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Nonlinear acoustoelectric transport in a two-dimensional electron system
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We study both theoretically and experimentally the nonlinear interaction between an intense surface acoustic
wave and a two-dimensional electron plasma in semiconductor-piezocrystal hybrid structures. The experiments
on hybrid systems exhibit strongly nonlinear acoustoelectric effects. The plasma turns into moving electron
stripes, the acoustoelectric current reaches its maximum, and the sound absorption strongly decreases. To
describe the nonlinear phenomena, we develop a coupled-amplitude method for a two-dimensional system in
the strongly nonlinear regime of interaction. At low electron densities the absorption coefficient decreases with
increasing sound intensity, whereas at high electron density the absorption coefficient is not a monotonous
function of the sound intensity. High-harmonic generation coefficients as a function of the sound intensity have
a nontrivial behavior. Theory and experiment are found to be in a good agreement.
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INTRODUCTION

The interaction between surface acoustic waves~SAW’s!
and mobile carriers in quantum wells is an important meth
to study the dynamic properties of two-dimensional~2D!
systems. The SAW can trap carriers and induce acou
charge transport as has been investigated in a numbe
systems in view of possible device applications.1 Also, the
SAW-method was applied to study the quantum H
effects,2–4 electron transport through a quantum-po
contact,5 lateral nanostructures,6 and commensurability ef
fects in a 2D system.7 However, all those experiments hav
been done in the regime of small signals and linear inte
tion. A recent paper by Rotteret al.8 reports strongly nonlin-
ear acoustoelectric effects in a 2D electron gas~2DEG!,
which become possible in hybrid structures based onA3B5
semiconductors and LiNbO3. 9–11 In these experiments a
intense SAW breaks a 2DEG into moving electron strip
and all characteristics of the acoustoelectric interaction
strongly modified as compared to the linear case. In mod
hybrid structures11 the SAW-induced potential amplitude ca
become comparable with the band-gap of a semiconduc
The previous paper8 on nonlinear effects in the hybrid struc
tures with a 2DEG includes a brief qualitative analysis. H
we present a detailed theoretical study of nonlinear acou
electric effects in a 2D electron system and develop
coupled-amplitude method for intense SAW’s interacti
with a 2DEG. Using our theoretical results we can expl
main experimental observations. Including the effect of el
tron diffusion we find a good quantitative agreement b
tween theory and experiment for the case of the SAW
sorption coefficient in the nonlinear regime.

Nonlinear acoustic waves in bulk piezocrystals with fr
carriers were discussed in a number of theoret
PRB 620163-1829/2000/62~4!/2659~10!/$15.00
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papers.12–16The application of a dc voltage to the crystal c
result in the current amplification of sound12,14,17and in the
formation of stationary nonlinear waves.12,14,16Analytic re-
sults in the theory of nonlinear acoustic waves in bulk
ezocrystals with free carriers were mostly obtained in
limit of small amplitudes or for the case of very inten
acoustic waves.12,13,16For nonlinear SAW’s in crystals with
a 3D electron gas, a theory was developed in the limit
very high amplitudes, when the SAW bunches electrons n
the crystal surface.18 Another theoretical aspect related to th
generation of the second harmonic of a SAW was studied
Ref. 19 by using the coupled-amplitude method and per
bation theory. A theory of acoustoelectric interactions in
2D electron system was developed mostly for the linear
gime of interaction.20,21

Here, we study both theoretically and experimentally t
transition from the linear regime of the acoustoelectric int
action to the limit of strongly nonlinear effects in a 2DEG
Our theoretical results are applied for a description of exp
mental data on hybrid structures.8,11 We pay attention to den
sity dependences of the absorption coefficient and the SA
velocity shift because the electron density is a tuna
parameter in experiments on 2D systems. Such depende
were not discussed in detail in the context of 3
systems.12–16 It turns out that for low densities, the absor
tion coefficient is a decreasing function of the sound inte
sity caused by the trapping of electrons in the SAW pie
electric potential. At sufficiently high electron densit
however, the absorption coefficient is a nonmonotono
function of the sound intensity. This behavior can be und
stood in terms of a dynamical screening effect. Also, o
quantitative analysis shows that the absorption coefficien
room temperature is strongly reduced due to electron di
sion. A nonmonotonous behavior with increasing sound
2659 ©2000 The American Physical Society
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2660 PRB 62A. O. GOVOROVet al.
tensity was also found for the intensities of higher harmon
in a short device.

The coupled-amplitude method with the introduction
fast and slow variables was used before for a descriptio
bulk systems.14,15 However, the formulas from the bul
theory cannot be directly applied to surface waves becaus
the complex character of the lattice vibrations in a SAW.
develop the coupled-amplitude method in a 2D system,
introduce a local velocity shift and a local absorption coe
cient in an integral form through an electron current, a SA
potential, and an electromechanical coupling coefficient o
microstructure. The resulting formulas can then be applie
any type of SAW’s interacting with a 2DEG. Moreover, u
ing our approach, we can find solutions for higher harmon
for arbitrary SAW intensity. This is in contrast with pertu
bation methods developed earlier for 3D systems and vali
small SAW intensities.19 At very high intensities, we find
analytical asymptotic dependences for the high-harmonic
tensities in a 2D system.

As has been shown before, the linear approximation ho
when dn!Ns , whereNs is the equilibrium 2DEG density
anddn is a density perturbation due to a SAW. In the line
theory, the absorption coefficientG0 and the SAW-velocity
shift due to the 2DEGdvs

0 are given by the well-known
relation20,21

2
dvs

0

vs
0

1 i
G0

2q
5

Ke f f
2 ~q!

2

is0 /sm

11 i ~s0 /sm1Deq/vs
0!

, ~1!

whereq is the SAW wave vector,vs
0 is the sound velocity in

the absence of a 2DEG,s0 and De are the 2DEG conduc
tivity and the diffusion coefficient, respectively.Keff

2 is the
effective electromechanical coupling coefficient.sm(q)
5vs

0eeff(q)/(2p), where eeff(q) is the effective dielectric
constant in a 2D system. In most piezoelectric crystals,
coupling Keff

2 !1. In GaAs,Keff
2 50.000 64, whereas in th

hybrid structures as studied here, it is two orders of mag
tude larger, in the range of 0.0120.05,10 but still much less
than unity. The goal of this paper is to describe the acou
electric interaction for the case of large amplitude SAW
whendn;Ns and the perturbation theory is no longer vali
At the same time, the couplingKeff

2 will be assumed to be
much less than unity. Below, we will generalize the resu
following from Eq.~1! for the strongly nonlinear case, whe
dn;Ns .

The paper is organized in the following way. In the fir
section, we will give the general equations for SAW’s on
piezoelectric crystal. The second section is devoted t
coupled-amplitude method developed for the case of inte
SAW’s. The third and fourth sections are about phenom
related to large-amplitude SAW’s in a 2DEG. Then, we w
discuss experimental data on the hybrid structures and a
our theoretical results for the interpretation of experimen

I. MODEL AND GENERAL EQUATIONS

In usual GaAs-based microstructures it is very difficult
realize SAW’s with high-amplitude potentials because
electromechanical coupling in GaAs is relatively weak.
strong piezoelectric interaction can be achieved in hyb
structures8,9 ~Fig. 1!. Those consist of a semiconductor lay
s

f
of

of

e
-

a
to

s

at

-

s

r

e

i-

o-
,

s

a
se
a

ly
.

e

d

being bonded to a piezoelectric host crystal, in our ca
LiNbO3.8,9 The semiconductor layer contains an InGaA
AlGaAs quantum well~QW! with a high-quality 2DEG, to
which Ohmic contacts are formed. The distance between
QW and the piezocrystal is only 32 nm, whereas the dista
between the QW and the top transport gate isd5450 nm. In
our modelx and y are the in-plane coordinates andz is the
normal one. The QW plane corresponds toz5d, and the
SAW travels in thex direction~see Fig. 1!. By changing the
transport-gate voltageVt one can tune the electron densi
Ns(Vt) in a QW. In this structure, traveling SAW’s can in
duce very strong piezoelectric fields in the semiconduc
layer due to the strong piezoelectricity of the host LiNbO3
crystal. A SAW is induced and detected by the metallic
terdigital transducers IDT1 and IDT2, respectively, at roo
temperature.8 The acoustoelectric current is measured b
tween two Ohmic contacts labeled 1 and 2 in Fig. 1.

SAW’s in a piezoelectric crystal with a 2D plasma a
described by the system of equations22

rüi5ciklm]m]kul1plik] l]kf, ~2!

e~x3!] i] if24ppikl] i] luk524pend~x32d!, ~3!

wheree52ueu is the electron charge,r is the mass density
and e is the dielectric constant. Further,ciklm is the elastic
tensor,plik is the piezoelectric tensor,uk(x,z,t) is the lattice
displacement, andf(x,z,t) and n(x,t) are the electrostatic
potential and the 2D electron density, respectively. In E
~2!, ~3!, we have used the notations] l f 5] f /]xl and ḟ
5] f /]t, and the sum convention for repeated indexes.t is
the time, andx35z, x25y, andx15x are the coordinates.

In our geometry, the SAW propagating in thex direction
is a purely Rayleigh wave, in which only two components
the displacement,ux anduz , are nonzero. Hence, the electr
field E is also polarized in the (xz) plane. This case corre
sponds to the hybrid structures studied in experiments,8–10

where the 128°-rotatedY cut of LiNbO3 is used. The surface
of the thin GaAs film is (001). The SAW propagates in t
@110# direction of GaAs andX direction of LiNbO3.

FIG. 1. The cross section of a hybrid semiconduct
piezocrystal structure. An epitaxial lift-off film has a thickne
0.5 mm. The Ohmic contacts are formed to a 2D electron gas.
transport gate with applied voltageVt is used to control the conduc
tivity of the electron plasma. A high-frequency~rf! signal is applied
to the metal interdigital transducer IDT1 in order to generate s
face acoustic waves. A surface acoustic wave propagates thou
sample and is detected by the transducer IDT2.
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The electron 2D plasma is described by the usual hyd
dynamic equations

eṅ~x,t !1
] j ~x,t !

]x
50, ~4!

j 52s
]f~x,d,t !

]x
2eDe

]n~x,t !

]x
, ~5!

where j is the 2D electron current,s5ueumns(x,t) is the
2DEG conductivity,m is the mobility, andDe is the electron
diffusion coefficient. Equation~5! is valid in the long wave-
length limit, whenqle!1, wherel e is the electron mean fre
path.

The wave equations~2!, ~3! should be solved togethe
with the boundary conditions at the surfacez50 and at the
interfacez5d. At z50, these conditions are the following
f(z50)50 and szi5czilm(]mul1] lum)/21plzk] lf50.
Hereszi is thez component of the stress. The top metal g
is thin and does not influence the boundary condition for
stress tensor. At the semiconductor-piezocrystal interfacef,
ui , andszi should be continuous, andDz(z5d1d)2Dz(z
5d2d)54pen, where d→0 and Di52e(z)] if
12ppikl(]kul1] luk) is the electric displacement. For sim
plicity, we assumed above that the 2DEG is located dire
at the semiconductor-piezocrystal interface.

II. COUPLED-AMPLITUDE METHOD

The system of nonlinear equations~2!–~5! can be simpli-
fied in the limit of weak electro-mechanical couplingKeff

2

;p2/(ce)!1. In this limit, we can introduce two coordi
nates, the ‘‘slow’’ variablex and the ‘‘fast’’ variablex15x
2vs

0t.14,15The solution is of the form~see Appendices A and
B!,

u~x,z,t !5u~x,x1 ,z!5u0~x,z!1 (
n51,2, . . .

an~x!

3U0@z;qn1dqn~x!#eiqnx11c.c.,

~6!

f~x,z,t !5f~x,x1 ,z!5f0~x,z!1 (
n51,2, . . .

an~x!

3F0@z;qn1dqn~x!#eiqnx11c.c.,

~7!

This solution is written as a sum of harmonics with wa
vectorsqn5nq, whereq.0 is the wave vector of the ini
tially generated SAW nearx50. The vector A0@z;q#
5(U0@z;q#;F0@z;q#) and the quantitydqn are determined
by a linear system of equations as given in Appendix B. T
envelope functionsan(x) are slowly changing on the scale o
l52p/q. It is assumed that the SAW intensity related to t
vectorA0@z;q# is unity and thus the total SAW intensity i
I SAW5(n51,2, . . .uan(x)u2. The functions u0(x,z) and
f0(x,z) describe the static spatial distributions, that can
induced by a SAW.

The functionsj (x,x1 ,t) and n(x,x1 ,t) can be written in
the standard formf (x,x1 ,t)5 f 0(x)1(n51,2, . . .f n(x)eiqnx1
-

e
e

ly

e

e

1c.c., wheref n(x) is an envelope function. Also, the electr
field E can be written in the way similar to Eq.~7!.

The solutions~6!, ~7! are a sum of linearlike SAW’s,
which slowly vary in the amplitude and in thez profile. The
z distribution of lattice displacementU0 is a sum of expo-
nential functions exp$2gj@qn1dqn(x)#z%, whereg j@q# are the
coefficients depending also on material constants.22 On short
distances (;l) the envelope functionsan(x) can be re-
garded as constants and we can solve Eqs.~2!–~5! consider-
ing only the ‘‘fast’’ variablex1 . nn(x) andfn(x) should be
considered here as the functions of the parame
a1 ,a2 , . . . , n0, andE0. Then, havingnn andfn as functions
of a1 ,a2 , . . . , n0, andE0, we can find the behavior ofan(x)
on long-range scalex;1/G0@l.

The electrostatic potential is written in a self-consiste
way:

f~x,x1 ,z!5f ind1fSAW, ~8!

wheref ind andfSAW are the potentials induced by a 2DE
and by piezoelectric charges of a SAW. Using Eq.~3! we
write

e~z!] i] if
ind524pend~z2d!, ~9!

e~z!] i] if
SAW54ppikl] i] luk . ~10!

f ind andfSAW can be expressed by the harmonic amplitud
fn

ind and fn
SAW. For example, f ind5f0

ind(x,z)
1(n51,2, . . .fn

ind(x,z)eiqnx11c.c. In the limit Gmaxl;Keff
2

!1, we find from Poisson’s equation~see Appendix A! and
from the conservation of charge

fn
ind~x,d!5

2penn~x!

ee f f~qn!qn
, Enx

ind~x,d!52 iqnfn
ind~x,d!,

~11!

j n~x!5vs
0enn~x!,

wheren51,2,3 . . . . Here eeff(q)5@ep1es coth(uqud)#/2 is
the effective dielectric constant including the gate electro
effect, andep and es are the dielectric constants of a ho
piezocrystal and a semiconductor, respectively.23

The nth harmonic of the SAW potentialfn
SAW is given

only by an(x) and by material constants and can be eas
found from the Poisson equation~10!. At z5d we have
fn

SAW(x,d)5Cnan(x), where the coefficientCn depends on
the geometry and the material constants. For example,
crystal of the type of GaAs,Cn5p4g(qn), whereg(qn) is a
complicated function ofqn . Below, we will give the neces-
sary relations for the hybrid structures.

To find the harmonic amplitudesnn andfn , we have to
solve Eqs.~3!, ~4!, and~5! regarding the ‘‘slow’’ variablex
as the constant. The slowly varying quantitiesnn(x) and
j n(x) can be found as Fourier components of the solut
n(x1 ,x) from a ‘‘fast’’ equation in terms ofx1. In a self-
consistent approach, the electron densityn(x1 ,x) is deter-
mined by the SAW-induced potential atz5d,
fSAW(x1 ,x,d)5f0

SAW(x,d)1(n51,2, . . .Cnan(x)eiqnx11c.c.,
through a nonlinear equation.8 By using Poisson’s equation
the results of Appendix A, and Eqs.~4! and ~5!, we obtain
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ueun~x1 ,x!mF2
d

dx1
H E

2`

1`

dx18G~x12x18!n~x18 ,x!J
1ESAW~x1 ,x!G2eDe

dn~x1 ,x!

dx1
2evs0n~x1 ,x!5b0 ,

~12!

G~x12x18!5eE
2`

1`

dk
e2 ik(x12x18)

ukueeff~ uku!
, ~13!

whereb0 is a constant, which occurs after one integration
the conservation-of-charge equation~4!. Taking into account
G0l!1, we assume that the solution of Eq.~12! is periodic
in x1 , ns(x1 ,x)5ns(x11l,x). Also, ^ns(x1 ,x)&
5*0

lns(x1 ,x)dx1 /l5n0(x), wheren0(x) plays the role of a
‘‘local’’ 2D density.

The functionsan(x) are connected by the system of no
linear equations~see Appendix B!

dan

dx
5 idqn@a1 ,a2 , . . . ;n0 ,E0#an , ~14!

where

dqn@a1 ,a2 , . . . ;n0 ,E0#52
Keff

2 ~qn!

2

2p

eeff~qn!

enn~x!

fn
SAW~x!

5 i
Keff

2 ~qn!

2qnsm~qn!

j n~x!En
SAW*

ufn
SAW~x!u2

~15!

andn51,2,3, . . . .
The local velocity change of a SAWdvn and the local

absorption coefficientGn can be expressed bydqn :

dqn52qn

dvn

vs
0

1 i
Gn

2
. ~16!

Using the relation

Keff
2 ~qn!5

2uEn
SAWu2sm~qn!

qnI n
~17!

~see Ref. 24! and Eqs.~11! we write

dvn~x!

vs
0

5
^f̃n

SAW~x1 ,x! j ~x1 ,x!&
2I n~x!

, ~18!

Gn~x!5
^Ẽn

SAW~x1 ,x! j ~x1 ,x!&
I n~x!

. ~19!

Here we use the notations^ f (x1 ,x)&5*0
l f (x1 ,x)dx1 /l, and

f̃ n(x1 ,x)5 f n(x)exp(iqnx1)1c.c.
In this section, we have assumed thatKeff

2 !1 and ne-
glected the terms d2an /dx2}dqndan /dx}Keff

4 and
ddqn /dx}Keff

4 . The static electric fieldsf0(x,z) in Eq. 7,
which can be induced by a SAW, will not play an importa
role in this paper because we will consider the case w
no voltage applied to the Ohmic contacts (V15V2) and a
relatively short device withL!1/G0. Thus,f0(x,d).const
t
h

and the static electric fieldsE0x(x,d) can be neglected
Equations~14! and~15! can now be applied to various type
of SAW’s by introducing specific electromechanic
coupling coefficients.

III. ACOUSTOELECTRIC TRANSPORT
IN A TWO-DIMENSIONAL PLASMA

Here, we intend to consider the SAW absorption and
acoustic charge transport in the regimeV15V2. The behav-
ior of a 2DEG in an intense SAW at small distances (;l)
can be assumed to be periodic and is described by nonli
equation~12!. At long distances (@l) the SAW behavior is
determined by complex amplitudesan(x), that can be found
by Eqs.~14! and ~15!. First, we define the boundary cond
tions atx50: a1(0)5AI 1(0) andan(0)50 for n52,3, . . . .
Here, I 1(0) denotes the SAW intensity generated by IDT
In this case, for a relatively short sample the SAW conta
mostly the fundamental SAW harmonicn51 with a small
admixture of the higher harmonicsn52,3, . . . . So, itfollows
from Eqs.~14! and ~15!

a1~x!5a1~0!~11 ixdq1@a1~0!,0,0, . . . ;n0,0# !. ~20!

We assume that@ I 1(0)2I 1(L)#!I 1(0), where L is the
length of a semiconductor film andI 1(L) is the intensity
detected at the IDT2. The latter is valid in a short sam
whereG1L!1. The first-harmonic absorption coefficient p
unit length, which is measured in the experimen
is @ I 1(0)2I 1(L)#/@ I 1(0)L#52Im$dq1@a1(0),0,0, . . . ;n0,0#%
5G1(a1,0,0, . . . ;n0,0)[G1 and the velocity shift
is dv1(a1,0,0, . . . ;n0,0)/vs

052Re(dq1@a1,0,0, . . . ;n0,0#/q)
[dv1 /vs

0 .
The amplitudes of higher harmonics in a short sam

turn out to be given by

an~x!5 ix lim
an→0

andqn@a1~0!,0,0, . . .an , . . . ;n0,0#

5 ix
pKeff

2 ~qn!

eeff~qn!

enn~0!

Cn
, ~21!

wheren52,3,4, . . . . Here, we assume that@ I 1(0)2I 1(L)#
@I n , which is valid for a short sample whereG1L!1, and
we take into account that for the strongly nonlinear caseG1
;Gn . The intensity of thenth-harmonic is given byI n(x)
5uan(x)u2 and

uCnu25
ufn

SAWu2

uanu2
5

Keff
2 ~qn!

2qnsm~qn!
~22!

@see Eq.~17!#. By using Eq.~21! we find the intensities of
high harmonics atx5L:

I n~L !5 lim
an→0

uandqn@a1,0,0, . . . ,an , . . . ;0,0#u2L2

5pL2~Keff
2 /eeff!qnvs

0e2unn~0!u2.

To calculateG1 anddv1, we numerically solve Eq.~12! for
the parametersa1Þ0 andan50 whenn52,3, . . . .Then we
can find the Fourier components ofn(x1 ,a1). We now cal-
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culate the electron densityn(x1 ,a1) in the long wave-length
limit qd!1. In this limit the function given by Eq.~13! is
reduced toG(x12x18)5(4ped/es)d(x12x18) and Eq.~12!
now writes as

ueun~x1 ,a1!mH 2
4ped

es

dn~x1 ,a1!

dx1
1F1

SAWcos~qx11x1!J
2eDe

dn~x1 ,a1!

dx1
2evs

0n~x1 ,a1!2b050, ~23!

where the SAW-induced piezoelectric field is taken in t
form ESAW5F1

SAWcos(qx11x1), andx1 is the phase of the
first SAW harmonic. For simplicity, we put in the followin
x150. The constantb0 in Eq. ~23! is directly connected with
the kinetic motion of a SAW and thus vanishes forvs

0→0.
Dividing Eq. ~23! by n and then integrating overx1 we get

ueumH 2
4ped

es
n~x1!1

F1
SAW

q
sin~qx1!J 2eDe ln@n~x1!#

5const11evs
0x11b0E

0

x1 dx18

n~x18!
. ~24!

The left-hand side of the above equation is periodic and t
the right-hand side should be periodic as well. It implies t
b0*0

ldx18/n(x18)52evs
0l.

A numerical solution of Eq.~23! n(x1) at T5300 K and
at various averaged densitiesNs5^n(x1)& is shown in the
inset of Fig. 3. Here, we use the following parametersl
533 mm, m55000 cm2/V s, D5m(KT/e), es512.5, and
vs

053.83105 cm/s. It is seen that with decreasingNs the
formerly homogenous 2DEG turns into moving electr
stripes.

It follows from Eqs.~18!,~19! that

FIG. 2. The calculated absorption coefficient of the first h
monic G1 as a function of the carrier densityNs for various poten-
tial amplitudes F1

SAW . l533 mm, m55000 cm2 V/s, and T
5300 K. Inset: The measured attenuation of a SAW as a func
of the gate voltage for different high-frequency~rf! powers applied
to the IDT1; f 5114 MHz.
s
t

dv1

vs
0

52
^F1

SAWsin~qx1! j ~x1!&
2I 1

,

G15
^F1

SAWcos~qx1! j ~x1!&
I 1

. ~25!

The calculated absorption coefficientG1 as a function of the
electron densityNs for various potential amplitudesF1

SAW

5F1
SAW/q is shown in Fig. 2. It was calculated from Eq

~25! and the numerical solution forn(x1). The potential am-
plitude F1

SAW can be easily connected with the SAW inte
sity I 1 by using Eqs. 17 and 22 withKeff

2 found numerically
in Ref. 9. As an example, in the hybrid structures at SA
frequenciesf 5114 and 340 MHz,Keff

2 is about 0.015 and
0.035, respectively.

We see in Fig. 2 that with increasingF1
SAW the absorption

coefficient in general decreases and its maximum is shi
to the higher values ofNs . This nonlinear behavior can b
understood qualitatively as follows. For the densiti
Ns!Ns

max, the electron plasma forms the moving char
stripes and the electron velocityj /(eNs) is very close to its
maximumvs

0 . HereNs
max denotes the density correspondin

to the maximum of the functionG1(Ns) at fixedF1
SAW. We

will show below that in the caseNs,Ns
max G1

.ueuNs(vs
0)2/(I 1m)}Ns /I 1 . This asymptotic behavior fol-

lows from the Weinreich relation.25 In the regionNs@Ns
max,

-

n

FIG. 3. The calculated absorption coefficient of the first h
monicG1 as a function of the potential amplitudeF1

SAW induced by
a SAW for various fixed densitiesNs . The parameters are similar t
those in Fig. 2. The dots show the experimentally measured abs
tion coefficientG1 at the gate voltage27.5 V. This voltage corre-
sponds to the maximal attenuation at the smallest rf power. In
inset we plot the calculated local carrier concentrationn as a func-
tion of the in-plane coordinatex1 for different total carrier concen-
tration Ns . The numbers attached to the plots correspond toNs in
units of 1010 cm22.
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the electric currentsEx decreases with increasingNs be-
cause of the screening effect. Thus, the absorption coeffic
decreases as well.

In Fig. 3 we plotG1 as a function of the SAW potentia
F1

SAW for a fixed 2DEG density. For electron densities le
than about 1010 cm21, the functionG1(F1

SAW) is always de-
creasing. At higher densitiesG1(F1

SAW) has a maximum. We
attribute this behavior to the screening effect in a 2DEG.
high density and smallF1

SAW, the absorption is strongly sup
pressed because of screening. The intense SAW, howe
modulates the 2DEG and, consequently, reduces scree
Thus, the absorption coefficient starts to increase with
creasing F1

SAW, when F1
SAW is not so large. At larger

F1
SAW, the plasma becomes broken into stripes andG1 de-

creases withI 1 as 1/I 1.8,18

The velocity shiftdv1 numerically calculated by Eqs.~25!
is shown in Fig. 4. With increasing SAW intensitydv1 in-
creases and approaches to the velocityvs

0 that corresponds to
the case of a totally depleted 2DEG. By analyzing Eqs.~25!
and the functionj (x1), we can see that, in the limitI 1→`,
dv1}1/F1

SAW}1/AI 1, as in a 3D plasma.12

In Fig. 5 we show results of numerical calculations for t
intensities of the high harmonicsI n /I n,max5unnu2/Ns

2 , where

I n,max5I n~F1
SAW→`!5pL2

Keff
2

eeff
qnvs

0e2Ns
2 .

This formula was obtained taking into account thatunnu
→Ns when F1

SAW→`. The quantitiesI n were calculated
from the Fourier components of the functionn(x1). At small
amplitudesF1

SAW, I n}(F1
SAW)n, being typical for weak non-

linearity. At largerF1
SAW, the behavior ofI n is quite com-

FIG. 4. The calculated SAW-velocity changedv1 as a function
of the electron density for various potential amplitudesF1

SAW . The
parameters are similar to those in Fig. 2. Inset: The measured
locity change of a SAW as a function of the gate voltage for d
ferent high-frequency ~rf! powers applied to the IDT1;f
5114 MHz.
nt

s

t

er,
ng.
-

plex and strongly differs from the weak-nonlinearity beha
ior. At very large F1

SAW, the high-harmonics intensitie
tends to saturate:I n→I n,max. At higher electron densities th
saturation ofI n occurs at larger SAW potentials~see Fig. 5!.

IV. ANALYTIC RESULTS FOR ACOUSTOELECTRIC
EFFECTS IN A 2D ELECTRON PLASMA

In this section, we will give some analytic expressio
describing various acoustoelectric effects in a system wit
2DEG. For simplicity, we will not take into account diffu
sion, hence assumingDe50 in the formula for the curren
~5!. This assumption is well justified at large electron den
ties or at low temperatures. It is convenient to start with
Weinreich relation for a 2D system in the nonline
regime.12,25 Assuming thatn(x1) and j (x1) are periodic
functions we can rewrite Eq.~12! in the form

j ~x1!2vs
0en~x1!5b0 . ~26!

Obviously, it is valid in the limitKeff
2 !1. Using Eq.~26! we

can write ^ j &5ueum^nEx&52m^ jEx&/vs
0 . From this equa-

tion we now get the Weinreich relation

^ jEx&

^ j &
52

vs
0

m
, ~27!

e-
-

FIG. 5. The calculated intensities of higher harmonics withn
52, 3, and 4 as functions of the potential amplitudeF1

SAW for two
electron densitiesNs51010 cm22 ~upper part! andNs51011 cm22

~lower part!. The parameters are similar to those in Fig. 2.
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where^ jEx& is the dissipation in a SAW. To get Eq.~27!, we
have neglected the averaged electric fields^Ex&50 assuming
the caseV15V2.

We now consider Eq. 23 withDe50. At fixed F1
SAW,

there is a critical densityNcrit , for the formation of stripes in
a 2DEG. WhenNs,Ncrit the plasma is split into electro
stripes. If Ns.Ncrit , the plasma is continuous but can b
strongly modulated in space. For the caseNs,Ncrit , the con-
stant b0 in Eq. ~23! becomes zero and thus Eq.~23! has
formally two solutions

f 1~x1!5const22
esF1

SAW

4pueud
sin~qx1!2

vs
0

m

es

4pueud
x;

f 2~x1!50. ~28!

The solution has to be a periodic continuous combination
these two functions. It follows from Eq.~28! that in the limit
s0@sm Ncrit.F1

SAWes /(4pueud), wheres05ueumNs .
When Ns,Ncrit the plasma turns into stripes, whic

means that electrons are totally trapped and the local elec
velocity in a 2DEG reaches its maximumj /(eNs)5vs

0 .
From the Weinreich relation, we getG15^ jEx&/I 1

5ueuNs(vs
0)2/(mI 1)}1/I 1.8,16

Equations~23! and ~24! can be used to find an asymp
totic formula for G1 and ^ j & in the large density limit
when s0@sm . In the limit s0@sm , n.Ns

2(esF1
SAW)/(4pueud)sin(qx1) @see Eq.~28!#. By using the

above and Eqs.~26! and ~27!, we have in the limits0@sm

and in the regionF1
SAW,Fcrit :

G15Gmax

4sm

s0
S Fcrit

F1
SAWD 2S 12A12FF1

SAW

Fcrit
G2D , ~29!

whereGmax5qKeff
2 /2 andFcrit5Ns4pueud/es . This equation

is valid when (Fcrit2F1
SAW)/Fcrit@sm /s0. Equation ~29!

reproduces the numerical data forG1(F1
SAW) in Fig. 3 at

large densities. The asymptotic formula~29! was given be-
fore in Ref. 26 without noting the conditions0@sm . In the
linear regime of interactionG1 and dv1 are given by the
formula ~1!.

In the end of this section we consider an asymptotic
havior for the high-harmonic intensitiesI n in the limit I 1

→`. The electron densityns(x1) at highF1
SAW can be writ-

ten in a parabolic approximation. Then, by calculating
Fourier components nn , we find that I n,max2I n

}(F1
SAW)22/3}I 1

21/3, wheren52,3, . . . .

V. COMPARISON WITH EXPERIMENTAL DATA

The experiments involving SAW’s were performed on t
hybrid semiconductor-LiNbO3 structures fabricated by th
epitaxial lift-off ~ELO! technique developed by Yablonovic
et al.27 The structures contain a 12-nm-thick high-qual
In0.2Ga0.8As quantum well~QW! embedded in modulation
doped Al0.2Ga0.8As barriers. In these structures, the th
semiconductor layered system including a QW was tigh
bound to the lithium niobate host crystal by the van d
Waals forces.8–10 The MBE grown quantum well structure i
removed from its native GaAs substrate by etching an A
f

on

-

e

y
r

s

sacrificial layer below the active semiconductor system. T
thin ELO film with a thickness of only 500 nm is then tran
ferred onto the host LiNbO3 crystal. The parameters for thi
structure were described already in the beginning of Sec
The geometry of the structure is shown in Fig. 1. For furth
details related to the fabrication procedure of such qu
monolithic structures we refer the reader to Refs. 8–10. T
experiments were performed for two SAW frequenciesf
5340 MHz andf 5114 MHz at room temperature.

The SAW in our experiments can be strong enough
break up an initially homogenous 2D plasma into movi
stripes. The transition to the regime of moving electr
stripes was directly observed in the experiments on acou
charge transport~ACT! in samples with specially designe
injection and detection dates.8 In these experiments the ve
locity of the ACT signal first increases with the SAW inte
sity and finally saturates at the sound velocity. The lat
manifests the formation of stripes. Strongly nonlinear effe
are also observed in the attenuation data. The attenuatio
a SAW with f 5114 MHz for different intensities is plotted
in the inset of Fig. 2 as a function of the transport-gate vo
age, which determines the averaged electron density
2DEG. At small SAW intensities, the electronic sound
tenuationG0 as a function of the conductivitys0 is described
by the well-known linear-theory equation~1! and exhibits a
maximum. This linear regime is realized in our experime
at the smallest SAW intensities of about212 dBm~inset of
Fig. 2!. It is seen from the inset of Fig. 2 that at high SAW
amplitudes the attenuation is strongly suppressed and
maximum is shifted to higher gate bias or conductivity, r
spectively. The experimental data for a SAW with the fr
quency f 5340 MHz look qualitatively similar to those fo
f 5114 MHz and were given earlier in Ref. 8.

The nonlinear regime of interaction is described by t
theory given in Secs. II, III, and IV. To quantitatively com
pare theory and experiment, we now express the SAW
tential amplitudeF1

SAW through the input radio frequenc
~rf! power P. The SAW intensity can be written asI 1
5I SAW52(P/w)102IL /10, where the width of the transduce
w50.55 mm. The insertion losses~IL ! in the transducers
were measured to be 15 dB. Then, the SAW potential can
written using Eq.~22! as F1

SAW5KeffA2I 1 /(qsm), where
Keff

2 50.015 for f 5114 MHz.10 In Fig. 3 we also show the
experimentally measured absorption coefficient at the g
voltageVt527.5 V. This voltage corresponds to the max
mal attenuation for the smallest rf power,212 dBm ~see
inset of Fig. 2!. From the linear theory we find that the ab
sorption coefficient is maximal atNs50.931010 1/cm2. One
can see from Fig. 3 that the experimentally measured fu
tion G1(F1

SAW) for Vt527.5 V is in very good agreemen
with the calculated one forNs50.931010 cm22. Here we
did not use any fitting parameters. This quantitative agr
ment becomes possible if we account for the diffusion co
ficient. The maximal absorption coefficient as calculat
from the linear theory isGmax

diff 57.6 cm21. Without diffusion
this value is aboutGmax514.3 cm21. Thus, the diffusion
strongly suppresses the SAW absorption.

At fixed SAW power and a sufficiently small densityNs ,
the 2DEG is divided into stripes andG1 increases with in-
creasing the gate voltage. In our theory,G1}Ns in the regime
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of stripes, which explains the increase of the attenuatio
small gate voltages in the inset of Fig. 2. At a sufficien
large gate voltage, the absorption coefficient as a functio
Vt starts to decrease because of the screening effect
high-density 2DEG modulated by a SAW. The interplay
these two effects leads to the shift of the maximum of
function G1(Vt) shown in the inset of Fig. 2.

The change of the SAW velocity due to the electr
plasma is shown in the inset of Fig. 4. With increasing
power the curves in Fig. 4 are again shifted towards lar
electron conductivity which can be understood in terms
screening. With increasing SAW intensity the electr
plasma is strongly modulated or even split into stripes a
the screening of piezoelectric fields by electrons becomes
so effective. Thus, the shift of the SAW velocity due to ele
trons decreases with increasing the SAW intensity. The
perimentally observed shift is in qualitative agreement w
our modeling shown in Fig. 4. However, our theory does
reproduce the character ofdv1(Vt) in the region of small
electron densities. Likely, the measurement of the SAW
locity is not so sensitive to a low-density electron system
comparison with the attenuation method.

In Fig. 6, we show the quantityG1P/I ae as a function of
the rf power to verify the Weinreich relation. The acous
electric current̂ j &5I AE(P) was measured in a ‘‘short cir
cuit geometry,’’ where the Ohmic contacts are directly~with-
out resistor! connected to the current measureme
instrument. For more details on acoustoelectric current m
surements we refer to Ref. 11. We see from Fig. 6 that
ratio G1P/I AE has a weak power dependence. Thus, our
perimental data are well described by the Weinreich relat
Slight deviations from the Weinreich relation seen in Fig
can come from the density dependence of the mob
m(Ns), that is expected to be relatively weak at room te
perature. The reason is that the main electronic scatte
mechanism at high temperatures is due to acoustic pho
and is relatively insensitive to the 2D density.

CONCLUSIONS

The theoretical results obtained in Sec. II, can also
applied to study dynamics of SAW’s at large distances i

FIG. 6. The measured ratioG1P/I ae as a function of the
high-frequency~rf! power P for f 5340 MHz; T5300 K. The
acoustoelectric currentI AE was measured in its maximum.
at
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long sample, where the contribution of high harmonics c
be very important.28,29 This long-distance transformation t
high harmonics was studied experimentally for SAW’s inte
acting with a 3D electron gas of a semiconductor on
piezocrystal.28,29 In the presence of a dc voltage applied
the crystal, it is possible to expect the appearance of non
ear waves with a stationary profile or with a stationary e
ergy flow.12,14,28In a wave with a stationary energy flow th
wave shape is periodically changed in space.28 Another sce-
nario can relate to chaotic dynamics in an acoustoelec
system.30 Equation~14! can be used to numerically mode
these phenomena in 2D electron systems at long distanc

To conclude, we have studied strongly nonlinear acous
electric phenomena caused by the interaction betwee
SAW and a two-dimensional electron system. In the exp
mental measurements performed on hybrid semiconduc
piezocrystal structures the SAW attenuation, the SAW vel
ity change, and the acoustoelectric current are stron
modified in the nonlinear regime due to the formation
moving electron stripes. By using a coupled-amplitu
method we have modeled the decay and transformation
SAW’s in the nonlinear regime. Using our theoretical resu
we could explain our experimental findings and dist
guished between different regimes of the nonlinear acou
electric interaction at large SAW intensities.
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APPENDIX A

Here we intend to briefly discuss the electrostatics of
hybrid structure. The spacing between the 2DEG and the
metal gate in the fabricated structures is much larger than
distance from the 2DEG to the AlGaAs-LiNbO3 interface.
Thus, to model the screening effects, we will assume that
2DEG is located right on the AlGaAs-LiNbO3 interface. It is
convenient to solve this problem by a Fourier transform
terms ofx and by remaining the vertical coordinatez. The
relation between the Fourier components of the electrost
potentialWind@z;k# induced by 2D electrons and the 2DE
densitynk is found from the Poisson equation and from t
corresponding boundary conditions

Wind@z;k#5
2penk

ukueeff~k!
G~z!, ~A1!

where eeff(k)5@ep1es coth(ukud)#/2. The function G(z)
5sinhukuz/sinhukud, when 0,z,d, andG(z)5e2uku(z2d) for
d,z.23

Taking the electron density in the form ofns(x,x1 ,t)
5n0(x)1(n51,2, . . .nn(x)eiqnx11c.c., we can write for the
induced electrostatic potentialf ind(x,x1 ,z,t)5f0

ind(x,z)
1(n51,2, . . .fn

ind(x,z)eiqnx11c.c., whereqn5nq. Using Eq.
~A1!, we find fn

ind(x,z)52penn(x)G(z)/@qneeff(qn)#
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1dfn(x,z), where n51,2, . . . . Thecorrection dfn(x,z)
;dan(x)/dx;dqn;Keff

2 @see Eq.~15! for dqn] and is small
compared toWind@z;qn#. Thus, regardingnn(x) as the
constants, we obtain at z5d: fn

ind(x,d)
.2penn(x)/@qneeff(qn)# andEnx(x,d).2 iqnfn

ind(x,d). In
other words, we consider the envelope functionsnn(x) as
constants and solve Poisson’s equation in terms of
‘‘fast’’ variable x1. Again, it is valid in the limit G0/q
;Keff

2 !1.
As an example, we now calculate the correcti

dfn in the linear regime of interaction, whe
n(x,x1 ,t)5Ns1n1(x)eiqx11n1* (x)e2 iqx1 with n1(x)

5ñ1e2G0x/22 iqdvs
0/vs

0x. From the Poisson equation we fin
df1(x,z);(G0/21 iqdvs /vs

0)n1(x)F(z), where F(z);1
for z;1/q.

APPENDIX B

In order to solve a system of nonlinear equations~2!–~5!
we will use some of results from a linear-respon
theory.20,21 In a linear theory the total electrostatic potent
and the 2D density can be written asW@x,z,t#
5W@z,k#eikx2 ivt andn(x,t)5nke

ikx2 ivt, respectively. Here
v is the SAW frequency. It is convenient to introduce
quantity Pk by means of the relationenk52PkW@d;k#,
whereW@d,k# is the Fourier component of the electrosta
potential atz5d. Equations~2!, ~3! are now written as

v2rui1ciklm]m]kul1plik] l]kW@x,z,t#50, ~B1!

24ppikl] i] luk1~e] i] i24pPkd~x32d!!W@x,z,t#50.

~B2!
Above equations should be solved together with the ne
sary boundary conditions considered in Sec. I. Then, we
write Eqs.~B1!, ~B2! in the form

L̂ linA lin50, ~B3!

Here L̂ lin is a linear operator andA lin5(u@x,z,t#,W@x,z,t#)
5(U0@z;k#,W0@z;k#)eikx2 ivt. It follows from the boundary
conditions thatk5q1dqlin ,21 whereq5v/vs

0 and

dqlin5
qKeff

2

2

Pq /Pq
0

11Pq /Pq
0

, Pq
05

qeeff~q!

2p
. ~B4!

Now a solution of Eq.~B3! can be written asA lin5A0@z;q
1dqlin# f 0(x)eiqx1, where f 0(x)5eidqlinx and x15x2vs

0t.
A0@z;q1dqlin# is a vector, that can be found from the matr
given by the boundary conditions.21
t

he

n

e
l

c

s-
e-

Equation B3 contains first and second spatial derivati
and can be written as L̂ linA lin5eiqx1@ f 0(x)L̂0(q)A0

1 f 08(x)L̂1(q)A01 f 09(x)L̂2(q)A0#50, where f 85d f /dx.
Neglecting the second derivativef 09(x), that is ;dqlin

2

;Keff
4 , we have

L̂0~q!A01 idqlinL̂1~q!A050. ~B5!

Now we turn to the nonlinear theory, where the equat
L̂A50 is also valid. The operatorL̂ is determined by the
equations similar to Eqs.~B1!–~B3! but with nonlinear quan-
tity Pn(x), that is defined byPn(x)52enn(x)/fn(x,d).
In the nonlinear case the vectorA5A0(x,z)
1(n51,2, . . .an(x)An(x,z)eiqnx11c.c.. Each term in the equa
tion L̂A50 should be zero, and soL̂an(x)An(x,z)eiqnx1

.eiqnx1@an(x)L̂0(qn)An1an8(x)L̂1(qn)An#50. To get the
latter equation, we have neglectedddqn /dx;Keff

4 and

d2an /dx2;Keff
4 . We can solve the equationL̂A50 if we

choose An(x,z)5A0@z,qn1dqn(x)#, where the vector
A0@z;q# is defined above in the linear theory. Using Eq.~B5!
we get

dan~x!

dx
5 idqn~x!an~x!, ~B6!

wheredqn(x) is given by the equation fordqlin @Eq. ~B4!#
with correctionsPq→Pn(x) and Pq

0→Pqn

0 5Pn
0 . Equation

B6 is used in Secs. I and II to describe the acoustoelec
phenomena in a 2DEG. Using Eqs.~8! and ~11! and
the results of Appendix A, the denominator indqn(x)
@see Eq. ~B4!# is rewritten as 11Pn(x)/Pn

0

52Pn(x)fn
SAW(x)/enn(x). Then, by using Eq.~B4! and

the conservation-of-charge equationj n(x)5vs
0enn(x), we

obtain

dqn~x!52
Keff

2 ~qn!

2

2p

eeff~qn!

enn~x!

fn
SAW~x!

5 i
Ke f f

2 ~qn!

2Pn
0vs

0

j n~x!En
SAW*

ufn
SAW~x!u2

. ~B7!

We use this equation in Sec. II@see Eq.~15!#. To obtain
above results, we have neglected the terms likean9(x) and
dqn8(x) assuming thatKeff

2 is a small parameter.
.
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