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Fundamental limits to force detection using quartz tuning forks
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This paper explores the fundamental limits of the use of quartz tuning forks as force detectors in
scanned probe microscopy. It is demonstrated that at room temperature, pressure, and atmosphere
these force sensors have a noise floor of 0.62 pN/AHz and exhibit a root mean square Brownian
motion of only 0.32 pm. When operated as a shear force sensor both dissipative and reactive forces
are detected on approach to the sample. These forces are sufficient to reduce the amplitude of
motion of the probe nearly to zero without physically contacting the surface. It is also demonstrated
that conventional proportional-integral feedback control yields closed loop responses at least 40
times faster than their open loop response. ©2000 American Institute of Physics.
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I. INTRODUCTION

It is well established that quartz tuning forks can be us
as sensors for acoustic and force microscopy.1,2 Their very
high mechanical quality factorQ(103– 105) provides a
built-in high gain and makes them very sensitive to sub-
forces when used at or near their resonance freque
~104 Hz to 0.53106 Hz). Their advantage is that th
measurement of their oscillation amplitude uses the pie
electric effect native to quartz crystals, yielding a
electric signal proportional to the applied forces and mak
them small, robust, and simple to operate compared to o
cal force measurement schemes. They have been use
force detectors in near-field optical microscopy,3 atomic
force microscopy,4 magnetic force microscopy,5 and
magnetometry.6 This paper is designed to clearly elucida
the fundamental limits associated with the use of these
sors for force microscopy.

The key to implementing tuning forks for force detectio
is to accurately measure the fundamental resonance o
tuning fork as a function of applied force. This can be do
either by shaking the fork at its mechanical resonance
monitoring the induced voltage or by directly driving th
tuning fork with a resonant voltage and measuring the
duced current. We have chosen to implement the latter,
provides for a system that is simpler mechanically at
expense of only minimal electronics.

It is well known that the equivalent circuit for the tunin
fork is a seriesRLC resonator in parallel with packag
capacitance,7 which is typically of order a few picofarads
When driving the tuning fork directly with a voltage sourc
the package capacitance yields both series and parallel
nances, dramatically distorting the line shape from that of

a!Electronic mail: robert.grober@yale.edu
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bareRLC resonator. To eliminate the effect of the packa
capacitance, we use the bridge circuit shown in Fig. 1~a!.
The transformer yields two wave forms phase shifted fr
each other by 180°. By appropriately adjusting the varia
capacitor, the current through the package capacitance is
gated by the current through the variable capacitor.

II. ELECTRONICS AND CALIBRATIONS

A standard operational amplifier circuit is used to co
vert the net current to a voltage. We have worked to min
turize the circuitry and locate the amplifier at the base of
tuning fork so as to eliminate any complications due to ca
capacitance. The current to voltage (I –V) gain of the circuit
has been calibrated from dc to 100 kHz and is found to
described asZgain5Rg /A11(2p f RgCg)2 wheref is the fre-
quency,Rg59.51 MV, and Cg50.260 pF is stray capaci
tance in parallel withRg . The resultingI –V gain at 32.7
kHz is Zgain58.47 MV. Having calibrated the measureme
system, the impedance of the tuning fork can be accura
measured. We measure a bare fork at room tempera
pressure, and atmosphere. White voltage noise is applie
the fork and the resulting output is recorded. The ratio of
output to input is shown as the closed circles in Fig. 1~b!.
The response fits well to the Lorentzian line shape

A
f 0

Q
f YA~ f 0

22 f 2!21S f 0

Q
f D 2

~1!

with A517.14, f 0532 773.3 kHz, andQ58552, shown
as the solid line. This result demonstrates that the ef
of the package capacitance has been negated and the
monic oscillator is an excellent model for the response of
tuning fork. Values for theRLC circuit model can be deter
mined by comparing the above-mentioned line shape to
formula for the gain of the amplifier with theRLC resonator
as the input impedance, yieldingR5Zgain/A50.494 MV,
6 © 2000 American Institute of Physics
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L5RQ/2p f 0520.5 kH, andC51/(4p2f 0
2L)51.14 fF. R is

large enough that we attribute it completely to mechan
dissipation associated with motion of the quartz.

Another important calibration is the amplitude of osc
lation of the tuning fork as a function of the output voltag
which we denote by the parametera. This has been deter
mined by interferometrically measuring the physical amp
tude of oscillation of one arm of the tuning fork while simu
taneously measuring the output voltage of the system. T
interferometric technique is described in detail elsewhe8

To interpret this measurement, it is necessary to define
relationship between the measured output voltage and
oscillation amplitude of one arm of the tuning fork. The ou
put voltage is sensitive only to the antisymmetric mode
the tuning fork,Vout5c(x12x2), wherec is a constant and
x1 andx2 are the amplitude of motion of the two arms of th
fork. When driving the fork with an external voltage, as
our experiment, only the antisymmetric mode is excit
yielding x152x2 . Thus, we defineVout52cx15x1 /a. Our
calibration yieldsa559.660.1 pm/mV. Viewing the tuning
fork as a current source, it is convenient to write the abo
mentioned equation in terms of the current to voltage c
verting resistor,a5b/Zgain, yielding b50.505 m/A. Be-
cause the charge separation in the tuning fork is amplit
dependent, calibration in terms of current yields an accu
measure of the amplitude of motion of the fork.

FIG. 1. The measurement system~a! and system response~b!. The tuning
fork, TF, is driven by a voltage source,Vin , which is coupled to TF through
a transformer. The center tapped transformer also supplies a 180° p
shifted wave form to the variable capacitor so as to cancel the current d
stray parallel capacitance of the tuning fork. The net response is that
seriesRLC oscillator and is due only to the motion of the quartz resona
The resulting current is measured as a voltage,Vout , acrossRg . The re-
sponse of the circuitVout /Vin is shown as a function of frequency in~b!. The
solid line is a fit to Eq.~1!, demonstrating that the tuning fork responds li
a seriesRLC resonator and that the bridge circuit nulled the stray para
capacitance of the tuning fork.
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The fundamental limits of our ability to measure th
resonance are defined by the intrinsic system noise. We
determine these limits experimentally by measuring the o
put noise with the input voltage grounded. The resulting o
put is shown in Fig. 2 as the closed circles. A noise analy
of the circuit shows the two primary noise sources are
Johnson noise of the feedback resistor,A4kBTRg V/AHz,
and the Johnson noise associated with mechanical dissip
in the fork, as manifested by theR in the seriesRLCequiva-
lent circuit,

A4kBTR~Zgain/R!

3~ f f 0 /Q/A~ f 02 f 2!21~ f f 0 /Q!2!V/AHz. ~2!

kB is the Boltzmann constant,T is temperature, and all the
other parameters have already been determined experim
tally. These two noise terms add in quadrature.This model
has no adjustable parametersand is shown as a solid line in
Fig. 2. Based on the agreement between the model and
data, we assert that enough about the performance of
system is understood to make definitive statements abou
fundamental limits to the use of the quartz tuning fork f
force measurements. In particular, we address issues re
to the minimum detectable displacement, minimum meas
able force, and maximum measurement speed.

III. DISPLACEMENT AND FORCE DETECTION

The first issue relates to the minimum detectable d
placement of the tuning fork. The power spectrum of t
noise associated with the tuning fork@i.e., the square of Eq
~2!# can be integrated so as to obtain the root mean sq
~rms! voltage noise, Vrms

2 54kBTR(Zgain/R)2(p f 0/2Q),
which evaluates toVrms53.81mV. To relate this to the ther-
mal motion of the arms of the tuning fork, we take the tim
average of our previous definition relating output voltage
motion of the arm of the fork:

ase
to
a

.

l

FIG. 2. The noise spectrum of the circuit in Fig. 1~a!. These data were taken
by groundingVin . The solid line is a parameterless fit, as described in
text, using the circuit parameters determined from Fig. 1~b!. The agreement
between data and theory demonstrate that the origin of the noise is bot
Johnson noise associated withRg and the thermal noise of the resonator.
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Vrms
2 5^c~x12x2!2&

5c2~^x1
2&1^x2

2&222^x1x2&!52c2^x1
2&,

where we have made the approximation that the arms of
tuning forks are only very weakly coupled and their therm
motion is therefore uncorrelated. We thus arrive at the re
tion xrms5&aVrms'0.321 pm. This is the random motio
of one arm of the fork due to thermal fluctuation.

With this value forxrms, we use the equipartition theo
rem to calculate an effective spring constant,K5kBT/xrms

2

'40.3 kN/m.9 We can compare this experimentally dete
mined value ofK with the calculated spring constant for on
arm of the tuning fork. The theoretical spring constant
obtained from the formulaK5Ewt3/(4l 3),10 where E
57.8731010N/m2 is the Young modulus of quartz. We hav
measured for our tuning forkw50.50 mm is the width of the
fork, t50.65 mm is the thickness of the fork, andl 53.85 is
the length of one arm of the fork. Using these parameters
obtainK'47 kN/m, which agrees reasonably well with o
experimental result.

The thermal energy can be thought of in terms of
effective force acting on the tuning fork. This force has a fl
power spectrum,SF , in units of square Newtons per hert
One can calculate the power spectrum from11

xrms
2 5E

0

`

SFU f 0
2/k

f 0
22 f 22 i ~ f f 0Q!

U2

d f .

Evaluating the integral and again using the equipartit
theorem, one obtains

SF
1/25A2/p f 0Q~kBT/xrms!50.615pN/AHz.
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n As will be discussed in the following, it is important t
understand the sensitivity to force as a function of ba
width. The ratio of signal voltage to noise voltage, S/N, a
function of bandwidth,D f , is given by

FIG. 3. The behavior of the resonator as a function of the height of
probe above the surface taken in atmospheric conditions.~a! The output of
the ‘‘X’’ channel of the lock-in amplifier as a function of the height of th
probe above the surface. Note that this goes to zero as the probe reach
surface. Also shown is the tunneling current, which we use as an indica
of when the probe makes contact with the surface.~b! f 0 and Q of the
resonator are shown as a function of the height of the probe above
surface. These data were taken by positioning the probe open loop at a
height above the surface and measuring the response function of the
nator, as in Fig. 1~b!. Note that frequency shifting only occurs in the last fe
nanometers of the approach.
S/N5

1

b

Q

k
Fs

A4kBT
1

Rg
D f 14kBT

Q

Zr
E

D f
d f

~ f f 0 /Q!2

~ f 0
22 f 2!21~ f f 0 /Q!2

, ~3!
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where all terms are written as currents. The numerator is
the response of the system to a resonant force and the
nominator is the quadrature sum of the two noise terms.
have writtenR as Zr /Q where Zr5AL/C is the resonant
impedance of the inductive and capacitive terms in theRLC
resonator. This equation is useful because it shows dire
how S/N scales withQ, Rg , andD f . The noise is dominated
by the resonant impedance of the tuning fork as long as
resonant impedance is significantly less thanRg . This crite-
rion is good out to frequencies of order

u f 2 f 0u<
f 0

2Q
A Rg

Zr /Q
21.

This is clearly seen to be the case in Fig. 2. One would pr
that the noise always be dominated by the thermal nois
the fork; however, as one works at larger bandwidths,
st
e-
e

tly

e
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e

noise associated withRg becomes dominant. This can b
remedied by makingRg larger; however, that degrades th
time response of the amplifier due to the stray capacitan
Cg . Ultimately, the choice ofRg is a tradeoff between fas
response and large S/N ratio. We believe thatRg;10 MV is
a reasonable compromise for our system.

Tuning forks are usually used as force sensors by atta
ing an appropriate probe to one arm of the fork. The m
surement is made by resonantly driving the fork with a co
stant amplitude force and monitoring the response a
function of the height of the probe above the sample. T
oscillatory motion of the probe can be either parallel or p
pendicular to the surface. In our experiments, the probe
cillates parallel to the surface. As the probe gets closer to
sample both dissipative and reactive forces are experien
by the probe, resulting in a decrease in the amplitude an
change in phase of the tuning fork. It is important that t
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probe remain stiff at the resonant frequency of the fork
ensure maximum damping of the tuning fork. Shown in F
3~a! is an approach curve forA cosu, whereA is the ampli-
tude of oscillation andu is the phase of the oscillation refe
enced to the phase of the unperturbed~i.e., fully retracted!
oscillator. In practice this corresponds to the ‘‘X’’ output of a
lock-in amplifier. These data are taken at room temperat
pressure, and atmosphere with a peak amplitude of 16
The probe is a sharpened gold scanning tunneling mic
copy probe and the sample is freshly pealed, highly orien
pyrolitic graphite. This arrangement allows simultaneo
tunneling between the probe and the sample so as to ind
when the probe contacts the surface. The tunneling curre
also shown in Fig. 3~a!. The height of the probe above th
surface is calibrated using the onset of tunneling as the i
cator of contact between the surface. These data comple
rule out the notion12 that approach curve involves conta
between the probe and the surface.

Shown in Fig. 3~b! is Q and f 0 as a function of the
height of the probe above the surface. These data were t
in open loop, parking the positioning system a fixed dista
above the surface and probing the response of the fork. N
that dissipative forces dominate most of the approach w
shifts in resonant frequency become important only withi
few nanometers of the surface. This fact is crucially imp
tant for the analysis that follows. A future paper will discu
the nature of the forces involved in this experiment.13

IV. MEASUREMENT SPEED

The final issue is the speed with which the measurem
can follow changes in force. Force images of surfaces
made by fixing the height of the probe above the surf
using a closed loop control system. Some combination of
amplitude, and/or phase of the tuning fork signal is used
the set point in the control loop. When using conventiona
cantilevers it is well known14 that one must resort to phas
sensitive techniques of system control in order to make
system respond faster than of the open loop response tim
the resonator, 1/t5p f 0 /Q. These techniques have also be
successfully implemented with tuning fork systems.15,16,5

However, we show in the following that conventional pr
portional and integral~PI! feedback control is sufficient fo
most uses of tuning forks. We justify this experimental o
servation with a short theoretical discussion.
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The experiment is done at room temperature, press
and atmosphere. For clarity, the experiment is depicted s
matically in Fig. 4. A tapered fiber probe is mounted on t
fork consistent with operation in a near-field scanning opti
microscope. The open loop response of the loaded tun
fork corresponds to the line shape in Eq.~1! with f 0/2Q
58 Hz and correspondinglyt520 ms. The tuning fork is
driven at resonance by a voltage source of fixed amplit
and frequency and the resulting current is measured with
circuit of Fig. 1~a!. This output is detected with a lock-in
amplifier whose phase is referenced to the phase of the r
nantly driven tuning fork. The ‘‘X’’ output of the lock-in
amplifier is fed to conventionalPI feedback electronics
which then adjusts the position of the probe above the s
face. The set point of the feedback is adjusted so that
probe is fixed approximately 10 nm above the surface.
test the response of the tracking system, the vertical posi
of the sample is intentionally dithered at 100 Hz using a
nm square wave. The output of the control electroni
shown in Fig. 5, clearly follows the 100 Hz signal. The ri
time of the response is of order 0.5 ms,40 times faster than
the open loop response. We are unable to go faster and b
lieve the reason is due to resonances in the mechanica
sitioning system; however, the point is clear: simplePI con-
trol electronics yield a stable tracking system that c
operate at speeds much faster than the response of the tu
fork resonator.

A simple theoretical justification of this experimental r
sult follows. Consider the tuning fork and the lock-in amp

FIG. 4. A schematic representation of the control system. The tuning for
driven by a voltage source. The resulting current is demodulated usin
lock-in amplifier and input to the control electronics, which drives a hi
voltage amplifier. The loop is closed by driving a piezoelectric tube to ad
the height of the probe above the surface which controls the amoun
current generated by the tuning fork.
to
of
is
is

of
e

FIG. 5. The response of the feedback loop
a 1 nm, 100 Hz square wave modulation
the sample-tip height is shown. The input
shown as the solid line and the response
shown as the circles.~right! Expanded view of
~left!. The response time of the system is
order 0.5 ms, which is 40 times faster than th
open loop resonator.
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fier as a single unit. The lock-in amplifier demodulates
signal from the fork, beating the ac signal to dc. The
sponse function of a harmonic oscillator demodulated at
resonant frequency is a single pole low pass filter with
response (i /t)/(2p f 1 i /t), where t is given above. The
control system is now that of a classic tracking system wh
the system to be controlled responds as a single pole
pass filter. This problem is well documented in standard
dergraduate texts.17 The optimum control electronics for thi
system usesPI feedback electronics. The response funct
for the closed loop system is proportional toe2Gte6 iVt.
When the relative magnitudes ofP and I are optimized toI
5(11P)2/2t, the relationsG5V5(11P)/2t are obtained.
Note that asP andI are increased the system responds fa
and remains stable.

Complications to this simple analysis occur becauseQ
and f 0 are functions of the height of the oscillator above t
surface. These complications degrade the maximum ach
able response speed only when they introduce additio
phase lag in the feedback path. If only theQ of the resonator
changes, the tuning fork still demodulates as a single p
low pass filter and no additional phase lag is introduced.
the resonant frequency shifts tof 01e, the demodulated re
sponse becomes

1

2 F i /t

2p~ f 2e!1 i /t
1

i /t

2p~ f 1e!1 i /tG .
The closed loop response of this system retains the s
functional form,e2Gte6 iVt, with the modification

G5
~11P!

2t
, V'

~11P!

2t
A11S 2pe

2t

~11P! D
2

.

This simple analysis shows clearly the origin of the ringi
that normally accompanies frequency shifts of the resona
This ringing is analogous to increasing the integral gain s
that the control loop is out of balance. This effect is n
important as long as the shift in resonant frequency rem
small,e,(11P)/(4pt). This condition ise,300 Hz in the
above experiment, which is satisfied even for the maxim
frequency shifts shown in Fig. 3~b!. The situation is different
for very high sensitivity Si cantilever applications where t
dither amplitudes and frequency shifts are considera
larger. Clearly, shifts in resonant frequency become a ser
problem for these Si cantilevers and solutions involvi
phase sensitive detection are necessary.14 However, as is
documented previously, tuning fork sensors do not su
these problems and thus simplePI control is sufficient.

It is clear that the advantage of having a probe with v
high Q is that it allows for measuring very small force
From the above-mentioned noise analysis, the signal-to-n
ratio scales asQ/AD f when measuring with a closed loo
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response significantly faster than the open loop respo
This strongly suggests that one should not aim to reduce
Q of the system in an attempt to scan fast. It is far mo
efficient to maximizeQ and correctly implement the contro
system.

V. CONCLUSIONS

In summary, we have documented some fundame
limits to the use of quartz tuning fork resonators as fo
detectors in scanned probe microscopy. At room tempe
ture, pressure, and atmosphere these force sensors ha
noise floor of 0.62 pN/AHz and experience a root mea
square thermal motion of only 0.32 pm. We show theQ
should always be maximized to obtain the highest force s
sitivity and that this in no way degrades the response time
the measurement when implemented within a stand
closed loop configuration. Finally, proportional-integr
feedback is a stable control system for making measurem
faster than the open loop response time of these reson
because their dither amplitudes and force induced freque
shifts are relatively small.
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