F

0
SAW. Eventually, for the higher PE

potential only the lowest subband becomes occupied by
electrons (Fig. 2b) and transitions between subbands are
no longer possible because of the quasielastic character of
scattering. Nevertheless, intrasubband scattering (Fig. 2b)
remains allowed even at very high SAW intensities. Thus,
we see that the SAW dissipation cannot vanish even at
very high sound intensity but the magnitude of dissipation
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should strongly decrease. Such behavior of the calculated
absorption in the regime of quantum wires is seen in
Fig. 3. When F

0
SAW . 0.5 V, only residual intrasubband

scattering remains possible and the absorption becomes
saturated at its minimal value. Of course, the described
phenomena are well expressed at low temperatures T .

To quantitatively describe the nonlinear quantum effects,
we use a moving coordinate system �x 0, y�, in which the
random impurity potential becomes time dependent. We
assume the Coulomb impurities to be distributed in space
with a homogeneous 3D density, Nt . To find the electron
current, we use the equation of motion for the single par-
ticle density matrix f̂ within the framework of the self-
consistent field approximation [15],

≠f̂
≠t

1
i
h̄

�Ĥ, f̂� �

µ
≠f̂
≠t

∂
collisions

, (2)

where the Hamiltonian Ĥ includes the random impurity
potential and the collision term describes weak electron-
electron and electron-phonon interactions. Equation (2)
can be solved in the framework of time-dependent pertur-
bation theory regarding the impurity potential as a weak
perturbation [16]. Then, we obtain the dissipation of a
SAW in the form
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FIG. 3. Calculated SAW absorption in dynamically defined
quantum wires as a function of the potential amplitude F

0
SAW for

various temperatures T . The parameters are given in the text.
Inset: SAW absorption Qclass�F0

SAW� for a classical electron
system at room temperature.
Q �
Nt

l�2p�2 h̄

X
n,n0

Z
dqxdqy Dn,n0 �qy, csqx� jAn,n0�qx �j2�jU0�qx, qy, Zi�j2�Zi

Z
dpy csqx� f0

py ,n 2 f0
py1qy ,n0�

3 d�h̄csqx 1 Epy ,n 2 Epy1qy ,n0� , (3)
where An,n0�qx� �
R

dx cn�x�cn0�x�eiqxx, cn�x0� is the
electron wave function in a wire; U0�qx , qy , Zi� is the 2D
Fourier transform of the single impurity potential with the
vertical coordinate Zi and �. . .�Zi means averaging over Zi ;
f0

py ,n is the Fermi distribution function and Dn,n0�qy, v�
is the screening factor. For our numerical calculations
(Fig. 3) we used the following parameters: the wavelength
l � 1 mm, cs � 3.9 3 105 cm�s, the 1D electron den-
sity NL � 4 3 105 cm21, Ns � NL�l � 4 3 109 cm22,
Nt � 4.1 3 1014 cm23, and m� � 0.07m0. The param-
eter Nt is found from the low-temperature mobility of a
2D homogeneous gas, m2D; m2D � 3 3 106 cm2�V s
at the 2D density Ns � 3 3 1011 cm22. Also, we have
neglected the weak electron-phonon scattering assuming
the low-temperature regime [1,12]. Equation (3) has a
clear sense and describes impurity-induced transitions
between various states in a quantum wire (Fig. 2b). It
reproduces the physical picture described above very well.

The quantum picture of the AE interaction is signifi-
cantly changed from the classical one. At room tempera-
ture, the absorption is an increasing function of F

0
SAW and

becomes saturated for high sound intensities in the regime
when a SAW totally traps all electrons into wires (Fig. 3
inset) [10,11]. For the typical room-temperature parame-
ters m2D � 5000 cm2�V s and Ns � 4 3 109 cm22 [9],
we obtain Qmax � 2 3 1022 W�cm2 which is a few or-
ders of magnitude larger than the calculated quantum-limit
absorption.

In the case of dynamically created quantum dots, the
effect of the quantization is even stronger as the den-
sity of states can vanish near the Fermi level and any
quasielastic transitions become impossible at sufficiently
high sound intensity. We now consider two perpendicu-
lar sound waves, SAW1 and SAW2, producing PE po-
tentials F

0
SAW1�2� (Fig. 1c). A quantum dot created by

the SAW’s can be regarded as a 2D anisotropic harmonic

oscillator with two frequencies: VSAW1�2� ~
q

F
0
SAW1�2�.

Calculations for the case of quantum dots are very simi-
lar to those related to the wires [16]. For the symmetric
case F

0
SAW1 � F

0
SAW2 � F

0
SAW, the asymptotic behavior

for the absorption of both SAW’s is

Qtot ~ e2�h̄V0�2m�c2
s � � e2

p
F

0
SAW�Fs , (4)

where V0 � VSAW1�2�, Fs � 4�m�c2
s �2 3 m���eh̄2k2�,

and F
0
SAW ! `. In the limit of large SAW intensities,

the absorption decreases exponentially. The latter is based
on the inequality h̄cs�l0 ø h̄V0, where l0 �

p
h̄�m�V0.

The effect of quantization on the SAW absorption is really
drastic (Fig. 4). The maximal PE potentials achieved for
226803-3
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FIG. 4. Calculated absorption of both SAW’s Qtot for dynami-
cally defined quantum dots as a function of the sound-induced
lateral quantization V0 for the equal intensities of SAW’s. The
lower part shows the absorption of the SAW1 for fixed intensity
of the SAW2.

hybrid and GaAs structures are about 1–2 V correspond-
ing to h̄V0 	 1 meV [9,14]. The calculated absorption
for h̄V0 	 1 meV at temperature T � 2 K turns out to
be 12 orders of magnitude smaller than the one at room
temperature. For the asymmetric case F

0
SAW1 fi F

0
SAW2,

we find the regime of the quantum interaction between
SAW’s and giant quantum oscillations (Fig. 4).

Experimentally, the electron density in a quantum well
can be controlled by a voltage applied to a metal top gate
(Fig. 1a) [9] or optically induced [14]. Also, an impor-
tant question related to experiments is the heating effect.
By solving the energy balance equation, we showed that
the heating effect is weak in high-quality quantum wells
with a mobility above about 106 cm2�V s and that the low-
temperature solution is stable [16].

To conclude, we have described novel quantum phenom-
ena in the nonlinear propagation of intense surface acoustic
waves through an electron plasma. A dynamical reduction
of the density of states in an electron plasma results in a
dramatic decrease of the sound dissipation. Modern hybrid
226803-4
structures can be candidates to experimentally observe the
predicted quantum transparency effect for sound waves.
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