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Nanomechanical oscillators are at the heart of a variety of precision measurements. This
article reports on dispersive radiation coupling of nanomechanical oscillators to the evanes-
cent near-field of toroid optical microresonators. The optomechanical coupling coefficient
which reaches values > 200 MHz/nm, corresponding to a vacuum optomechanical cou-
pling rate > 4 kHz, is characterized in detail and good agreement between experimental,
analytical and finite element simulation based values is found. It is shown that both the
mode-structure and -patterns of nanomechanical oscillators can be characterized relying
solely on Brownian motion. Moreover, it is demonstrated that the radiation pressure inter-
action can cause self-sustained coherent nanomechanical oscillations at nano-Watt power
levels as well as cooling of the nanomechanical oscillator. Finally, the feasibility of cou-
pling nanomechanical motion to two optical modes where the optical mode spacing exactly
equals the mechanical resonance frequency is demonstrated for the first time. As shown
here, this Raman-type scheme allows both amplification and cooling.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Les nanorésonateurs mécaniques sont au coeur de nombreuses mesures de précision. Nous
avons obtenu un couplage dispersif par pression de radiation entre un nanorésonateur et
le champ évanescent au voisinage d’un microrésonateur en forme de toroïde. Le coefficient
de couplage optomécanique atteint dans ce système une valeur supérieure à 200 MHz/nm,
correspondant à un décalage supérieur à 4 kHz associé aux fluctuations quantiques de po-
sition du nanorésonateur. La caractérisation détaillée de ce couplage montre un bon accord
entre l’expérience et les valeurs déterminées analytiquement ou par simulation par élé-
ments finis. Nous montrons que la structure du mode mécanique du nanorésonateur peut
être déterminée à partir de la seule observation de son mouvement brownien. De plus,
nous avons observé que l’interaction par pression de radiation peut conduire à des oscilla-
tions cohérentes et auto-entretenues du nanorésonateur pour des puissances de l’ordre du
nanowatt, et aussi à un refroidissement du nanorésonateur. Enfin, la possibilité de coupler
le mouvement du nanorésonateur à deux modes optiques dont l’espacement en fréquence
correspond exactement à la fréquence de résonance mécanique est démontrée pour la
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première fois. Nous montrons que ce mécanisme de type Raman permet à la fois une
amplification et un refroidissement du nanorésonateur.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In recent years, the combination of optical microcavities and micromechanical systems has triggered a rapid development
of the research field cavity optomechanics [1–3]. Most generally speaking, this field of research investigates the interaction of
light with a mechanical oscillator via radiation pressure where the strength of the interaction is enhanced using an optical
cavity. A particularly intriguing aspect of this field is the prospect of realizing quantum mechanical experiments which have
so far been restricted to cold gases or trapped ions with tangible mechanical oscillators. This would open up a new arena
for quantum physics and quantum engineering. In 2005, it was shown that in fact the radiation pressure of light can be
used to drive laser-like oscillations [4,5] of a micromechanical oscillator, also referred to as “phonon lasing”. The application
of such compact, low-power photonic oscillators as frequency references is currently investigated [6–8]. Subsequently, it has
been demonstrated that micromechanical oscillators may be efficiently cooled by radiation pressure [9–12]. In particular,
using suitable quantum optomechanical treatment, the feasibility of ground state cooling using radiation pressure has been
theoretically shown [13,14]. Subsequently, a variety of researchers pursued experiments aiming at initializing a solid-state
mechanical oscillator in its quantum-ground state using radiation pressure cooling [15–21]. This would provide a novel
route to the new regime of quantum physics dealing with tangible mechanical oscillators which has recently been entered by
conventional refrigeration [22]. Just as reaching the ultimate quantum limits in displacement detection and thus maximizing
the performance of mechanical sensors of mass [23], charge [24] and magnetic field [25], this is an ongoing and very actively
pursued paradigm in the field of cavity optomechanics.

Until 2009, the vast majority of cavity optomechanical systems relied on Fabry–Perot type resonator configurations where
a light beam is trapped between a fixed and a movable mirror. This experimental setting has its origin in laser gravitational
wave interferometers and enabled extremely sensitive measurements of the cavity length variations down to a sensitivity of
10−19 m/

√
Hz already in the 1990s [26,27]. In the subsequent decade, advances in microfabrication have, moreover, allowed

miniaturization of the employed cavity mirrors and thus a concomitant drastic increase of their susceptibility to external
forces. This lead to the observation of dynamic radiation pressure phenomena that were predicted already decades ago,
such as radiation pressure cooling of micromechanical oscillators [9–12]. Using the aforementioned experimental configura-
tion, the miniaturization of the resonators is, however, fundamentally bound by the optical diffraction limit. The reflecting
element must not be smaller than the diffraction limited optical spot size in order to prevent diffraction from degrading
the optical quality factor of the employed cavity. Thus, this approach does not allow straightforward extension of quantum-
limited measurements of mechanical motion or radiation pressure actuation to nanomechanical oscillators.

Such an extension, in turn, would be interesting from several points of view. First, nanomechanical oscillators have been
successfully used as ultra-sensitive probes of mass and external forces, allowing single atomic-mass resolution [23] or single
electron–spin detection [25] despite the fact that the employed detection methods were partially far from being quantum-
limited. Improved and possibly quantum-limited transduction of nanomechanical motion could thus lead to further leaps
in the performance of nanomechanical oscillators as sensitive probes. Second, the fact that in recent years nanomechanical
elements that combine high mechanical quality, i.e. low coupling to the thermal environment, with extremely small effective
mass (when compared to micromechanical elements) have been developed, makes them highly interesting for probing
quantum limits of mechanical motion.

In this article an approach based on cavity-enhanced optical near-fields (schematically shown in Fig. 1) will be re-
ported that enabled extending quantum-limited cavity optomechanical coupling to nanomechanical oscillators [28]. This
paper moreover reports for the first time the measurement of nanomechanical motion with an imprecision at the level of
the standard quantum limit [28], a long sought-after goal for nanomechanical oscillators [30–36], as shown in Fig. 2 (we
note that such imprecision has been obtained prior only for large scale mechanical oscillators). The employed approach cir-
cumvents the optical diffraction limit by resorting to evanescent optical near-fields which have also been very successfully
used in the domain of near-field microscopy. Already in 1983, Braginsky and Vyatchanin envisioned to use the evanescent
near-field of an optical whispering-gallery resonator to couple to a dielectric “stick” parallel to the propagation direction
of the optical field [37]. Several years later, around 1990, the optical forces between microspheres evanescently coupled to
each other were studied both experimentally and theoretically [38]. In the light of the advances in microfabrication, the
idea of near-field coupling was then, during the last five years, extended to optical waveguides [39–41]. The mechanical
element and the photons in such a near-field coupling configuration exchange momentum via the optical gradient force, as
opposed to the scattering force used in the traditional Fabry–Perot setups. The pioneering work of Ashkin [42] experimen-
tally demonstrated that optical gradient fields can be used to exert considerable forces on particles and indeed provide a
powerful tool for a variety of applications, complementing the capabilities of the scattering force for cooling or amplifying
a solid state mechanical oscillator’s motion [9] or for cooling atoms and ions [43]. In Ref. [44], a recent overview of the
optical gradient force and its applications in the context of optomechanical systems is given.

The first experimental implementation of a nanomechanical element whose motion is actuated and transduced by op-
tical gradient fields was reported in 2008 [47]. In 2009, the first cavity-enhanced systems incorporating a nanomechanical
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Fig. 1. Schematic of the experimental principle. a, A toroid microresonator is pumped using a tapered optical fibre. The near-field of the optical cavity mode
allows dispersive coupling to nanomechanical oscillators, here in the form of nanomechanical strings. b, Microscope top view of a toroid microresonator
(R = 16 μm) suitable for near-field probing, as explained in the text. c, (False colour) Scanning electron micrograph of a typical silicon nitride string used
for the experiments shown in this chapter (15 × 0.5 × 0.1 μm3).

Fig. 2. a, Measurement imprecision of nanomechanical motion approaching and bypassing the level of the SQL in the past years, using various techniques.
The blue data points represent experiments requiring cryogenic operation, performed in the groups of Cleland [24], Schwab [31,32], Lehnert [33,34,45]
and van der Zant [35] (SET: single-electron transistor, APC: atomic point contact, Squid: superconducting quantum interference device, MW: microwave).
The red data points correspond to systems operating at room temperature realized in the group of Painter [36,46] (PC: photonic crystal) and using the
near-field approach reported here [28,29]. The near-field approach (stars) allowed for the first time a measurement imprecision below the level of the SQL
in 2009 [28] and a ∼ 100 times reduction of necessary input power in 2010 [29]. It is based on toroid near-field sensors (b, false colour scanning electron
micrograph) which allow ultra-high optical Q (Q = 1.9 × 108 in the case of c, corresponding to a finesse of F = 0.95 × 106).

element were studied using a photonic crystal structure [36] and the system reported here: a toroid microresonator evanes-
cently coupled to a nanomechanical string [28].

A schematic of the experimental system is shown in Fig. 1. Bringing nanomechanical oscillators which are fabricated on
a silicon chip into the vicinity of the optical modes of a toroid – which rests on a separate chip – requires the toroid to be
fabricated at the edge of its chip support such that the silica torus extends across the silicon chip. Such a toroid is shown
in Fig. 2b (see also Fig. 1b). These devices can be fabricated with similarly high finesse (∼ 106) as regular toroids, as shown
in Fig. 2c, and probed by a tapered fibre. A three axis piezo cube allows both translational fine- and coarse-positioning of
the nanomechanical oscillators. The respective rotational degrees of freedom are fine-tuned manually. All experiments are
carried out in vacuum to rule out gas damping of the nanomechanical oscillators. The optomechanical coupling region is
however designed sufficiently close to a vacuum window to allow optical access by a long working distance microscope.
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Table 1
Overview of recent cavity optomechanical systems (∗requiring operation in a dilution refrigerator). The near-field platform (italics) displays a vacuum
optomechanical coupling rate g0 that exceeds the mechanical damping rate Γm as well as large zero-point motion xzpf .

System g0/2π [Hz] κ/2π [Hz] Γm/2π [Hz] Ωm/κ xzpf [fm] Ref.

Crystalline microresonator 1 2 × 105 1 × 103 12 0.003 [50]
Movable mirror 2 × 10−3 2 × 104 0.06 0.01 0.01 [51]
Microsphere 1 × 103 3 × 107 8 × 104 5 0.04 [36]
Micromirror 1 2 × 106 80 0.4 0.01 [10]
Micromirror 5 8 × 105 30 1 0.5 [52]
Micromirror 300 8 × 108 600 0.001 40 [53]
Spoke-microresonator 500 5 × 106 500 5 0.2 [54]
Membrane-in-the-middle 5 2 × 105 0.1 0.6 1 [16]
Double-microdisk 8 × 104 1 × 108 2 × 103 0.06 3 [55]
Optomechanical crystal 2 × 105 5 × 109 2 × 106 0.5 3 [46]
Photonic crystal cavity 6 × 105 2 × 109 8 × 104 0.004 5 [36]
Nanomechanical rod – 8 × 108 300 0.002 – [56]
Near-field nanomechanics 500 5 × 106 100 2 20 [29]
Near-field nanomechanics 50 2 × 109 5 × 104 0.02 20 [57]
Microwave nanomechanics∗ 1 3 × 106 10 0.4 30 [45]
Microwave nanomechanics∗ 2 6 × 105 6 2 30 [21]

2. Optomechanical coupling – Studied systems and their parameters

Typically, the optomechanical coupling between an electromagnetic resonator and a mechanical oscillator is linearized
for small fluctuations x of the mechanical oscillator around its equilibrium position x0. The optical resonance frequency
ω(x0) which may depend on the position x0 of the mechanical oscillator in a general fashion thus reads

ω(x0 + x) = ω(x0) + g · x (1)

where we have introduced g = ∂ω/∂x which is typically referred to as the optomechanical coupling coefficient. The Hamil-
tonian Ĥ of the coupled optomechanical system may then be written as a sum of the optical and mechanical subsystems’
Hamiltonians Ĥopt and Ĥmech, respectively, as well as the coupling Hamiltonian Ĥom [49]:

Ĥ = h̄ωâ†â + ih̄
√

κex
(
ŝâ†e−iωdt − ŝ†â eiωdt) + Ĥκ + h̄Ωmb̂†b̂ + ĤΓm + h̄g0

(
b̂† + b̂

)
â†â (2)

The creation (annihilation) operators of the optical and mechanical modes are denoted as â† (â) and b̂† (b̂) with correspond-
ing resonance frequencies ω (ω ≡ ω(x0)) and Ωm. The optical mode is coupled to an external port with rate κex, supplying
a (laser) drive field ŝ e−iωdt with mean photon flux 〈ŝ† ŝ〉 and angular frequency ωd. The Hamiltonians ĤΓm and Ĥκ describe
the damping of the mechanical [58] and optical [59] modes with energy decay rates Γm and κ . The latter consists of cou-
pling to the external port κex and losses within the resonator κ0 = κ − κex. The interaction energy between optical and
mechanical degree of freedom is determined by the vacuum optomechanical coupling rate

g0 ≡ g × xzpf (3)

which is given by the product of optomechanical coupling coefficient g and the zero-point fluctuations xzpf = √
h̄/(2meffΩm)

of the mechanical oscillator (meff denotes the oscillator’s effective mass). The coupling Hamiltonian

Ĥom = h̄g0
(
b† + b

)
a†a (4)

implements a mutual optomechanical coupling. It was introduced via the position dependent cavity resonance frequency
(1). It also, however, represents a radiation pressure force F that can be interpreted as

〈F 〉 = −
〈
∂ Ĥ

∂x

〉
= −h̄g

〈
â†â

〉
(5)

leading to a per-photon force −h̄g on the mechanical oscillator. From the Hamiltonian (2) one can derive that this force
gives rise to a static bistability [60], an optically induced rigidity [51,61] or dynamical backaction cooling/amplification
characterized by the rate

Γdba = g2
0ā2

(
κ

κ2/4 + (� + Ωm)2
− κ

κ2/4 + (� − Ωm)2

)
(6)

where ā2 ≡ 〈â†â〉, denotes the mean intracavity photon number.
Table 1 shows an overview of recently studied cavity optomechanical systems that realize the Hamiltonian (2). As can be

seen, the corresponding system parameters vary over many orders of magnitude. A common feature of all studied systems is
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that the vacuum optomechanical coupling rate g0 is at least three orders of magnitude smaller than the optical decay rate κ .
For a few systems, however, g0 can exceed the mechanical decay rate Γm, in particular the near-field cavity optomechanical
system presented here.

3. Theoretical characterization of the near-field optomechanical coupling

In this section, the evanescent optomechanical coupling between the optical modes of a toroid microresonator and a
dielectric positioned in its evanescent near-field is examined theoretically. The whispering gallery modes supported by
toroid microresonators exhibit an evanescent field such that the presence of a dielectric in this field should lead to a
varying red shift of the optical resonance frequency depending on the distance to the dielectric. First, analytic expressions
of the optomechanical coupling based on an approximation of the optical mode profile of toroid microresonators are given.
Second, these are compared to results of a finite element simulation which yields good agreement.

3.1. Analytic optomechanical coupling

For an optical mode E(0) in a dielectric structure characterized by ε(0)(�r) and a local perturbation ε(1)(�r) (induced by
e.g. the presence of a dielectric nanomechanical oscillator in the evanescent field of a microresonator mode), first order
perturbation theory yields the following fractional resonance frequency shift:

�ω

ω
= −1

2

∫
ε(1)(�r)|�E(0)(�r)|2 d�r∫
ε(0)(�r)|�E(0)(�r)|2 d�r (7)

Using the optical resonator’s mode volume V , Eq. (7) can be written as

�ω

ω
= −1

2

∫
(ε(1)(�r) − 1)|�E(0)(�r)|2 d�r

n2 V |Emax|2 (8)

Here, �Emax denotes the maximum of the electric field max�r |�E(0)(�r)| and n is the refractive index of the optical resonator,
which is assumed to be constant.

The fundamental optical modes of a toroid (major radius R and minor radius r) can be approximated by

Eζ ≈
⎧⎨
⎩

E0 exp[− z2

2r2
z
] J�(T�1

ρ

R̄
)ei�ϕ, ρ < R

1
P E0 exp[− z2

2r2
z
] J�(T�1

R
R̄
)ei�ϕe−α(ρ−R), ρ > R

(9)

where R̄ = R + P

k0

√
n2−1

is an effective radius and T�1 denotes the first zero of the cylindrical Bessel function J� .1 The

refractive index of the toroid is denoted by n and k0 is the (vacuum) wavenumber k0 = 2π/λ, where λ denotes the (vacuum)
wavelength. The modes can be approximately treated as TE-like modes, for which P = 1 and ζ ≈ z and TM-like modes for
which P = 1/n2 and ζ ≈ ρ [62]. The mode width rz in z direction, the evanescent decay length α−1 and the mode number
� are given by rz ≈ R3/4r1/4�−1/2

α−1 ≈ λ

2π
√

n2 − 1
(10)

nk0 R ≈
√

T 2
�1 + �

√
R/r − Pn/

√
n2 − 1 (11)

Moreover, we define ξ = |E(ρ = R, z = 0,ϕ)|2/|Emax|2 as the ratio of the field amplitude at the toroid’s (vacuum) surface
and the maximum field.

Now, a thin (rectangular) dielectric (thickness t , length l y , width lz) positioned tangentially at a distance x0 from the
toroid, as depicted in Fig. 3 (insert, left panel), is considered. Using Eq. (8), the optical frequency shift is thus given by:

�ω(x0) = −ω

2

ξ

V

(
n2

diel − 1
) x0+t∫

x=x0

l y/2∫
y=−l y/2

lz/2∫
z=−lz/2

e
− z2

r2
z e−2α

√
(x+R)2+y2−R dx dy dz (12)

The integral over the z-coordinate yields the sampling length in this direction2:

1 For � 
 1, as is the case here, these can be approximated by T�1 = � + 1.8558�1/3 + O(�−1/3).
2 The usual convention of defining the error function as Erf(x) = 2√ ∫ x

0 e−t2
dt is used.
π
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Fig. 3. Left panel: negative optical resonance frequency shift according to the analytic approximation (15) and FEM simulations as explained in the text
for a TM-like mode, with typical parameters R = 16 μm, r = 1.7 μm, � = 171 (corresponding to λ ∼ 800 nm) and a nanomechanical string with cross-
section 100 nm × 700 nm (Fit model: sum of two exponentials). Insert: Typical geometry (top view) of circular toroid and rectangular dielectric. Right
panel: Distortion of the profile of TM-like optical microtoroid mode induced by a silicon nitride nanomechanical oscillator in the evanescent field. The
main panel shows the radial distribution of a TM mode for varying distances x0 to the nanomechanical oscillator (100 nm × 700 nm). The insert shows the
corresponding field distribution for x0 = 500 nm and x0 = 5 nm, respectively. For small x0 a perturbation of the optical mode becomes evident, pulling the
mode locally towards the vacuum. This leads to the deviation from first order perturbation theory, as described in the text.

l̄z =
lz/2∫

z=−lz/2

e
− z2

r2
z dz = √

πrz Erf

(
lz

2rz

)
(13)

The integral over x and y can be approximated by two independent integrals such that the sampling length along the
y-axis can be written as

l̄ y = √
π

√
Rα−1 ≈

√
Rλ/2√
n2 − 1

(14)

using Eq. (11). The frequency shift is thus given by:

�ω(x0) = −ω

2

ξ

V

(
n2

diel − 1
) l̄zl̄ y

2α

(
1 − e−2αt)e−2αx0 (15)

Using the first order expression for ξ/V and keeping only terms to first order, one arrives at a coupling coefficient of

g(x0) = 1

23/2π

ω

R

n2(n2
diel − 1)

(n2 − 1)5/4

√
λ

R
Erf

(
lz

2rz

)(
1 − e−2αt)e−2αx0 (16)

Interestingly, the near-field approach exhibits a stronger scaling of the optomechanical coupling with wavelength than
the scattering force approach. In the latter case, the coupling g is simply inversely proportional to wavelength, whereas
here, the optomechanical coupling scales as g ∝ (1 − e−13.2t/λ)/

√
λ which for t � α−1 simplifies to 1/

√
λ3.

The optomechanical coupling coefficients given by Eq. (16) are approximately ×20 smaller than the intrinsic optome-
chanical coupling to the internal mechanical modes of the toroid microresonator ω/R [4,12,15,54,63], assuming x0 � 2/α
and typical parameters for a silicon nitride nanomechanical string (l y × lz × t = 30 × 0.7 × 0.1 μm3, ndiel = 2). This loss
in coupling coefficient is, however, overcompensated by typically more than ×100 larger zero-point motion of the string’s
fundamental mode such that even larger vacuum optomechanical coupling rates g0 are expected for evanescent near-field
coupling.

3.2. Comparison to finite element modelling results

Finite element modelling (FEM) is applied to simulate the optomechanical coupling between a silica microtoroid and a
dielectric in its evanescent field. The simulation assumes an axisymmetric geometry which holds true for the toroid itself,
but not the nanomechanical element. To correct for this, the frequency shifts calculated in the axisymmetric simulation are
re-scaled by the actual tangential sampling length l̄ y of the evanescent cavity field as derived in the previous section, cf.
Eq. (14).
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Fig. 4. Optomechanical coupling between toroid and silicon nitride nanomechanical string – theory and measurement. a, Negative optical frequency shift
(full blue dots) and cavity linewidth (red dots) as a function of the distance to a nanomechanical string (30 × 0.3 × 0.1 μm3) along with fits using a
double (single) exponential decay for the frequency shift (linewidth). Empty dots: FEM simulation; dashed line: analytic approximation (Eq. (15)), both for
TM-like mode. b, Red and blue dots represent the reactive and dispersive optomechanical coupling coefficients γ and g , as given by the derivative of the
exponential fits in a. Good agreement of the measured dispersive coupling with the FEM results (solid blue line) is found.

Fig. 3a shows the cavity resonance frequency shift according to Eq. (15) as well as calculated by FEM simulations for a
TM optical mode and typical experimental parameters. A refractive index of ndiel = 2.0 [64,65] is assumed3 for the silicon
nitride string. Good agreement on a level of 15% is found between the analytic approximations of the resonance frequency
shift and the results of the FEM simulation. Only for very small distances x0 < 50 nm, the frequency shift evaluated by FEM
shows a deviation from first order perturbation theory. This deviation is caused by the fact that for small distances the
dielectric can significantly disturb the optical mode profile, pulling it slightly out of the silica structure and thus leading
to larger frequency shifts, as shown in Fig. 3b. For small gaps (� 50 nm), the first order modifications of the optical mode
profile caused by the dielectric mechanical oscillator cannot be neglected anymore and lead to a deviation from first order
perturbation.

4. Static measurement of the optomechanical coupling

We will now turn to a careful experimental examination of the optomechanical coupling via the evanescent optical field.
First the coupling to a single optical mode is analyzed, resulting in good agreement with the numerical values obtained in
the previous section. Second, effects related to the simultaneous coupling to two different optical modes of similar optical
frequency will be shown.

4.1. Dispersive optomechanical coupling

The simplest way to characterize the optomechanical coupling coefficient g is based on static measurements of the
cavity resonance frequency. To this end, the nanomechanical oscillator’s distance x0 to the cavity is gradually changed while
a sweeping laser tracks the cavity resonance frequency ω(x0). The position dependent optomechanical coupling coefficient
g(x0) is then given by the derivative ∂ω/∂x0 of the measured frequency shift.

Earlier measurements [28] allowed dispersive coupling coefficients g/2π up to 10 MHz/nm for silicon nanomechanical
strings and membranes. No measurable reactive contribution was found [28]. Residual vibrations between the nanomechan-
ical oscillator and microresonator chips within the experimental apparatus practically limited the gaps which allowed stable
measurements to an estimated value of x0 ∼ 100 nm in this first series of experiments. Subsequently, efforts were made to
increase the accessible optomechanical coupling coefficients. First, the vibration isolation of the experimental chamber was
significantly improved. Moreover, the experimental parameters according to Eqs. (16) and (11), g ∝ (1 − e−13.2 t/λ)/

√
λR3,

were optimized. Working at shorter wavelength by moving from the telecommunication wavelength band to the range of a
titanium–sapphire laser (λ ∼ 800 nm) enhanced the attainable coupling by a factor ∼ 2. The fabrication process of the toroid
near-field sensors was optimized to allow for smaller cavity radii, further increasing the coupling. High-finesse cavities with
radii down to 16 μm and a finesse ∼ 106 were achieved, similar to regular toroid microresonators [69].

Fig. 4a shows the measured frequency shift induced by a narrow nanomechanical string (30 × 0.3 × 0.1 μm3) for a
resonance at 838 nm wavelength of a 18.4 μm-radius cavity along with the shift expected from both FEM simulations and

3 The refractive index depends on the silicon concentration of the silicon nitride. An error of ±0.1 is estimated [64,66], larger than the index variation
∼ 0.05 as a function of wavelength between 600 nm and 1600 nm [67,68].
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Fig. 5. Spatial profile of optical toroid microresonator modes as inferred by the transmission of the tapered optical fibre at varying distance. Fundamental
(a, |m| = �), second order (b, |m| = � − 1), second and third order (c, |m| = � − 2) modes can be distinguished.

the analytic approximation (see Eq. (15)). A maximum frequency shift of 9 GHz is measured and good agreement with both
FEM simulation and analytic model is found, assuming a closest distance of 25 nm. For very small gaps x0 < 50 nm the
measured frequency shift deviates from the uniform exponential behaviour and follows a steeper slope, in agreement with
the FEM simulation. This is attributed to the deviation from first order perturbation, as described in Section 3.2. Another
important aspect is that given the increased dispersive coupling, now for small x0 also the cavity linewidth considerably
increases, as shown in Fig. 4a. This effect cannot be explained by absorption of photons in silicon nitride. Based on an upper
bound for the ratio of imaginary to real part of the refractive index (the complex refractive of high stress SiN was measured
to be � 0.6 × 10−5 at a wavelength of 935 nm in Ref. [70]), absorption should, in the case of Fig. 4a, lead to an increase of
the linewidth by < 1 MHz, two orders of magnitude smaller than the observed value. The increased optical losses are rather
attributed to increased surface scattering at both silicon nitride and silica surfaces since for small gaps the optical mode is
considerably pulled towards these, cf. Fig. 3b.

Fig. 4b shows the dispersive and reactive coupling coefficients derived from the data in panel a. For all x0, the dispersive
contribution by far dominates the interaction. The measured dispersive coupling coefficients show very good agreement with
the coefficients obtained from FEM simulations reaching values g/2π > 200 MHz/nm which corresponds to a more than one
order of magnitude improvement compared to the initial values [28], attributed to shorter wavelength, smaller cavity radius
and improved stability, i.e. smaller x0. The reactive coupling γ = ∂κ/∂x, in turn, reaches values up to γ /2π � 13 MHz/nm.

The largest dispersive coupling was measured using wider nanostring oscillators with a cross-section of 700 × 100 nm2

reaching a value of g/2π = 290 MHz/nm which corresponds to a vacuum optomechanical coupling rate of g0/2π ∼ 5 kHz
(with the zero-point fluctuations of this particular string given by xzpf ∼ 18 fm, cf. Section 5).

4.2. Simultaneous coupling to several optical modes

Due to the rich mode spectrum of toroid microresonators, situations might arise where two or more optical resonances
closely spaced in frequency couple to the nanomechanical oscillator simultaneously.

Fig. 5 shows the measured vertical optical mode profiles of several optical modes. These are acquired by measuring the
transmission of the tapered fibre while scanning both its position along the z-axis (the distance to the toroid is kept fixed)
and the laser frequency. Fig. 5a shows a fundamental optical mode characterized by a single lobe along the z-coordinate.
Figs. 5b and 5c, however, show higher order optical modes with two and three lobes along the z-coordinate. Obviously, the
coupling of a nanomechanical string to an optical mode doublet, as shown in Fig. 5c, strongly depends on its position along
the z-axis.

Figs. 6a–6b show a situation where a nanomechanical string is coupled to an optical mode doublet. It is positioned close
to a maximum (minimum) of the higher (lower) frequency mode. As the nanostring is approached to the toroid the higher
frequency mode is exponentially shifted towards lower frequencies whereas the lower frequency mode is not affected. As
the frequencies of both optical modes approach each other, the scattering induced by the nanomechanical oscillator strongly
couples both modes, leading to an avoided crossing. During the avoided crossing both optical modes also switch their
respective optical linewidth, as expected from a simple coupled oscillator model. It is noted that the corresponding coupling
frequency is as large as ∼ 3 GHz, much larger than in a previously studied microsphere system [71] which is attributed to
a Purcell enhancement of the scattering [71,72] into the adjacent high Q optical modes (Q ∼ 5 × 105 and Q ∼ 3 × 107).
For the closest distance x0 ∼ 25 nm, the higher frequency optical mode is shifted by 18 GHz and a dispersive coupling
coefficient of g/2π = 270 MHz/nm is achieved. If the coupling between both optical modes is weaker than one of the
optical mode’s intrinsic decay rates, a Fano-type interference is observed as both modes are tuned into resonance with each
other. This situation is depicted in Fig. 6c where a very broad resonance (linewidth ∼ 5 GHz) is used.
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Fig. 6. Avoided crossing and Fano-type interference of optical microresonator modes induced by dielectric nanostrings. a, Negative optical resonance fre-
quency shift (top) and linewidth (bottom) of two adjacent optical WGM microtoroid modes as a function of the distance to a nanomechanical silicon
nitride string. For large distances only the higher frequency mode is coupled to the nanomechanical oscillator. Correspondingly, it is pulled towards the
lower frequency mode as the nanomechanical string is approached. The dielectric nanomechanical oscillator distorts and couples both modes to each other
via scattering which gives rise to an avoided crossing. b shows the corresponding cavity absorption spectra. c, Fano-like interference of optical microres-
onator modes. The situation is similar to b. Here, however, the higher frequency mode has a broad linewidth (broader than the coupling rate between both
modes). Thus, it effectively acts as a continuum leading to a Fano-type interference.

5. Transduction and actuation of nanomechanical motion

With the previously characterized static optomechanical coupling coefficients which were obtained by displacing the
nanomechanical oscillator as a whole, we now turn to the intrinsic mechanical modes of the employed nanomechanical
oscillators. To this end, the Brownian motion of the nanomechanical oscillators positioned at a fixed distance x0 to the
microresonator will be examined. First, however, the notion of a mechanical oscillator’s effective mass which is crucial for
correctly scaling the optomechanical interaction is introduced.

5.1. Effective mass of the nanomechanical oscillators

In Section 4.1 the optomechanical coupling was defined as the static optical resonance frequency shift induced by an
infinitesimal change in oscillator position x0, �ω ≡ �x0 · g . Here, we will consider the cavity frequency noise Sω[Ω] induced
by the Brownian position fluctuations Sx[Ω] of a particular mechanical mode of the nanomechanical oscillator Sω[Ω] =
gdyn · Sx[Ω]. The cavity frequency noise spectrum Sω can be measured in absolute terms [73]. The quantities on the right
hand side of the above equation are, however, a priori not that well defined. Typically, the convention of matching static
and dynamic coupling coefficients gdyn(x0) ≡ g(x0) has been pursued in the optomechanical literature (which leads to the
well-known g(l) = ω/l for a Fabry–Perot cavity of length l). This convention necessitates to carefully define the actually
measured effective coordinate of each mechanical oscillator mode, taking into account the spatial overlap of the optical
and mechanical mode shape used for measurement. Moreover, this convention requires the notion of an effective mass [74]
for each mechanical oscillator mode in order to fulfill the equipartition theorem. Following a different convention, one
could e.g. also absorb the overlap between optical and mechanical modes into an effective optomechanical coupling which
would then lead to different optomechanical coupling for each individual mechanical mode and in particular different static
and dynamic coupling coefficients. Then, in turn, the notion of constant motional mass for all mechanical modes could be
adopted.

Here, we follow the former, more frequently used convention as then both static and dynamic coupling coefficients
are identical for all mechanical modes. In the following, the effective coordinates and corresponding effective masses for
a nanomechanical string positioned horizontally in the evanescent optical microresonator field will be derived. A simple
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method for characterizing the optomechanical coupling via direct measurements of the vacuum optomechanical coupling
rate g0 that avoids having to introduce effective masses or effective coupling coefficients is reported in Ref. [73].

The j-th eigenfrequency of a doubly clamped rectangular string of length L, Young’s modulus Y and cross-sectional
inertia I = wt3/12 (the thickness t is understood along the axis of oscillation and the width w corresponds to the lateral
dimension) is given by [75]:

Ω
j

m/(2π) = j2π

2L2

√
Y I

ρ A

√
1 + A S L2

j2Y Iπ2
(17)

In the limit of large internal tensile stress (S 
 ( jπt/L)2Y /12), the mode patterns of a nanomechanical string extending
from y = 0 to y = L are given by

u j(y) = u j,0 sin

(
jπ

L
y

)
(18)

Each mechanical mode fulfills the equipartition theorem:

1

2
mΩ2

m

〈
u2

j

〉 = kB T (19)

where m = ρ t wL denotes the oscillator’s physical mass and 〈u2
j 〉 = 1/L

∫
L u j(y)2 dy is the mean squared displacement

amplitude averaged along the string’s length.4

In general, however, the measured coordinate deviates from 〈u2
j 〉 since it is weighted by the geometry of the measure-

ment apparatus. For the presented system the measured coordinate is given by the spatial distribution of the normalized
optical mode profile v0(y) (

∫ ∞
−∞ v0(y)2 dy = 1), sampling the nanomechanical string. This results in a normalized squared

displacement of

〈u j〉2
v2

0
=

(∫
L

u j(y)v0(y)2 dy

)2

(20)

which generally does not equal 〈u j〉2. In order to maintain equipartition for the actually measured coordinate the os-
cillator’s mass correspondingly has to be adjusted. This leads to an individual effective mass meff for each mechanical
mode. Using Eqs. (18), (19) and the approximate expression of the toroid field as obtained in the previous section

(v2
0(y) =

√
α

π R e−α(y−y0)2/R , with the field maximum along the string residing at y = y0) one obtains the following ex-

pression for the effective mass m j
eff of the jth mode:

m j
eff = m

2

( 1∫
0

β sin( jπu)Exp

[
−πβ2

(
u − y0

L

)2]
du

)−2

(21)

where β2 = L2α
π R = L/l̄ y reflects the string’s length L weighted by the transverse optical sampling length l̄ y .

Typical experimental parameters yield β 
 1. For the fundamental mechanical modes ( j = 1) and symmetric probing
around the string’s centre (y0 = L/2), the integrand in the above expression thus approximately represents a normalized
Gaussian (centered at u = 1/2 with a width � 1). Correspondingly, values close to 1 are found for the integral. Thus, the
effective mass of the fundamental modes is typically given by half the oscillator’s physical mass, i.e. meff ≈ m/2. It is noted
that the corresponding identity of static and dynamic coupling coefficients was demonstrated in Ref. [28]. For higher order
mechanical modes whose motion is more localized, however, the deviation from m j

eff = m/2 can be large.

5.2. Mechanical modes of silicon nitride nanomechanical strings

The dispersive optomechanical coupling g transduces the Brownian motion of the nanomechanical oscillators into cavity
frequency noise Sω[Ω] via:

Sω[Ω] = g2 × Sx[Ω] (22)

When the cavity is probed by a laser field using a tapered fibre, the Brownian motion Sx of the nanomechanical oscil-
lator will thus be imprinted onto phase and amplitude fluctuations of the field transmitted through the tapered optical
fiber coupled to microresonator and nanomechanical oscillator (cf. Fig. 1). Spectral analysis of the corresponding amplitude

4 Note that for the space and time averaged root mean square amplitude ū j one obtains ū2
j = 〈u2

j 〉/2 and thus the usual mΩ2
mū2

j /2 = kB T /2.
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Fig. 7. Modes of a 40 × 0.7 × 0.1 μm3 nanomechanical string. a, Out-of-plane (triangles) and in-plane mechanical modes (circles). The out-of-plane mode
family follows a harmonic frequency ladder whereas the in-plane mode family increases faster in frequency owing to the larger in-plane cross-sectional
inertia (insert: corresponding spectrum). Displacing the toroid along the string’s axis allows recording the nanomechanical string’s spatial mode patterns,
as shown in b: peak squared displacement of the second (upper panel) and fourth (lower panel) out-of-plane mode normalized to the fundamental mode.
Good agreement with the values expected from Eq. (18) (dashed lines) is found, when the finite sampling length of the microresonator l̄ y (cf. Eq. (14)) is
taken into account (full lines).

or phase fluctuations then allows retrieving the Brownian noise spectrum of the nanomechanical oscillator, as shown in
Fig. 7a (insert). This allows measuring nanomechanical motion with an imprecision below the level of the standard quan-
tum limit [29].

5.3. Frequency dispersion and mode patterns of nanomechanical oscillators

In this section the properties of the employed nanomechanical strings will be characterized. Intrinsic mechanical quality
factors ranging from 104 to > 105 are found (for frequencies of 5 MHz to 25 MHz) in vacuum (pressure < 10−5 mbar).
These are similar to the values reported elsewhere for nanostrings [65]. The measured mechanical quality factors are most
likely limited by two level systems within the amorphous silicon nitride [76,77]. In the following, we will focus on the
mode structure of nanomechanical strings.

Fig. 7a shows the nine lowest order eigenmodes of a 40 × 0.7 × .1 μm3 nanomechanical string. The out-of-plane modes
follow a linear dependence on mode number, here up to the fifth mode at 25 MHz since their motion is dominated by
the internal tensile stress, i.e. S 
 ( jπt/L)2Y /12 (cf. Eq. (17)). The spatial displacement patterns of these modes can be
measured by displacing the toroid microresonator with respect to the centre of the nanostring. Fig. 7b shows the squared
oscillation amplitude of the second and fourth out-of-plane modes normalized to the fundamental out-of-plane mode. The
measured amplitudes are in good agreement with the theoretical expectation taking into account the transverse optical
sampling length l̄ y (see Eq. (14)). In fact, minimizing the signal of even eigenmodes constitutes a simple way to find the
centre of the nanostrings and thus optimize the transduction of the fundamental mode. The measured out-of-plane modes
allow inferring the ratio S/ρ = (1.6 ± 0.1) × 105 m2/s2. For LPCV deposited high-stress silicon-nitride a density of (3 ±
0.5)× 103 kg/m3 is expected, see Ref. [65] and references therein. Thus, the resulting tensile stress in this particular sample
is given by S = (0.5 ± 0.1) GPa. Values up to S = 0.8 GPa were, however, obtained using other samples. The measurement
is moreover also sensitive to in-plane modes of the string (a higher order optical mode is used for this measurement).
Owing to the high aspect-ratio of the nanomechanical oscillators, these exhibit considerably different frequencies and in
particular do not follow linear dispersion, as shown in Fig. 7a. This is due to the increased value of the cross-sectional
inertia (by a factor (w/t)2) for modes oscillating along the longer axis of the string. With this additional mode family, the
Young’s modulus of the employed strings can be calculated. Using the above value for density and stress in order to fit
expression (17) to this mode family (see Fig. 7a), one obtains a Young’s modulus of Y = (55 ± 9) GPa which is lower than
the value measured in Ref. [65] for higher stress (S ≈ 1.2 GPa) LPCVD silicon nitride (Y ≈ 200 GPa).

6. Dynamical backaction cooling and amplification using a single optical mode

In this section dynamical backaction effects using a single optical mode are presented. Exceptionally low threshold power
levels (P < 1 μW) for the onset of regenerative nanomechanical oscillations are found. Moreover, the feasibility of cooling
nanomechanical motion by radiation pressure is shown.

Pumping the optomechanical system with a detuned laser alters the damping rate of the mechanical oscillator to Γeff =
Γm + Γdba where Γdba is given by Eq. (6). Pumping the cavity with a blue detuned laser beam thereby leads to anti-
damping of the employed nanomechanical string which can lead to maser/laser-like amplification of mechanical motion
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Fig. 8. Temporal behaviour of self-sustained oscillations. The coherent nanomechanical oscillations cause near-unity modulation of the cavity transmission
(a, Ωm/2π = 10.8 MHz, Q m = 70 000, meff = 3.6 × 10−15 kg). Here, an input power of ∼ 10 μW and a coupling coefficient of g/2π ∼ 5 MHz/nm is used.
For higher coupling power the transmission through the optical resonator becomes nonlinear as depicted in b and period doubling can be observed, c.
These data were obtained for a 7.8 MHz nanomechanical string (P ∼ 5 μW, g ∼ 25 MHz/nm). The oscillations in the nonlinear regime are, however, less
stable in amplitude as can been seen in the corresponding phase diagrams.

once the (negative) dynamical backaction rate Γdba overcomes the intrinsic damping rate of the mechanical oscillator, i.e. at
|Γdba| � Γm. The first experimental observation of the radiation pressure parametric instability was reported in 2005 [4]. The
near-field platform allowed to transfer this effect to the nanoscale [28]. In Fig. 8a, the transmission of the microresonator
is shown both in time domain and in a phase space representation. A near unity modulation of the cavity transmission is
caused by the coherent oscillations of the nanomechanical oscillator in the regime of the parametric oscillation instability.

The observation of radiation pressure induced coherent oscillations of Ref. [28] constituted the first report of dynami-
cal backaction amplification or cooling of nanomechanical motion using radiation pressure (in contrast to thermal effects
[36,78]), and in particular using optical gradient or dipole forces. A radiation pressure induced optical spring effect within
a nano-optomechanical system has been reported in Ref. [36] using a photonic crystal cavity. Dynamical backaction cooling
or amplification of nanomechanical oscillators had earlier on, however, been achieved only using single electron transis-
tors [32] or microwave fields [17] which require cryogenic operation and, owing to more than four orders of magnitude
longer wavelength, show much lower coupling coefficients. Meanwhile, also optomechanical crystals allowed the observa-
tion of backaction amplification [46].

As the coupling coefficient g (or equivalently
√

P ) is increased in the presented near-field system, the mechanical oscilla-
tions may shift the cavity resonance frequency by more than its linewidth such that the transmission of the optomechanical
system becomes nonlinear. This is shown in Figs. 8b–8c. These oscillations are achieved with minute input powers of only
P ∼ 5 μW which is about three orders of magnitude less than the power levels used in [5] where similar behaviour is
reported for a micromechanical oscillator.

Fig. 9 shows the measured threshold power for the parametric instability as a function of the employed optomechanical
coupling. A remarkably low value of P th = 400 nW is found for a nanomechanical string (Ωm/2π = 8.4 MHz, Q m = 60 000,
meff = 3 × 10−15 kg) using a coupling coefficient of g/2π = 45 MHz/nm.

The radiofrequency signal caused by the mechanical oscillator in the parametric oscillation regime has been proposed to
serve as a photonic clock [8] motivated by its ultra-narrow linewidth [79]. As such, low-power, radiation pressure driven
nanomechanical oscillators might be able to serve as on-chip frequency references replacing the commonly used bulkier
quartz crystals. Such an application, however, requires a thorough study and minimization of the signal’s phase noise [6–8]
to reach the quality of a quartz oscillator.

The opposite regime, namely dynamical backaction cooling, is also feasible, yielding a tool for radiation pressure cool-
ing nanomechanical motion. Fig. 9b shows the spectra recorded with a nanomechanical string (Ωm/2π = 10.8 MHz,
Q m = 50 000, meff = 3.2 × 10−15 kg, κ/2π = 8 MHz, P = 14 μW, g/2π = 4 MHz/nm) with both a positively and nega-
tively detuned laser. The former (�/2π ∼ 10 MHz) leads to linewidth narrowing, and a corresponding effective temperature
increase to Teff = 570 K. The latter (�/2π ∼ −10 MHz) increases the oscillator’s intrinsic linewidth Γm/2π = 220 Hz via
dynamical backaction to Γeff = 940 Hz which leads to cooling by a factor Γeff/Γm ∼ 4.3, i.e. a temperature of 70 K.5

5 The effective temperature is in both cases inferred by the oscillator linewidth.
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Fig. 9. Dynamical backaction amplification and cooling. a, Threshold power for the onset of self-sustained mechanical oscillations. P th is shown as a
function of the optomechanical coupling g . The lowest threshold power obtained is 400 nW. The line is the theoretical expectation from Eq. (6) with no fit
parameters. b, Dynamical backaction cooling and heating of a nanomechanical oscillator. The blue (red) trace shows the (single-sided) motional spectrum of
a nanostring (properties as described in the text) measured with a negative (positive) detuning of |�| ∼ 10 MHz. Correspondingly its effective temperature
is reduced (increased) to 70 K (520 K).

Recent experiments with micromechanical oscillators have shown much stronger backaction cooling, reaching temper-
atures of ∼ 5 K [10–12,15] (i.e. cooling by ×102) or even in the low mK-range [16] (i.e. cooling by ×104), starting from
room temperature. Cryogenic implementations of micro-optomechanical systems have, moreover, reached occupation num-
bers of only ten or a few tens of quanta [19,20,52,63] with a backaction cooling contribution within 10–103. Radiation
pressure backaction cooling of nanomechanical oscillators, however, has previously only been shown using superconducting
microwave systems and cooling factors of ×5 [17] and ×100 [21], limited by thermal effects, have been realized.

With the parameters κ/Ωm = 0.74 <
√

12 as used here, in principle cooling to a final occupation below 1/2 is pos-
sible [13,14]. In order to achieve this goal, considerably larger cooling factors would, however, have to be achieved. This
corresponds to using larger optomechanical coupling, larger input power or higher mechanical Q . A ×10 larger coupling
coefficient as well as two times higher mechanical Q are in principle easily accessible. This would hypothetically then re-
quire a still realistic but nevertheless very large input power, i.e. P = 9.4 m W, to reach an occupation below unity from
room temperature. The strong thermal bistability of toroid microresonators [80–82] would certainly render it very difficult
to reliably lock such a high power beam to the red wing of the optical resonance at room temperature. At temperatures
accessible using He-4 cryostats (T = 1.6 K), however, cooling below unity should be feasible with an estimated (based on
the above parameters) input power of only P = 50 μW, where the expected increase in mechanical Q of silicon nitride
based resonators at cryogenic temperatures [76] is not even taken into account.

7. Dual optical mode cooling and amplification

So far, we have only considered a single electromagnetic mode coupled to a single mechanical mode, according to Eq. (2).
In the literature, however, also the interaction of several optical modes with a mechanical oscillator has been studied both
theoretically [48,83,84] and experimentally [85,86]. Such an interaction can considerably enhance both dynamical backaction
and transduction of motion.

In general, the effective optomechanical coupling rate g0ā2 [18] is increased by using high quality factor optical res-
onances, i.e. by small κ . In the case κ � Ωm the optical resonator’s response, however, becomes too slow to follow the
mechanical oscillator’s dynamics which cancels the benefit of high optical Q . Thus, the system’s performance, as described
e.g. by the power needed to reach the SQL (PSQL), or equivalently the threshold power to reach the parametric instabil-
ity [29], saturates to a value independent of the cavity bandwidth. It has been shown that coupling a mechanical oscillator
to three optical modes spaced by its mechanical resonance frequency allows overcoming this limitation [84]. Pumping the
central resonance, the motional sidebands at ±Ωm are resonant with the adjacent optical modes, enhancing the transduc-
tion of motion. Thus, PSQL may be lower by a factor ×κ2/(4Ω2

m), which can be considerable. Similarly, if two optical modes
spaced by exactly the mechanical resonance frequency are both parametrically coupled to a mechanical mode, the radiation
pressure dynamical backaction can be significantly enhanced [48]. When pumping the higher or lower optical resonance,
the weight of the Stokes and anti-Stokes sidebands are strongly asymmetric, similar to the resolved sideband case of a
single resonance. However, the pump laser is now, in contrast to the resolved sideband case, resonantly coupled to one
of the optical resonances and thus the dynamical backaction is enhanced by a factor ∼ 2Ω2

m/κ2. This may allow a drastic
reduction of the power levels needed for ground-state cooling.

Here, the feasibility of dual optical mode, or three-mode interactions – two optical modes coupled to one mechanical
mode – using toroid microresonators is shown. Thereby, the fact that clock- and counterclockwise propagating modes in
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Fig. 10. Mode doublet of a WGM resonator. a, Transmission of a κ0/2π = 1 MHz mode doublet with γ /2π = 7 MHz for various external coupling κex, as
explained in the text. b, Total intracavity energy |ācw|2 +|āccw|2 (black) as well as the individual contributions of the hybridized lower frequency |b̄1|2 (red)
and higher frequency mode |b̄2|2 (blue) for κ/2π = 2.6 MHz and γ /2π = 7 MHz.

toroid microresonators, that are intrinsically degenerate, can be coupled via scattering [87–89] and thus form a doublet
is the key ingredient. Before looking at the experimental data, we will first have a look at back-scattering induced mode
splitting in whispering gallery mode microresonators.

Following a coupled mode approach the mean fields of the coupled clock- and counterclockwise modes âcw and âccw
may be written as (see e.g. Ref. [88] for further details)

ācw = √
κex

i� − κ/2

�2 − κ2/4 − γ 2/4 + i�κ
s̄ (23)

āccw = −i
γ /2

i� − κ/2
ācw (24)

where we have assumed that only the clockwise mode is pumped via the mean input field s̄. The former is, however,
also coupled to the counterclockwise mode via the scattering rate γ . Here, the detuning � is defined with respect to
the frequency of the originally degenerate optical modes (for simplicity it is assumed that both modes exhibit the same
decay rates κ ). Vice versa, only ācw is coupled to the output field s̄out via s̄out = s̄ − √

κex ācw. The mean output power
|s̄out|2 is shown in Fig. 10a. The population of the mode āccw, in turn, leads to light being partly reflected from the cavity,
s̄r = −iκex āccw.

Clearly, the coupling of both modes to each other leads to the formation of a mode doublet. The doublet can be trans-
formed into a pair of symmetric and antisymmetric modes b̂1 = 1/

√
2(âcw + âccw) and b̂1 = 1/

√
2(âcw − âccw), representing

the lower (higher) frequency mode. This is shown in Fig. 10b, along with the total intracavity field energy |ācw|2 + |āccw|2.
Both modes form sine- and cosine-shaped standing wave patterns [71].

Experimentally, coupling an optical mode doublet to a mechanical oscillator, requires some tunability of either the optical
splitting frequency or the mechanical oscillator’s resonance frequency in order to match both. This is difficult to achieve
using systems that incorporate optical and mechanical degrees of freedom within the same element and do not allow
tuning optical and mechanical properties independently.

In toroid microresonators, the optical mode splitting is defined by the density of scattering centres within each optical
mode’s volume [88] which determines the scattering rate γ . Thus, although the magnitude of typical splitting frequencies
can be increased by deliberately implanting defect centers [72], its exact value is random and cannot be tuned in-situ. Thus,
the mechanical degree of freedom has to act as the tunable element. Using the near-field approach, this can in fact be readily
implemented since the mechanical resonance frequency can be chosen independently. To this end, arrays of nanomechanical
oscillators of gradually changing length (and thus resonance frequency) are fabricated. Thus, exactly matching mechanical
oscillation frequency and optical mode splitting can be achieved.

Fig. 2c shows the transmission of a toroid microresonator resonance doublet with a splitting of γ /2π ∼ 7 MHz. When
tuning the laser to either sideband, the transduction of equivalent cavity frequency noise is expected to be enhanced at
frequencies matching the optical splitting frequency γ . This is shown in Fig. 11b (γ /2π = 7 MHz). The blue resonance of
the optical doublet is pumped with a diode laser (slightly blue-detuned) and the corresponding amplitude noise spectrum
is recorded consisting of thermorefractive noise and mechanical noise of both the cavity itself and the nanomechanical
oscillator. When the cavity is strongly overcoupled and thus the splitting is removed (cf. Fig. 10a), the thermorefractive noise
exhibits the typical shape [29,90,91], as shown in Fig. 11b. When the same measurement is performed in an undercoupled
regime, the transduction of thermorefractive frequency noise shows a fast cut-off, due to narrow cavity bandwidth (κ/2π ∼
2 MHz). However, an apparent peak at 7 MHz is found, which corresponds to the enhancement of frequencies ∼ γ /2π due
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Fig. 11. Three mode interaction. a, Recorded frequency noise spectra. The orange trace is taken in the overcoupled regime (g = 0). At low frequency,
thermorefractive noise dominates, whose magnitude decreases with frequency. The remaining peaks are mechanical modes of the microtoroid. The blue
trace is recorded in the undercoupled regime (g = 0). The transduction of thermorefractive noise decays faster. It is, however, enhanced for frequencies
around γ . The violet trace is recorded when coupling to a nanomechanical oscillator whose resonance matches the splitting γ . Since the higher frequency
optical mode is used for transduction, the motion of the nanomechanical oscillator is amplified due to dynamical backaction. b, Pumping the red (blue)
resonance of an optical doublet (splitting γ /2π = 7 MHz) leads to dynamical backaction cooling (heating) of the nanomechanical oscillator (meff = 1.6 ×
10−15 kg, Ωm/2π = 7.51 MHz, Q m = 30′000).

to the presence of the second optical mode. If, in addition, a nanomechanical oscillator (Ωm/2π = 7.5 MHz) is coupled
to the cavity, the degree of coincidence between splitting γ /2π and mechanical frequency Ωm/2π can be directly derived
from the recorded RF spectrum. This is shown in Fig. 11b where pumping the blue resonance in addition leads to dynamical
backaction, amplifying the nanomechanical oscillator’s motion.

The dynamical backaction rate in the case of three-mode coupling can be derived from the photon statistics within
the cavity. In Ref. [84], the spectrum of the intracavity photon number fluctuations has been derived for the case of reso-
nantly pumping the red (blue) sideband of a mode doublet. The dynamical backaction rate (for pumping the red and blue
sidebands, respectively) can then be calculated

Γ
(2)

dba = ±|ā|2 1

9 + 16Ω2
m/κ2

64g2
0Ω2

m

κ3

Ωm
κ≈ ±4|ā|2 g2
0

κ
(25)

where the geometric factor describing the overlap between both optical and mechanical modes [48] is neglected for
simplicity. If one compares this result to the corresponding limit for a single optical resonance (Ωm 
 κ ), one arrives
at the result that the dynamical backaction rate per intracavity photon is reduced in the two-mode case by a factor
(1 + 16Ω2

m/κ2)/(9 + 16Ω2
m/κ2) which approaches unity for κ/Ωm → 0. Thus, if the backaction rate is limited by effects

due to absorption within the cavity, one does not gain in the regime of two optical modes. One does, however, gain consid-
erably in terms of necessary input power. Since in the two-mode case, the cavity can be pumped resonantly, the dynamical
backaction rate can be written as

Γ
(2)

dba ≈ ±8ηc
g2

0

κ2

P

h̄ω
(26)

Compared to the single-mode case (cf. Eq. (6)), this corresponds to an enhancement of

Γ
(2)

dba

Γdba
∼ 2Ω2

m/κ2 (27)

which can be considerable and correspondingly may significantly lower the input power levels necessary for a certain cool-
ing factor. Moreover, the fact that resonant pumping can be used, may facilitate strong cooling from room-temperature since
operating in the thermally unstable regime of red detuned locking [80–82] is not necessary, as opposed to the single reso-
nance case. Fig. 11b shows that both cooling and amplification of nanomechanical oscillators is possible using this scheme.
This corresponds to the first observation of three mode amplification and cooling of nanomechanical motion. Dynamical backac-
tion rates of order 100 Hz are achieved. Eq. (26) suggests that considerably stronger backaction rates should in principle
be feasible. However, the non-unity overlap of both optical and mechanical modes would have to be taken into account for
a quantitative comparison. At least in principle, cooling rates bringing the nanomechanical oscillator close to the quantum
ground state even from room temperature are accessible. However, also the limitations owing to the finite mechanical Q
factor (Q m > nth ≈ 8 × 105, is required for ground state cooling [13,14]) and the thermorefractive noise floor have to be
considered in future studies. The latter constraint is a fundamental obstacle, whereas the former may be met by employing
mechanical oscillators with larger quality factors Q m > nth as recently shown [70].
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