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Abstract. An asymmetric breakdown of the integer quantized Hall effect
(IQHE) is investigated. This rectification effect is observed as a function of
the current value and its direction in conjunction with an asymmetric lateral
confinement potential defining the Hall bar. Our electrostatic definition of the
Hall bar via Schottky gates allows a systematic control of the steepness of
the confinement potential at the edges of the Hall bar. A softer edge (flatter
confinement potential) results in more stable Hall plateaus, i.e. a breakdown at a
larger current density. For one soft and one hard edge, the breakdown current
depends on its direction, resembling rectification. This nonlinear magneto-
transport effect confirms the predictions of an emerging screening theory of
the IQHE.
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1. Introduction

The discovery of the integer quantized Hall effect (IQHE) [1] in a two-dimensional electron
system (2DES) subjected to a perpendicular magnetic field B opened up a wide research
field in solid state physics, which has become a paradigm since then [2]. In spite of many
experimental [3–6] and theoretical [7–10] efforts, our understanding of the IQHE is still far
from being complete. The conventional theories [7, 9, 11] can successfully describe the main
features of the IQHE, namely the existence of extended Hall plateaus and their extremely
accurate quantized resistance values. Relying on a single-particle picture, they fail to give a
comprehensive description of many experimental observations on a more detailed level. These
original edge or bulk theories disregard the classical Hartree-type (direct) Coulomb interaction
within the 2DES altogether [7–9]. The bulk theories assume the current to flow through the
entire Hall bar [11]. On the basis of wafer properties such as disorder, they predict localized
states. The edge theories describe the Hall plateaus by assuming current flow only along the
edges of the Hall bar [9]. However, an explanation of the transition region between plateaus
requires the additional assumption of localized bulk states caused by disorder similar to that
of the bulk theories. Since these conventional theories rely on disorder, one could come to a
conclusion that no QHE would occur in a hypothetical perfect sample free of disorder. This
is proven to be incomplete by a newer approach that disregards disorder but includes the
direct Coulomb interaction between electrons moving in the confinement potential in a self-
consistent manner [12]. Building on this model, a comprehensive screening theory emerged.
It self-consistently takes into account the Coulomb interaction and also considers disorder as
well as the quantum mechanical wavefunctions of the electrons [13, 14]. For the Fermi energy
approximately centered in between the energies of two adjacent Landau levels, the screening
theory predicts that the current is carried by incompressible regions (strips) extending along
the Hall bar, hence replacing the edge channels. Since back scattering is absent within an
incompressible region, this explains the observation of the Hall plateaus. Because our self-
consistent approach takes into account the exact shape of the confinement potential and, in
addition, can explicitly consider the nonlinear transport [15, 16], it allows for predictions that
are beyond the scope of the conventional theories. Effects based on the electron spin such as
exchange interaction are not taken into account here, but can be included [17–20].

A prominent non-equilibrium phenomenon observed at quantized Hall systems is the
electrical breakdown [21–24], where the IQHE disappears as the current flowing through the
Hall bar exceeds its breakdown value. It is usually attributed to a non-equilibrium occupation of
the higher Landau levels and has been discussed within the above-mentioned non-interacting
single-particle models. In the past, it has already been observed that the breakdown of the
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IQHE is correlated with the asymmetries of the confinement potential of the Hall bar [25].
More recently, the effect of sample mobility together with sample width have been investigated
experimentally and two distinct breakdown regimes have been reported [26]. In addition,
an impurity-assisted inter-Landau-level tunneling mechanism has been proposed by Guven
et al [27], to explain the observed excitation time scales [28].

In this work, we present nonlinear magneto-transport measurements and discuss them
within the framework of the screening theory. We experimentally investigate the current-induced
breakdown of the IQHE in narrow gate-defined Hall bars with confinement potentials that are
asymmetric in the lateral direction. In detail, we demonstrate a situation in which dissipation-
suppressed current only exists in one of the two current directions along the Hall bar. This
rectification of the IQHE occurs in a wide range of parameters such as the mobility, charge
carrier density and Hall bar width. The screening theory predicts the observed behavior for our
high-mobility Hall bars assuming that the long-range potential fluctuations due to disorder do
not destroy the formation of the incompressible strips at the edges [14].

2. Experimental setup and sample properties

Our Hall bars are electrostatically defined by means of metallic Schottky gates produced by
electron-beam lithography on the surfaces of high-mobility AlGaAs/GaAs heterostructures
containing 2DESs 110 nm beneath the surface. This field-effect method allows us to define Hall
bars with extremely smooth and selectively tunable confinement potentials. A typical gate layout
is displayed in the SEM picture of figure 1(a). A constant dc current is impressed between the
source (S) and drain (D) contacts, while four more ohmic contacts A1, A2 and B1, B2 are used
as voltage probes. The Hall resistance RH is obtained by measuring the voltage drop between
contacts A1 and B1 or A2 and B2, while the longitudinal resistance RL is measured with A1 and
A2 or B1 and B2. For simplicity, we will not specify which of these combinations of contacts
are used in the following, given that our measurements are roughly independent of it. In order
to create a laterally asymmetric confinement potential, we apply different gate voltages VL and
VR along the two sides of the Hall bar, while the three gates on each side are always on equal
potential. In all measurements shown here, B is perpendicular to the 2DES and points upwards,
thus defining left-handed chirality, as sketched in figure 1(a) for the linear response case (dashed
arrows indicate the direction that electrons move in equilibrium). ISD > 0 corresponds to VS > 0,
while the drain contact is always grounded VD = 0 (for the measurements shown in this paper).
Figures 1(b)–(d) sketch the energy of the relevant Landau level (thin dashed line) for ISD = 0
(figure 1(a)), ISD > 0 (figure 1(b)) and ISD < 0 (figure 1(c)) as predicted by the screening theory
for the Hall plateaus [14]. The relevant Landau level is the one that is pinned to the chemical
potentials at the edges of the Hall bar. Also shown is the electro-chemical potential µ∗(x)

(thick dashed line) across the Hall bar, which includes the effect of a non-zero current, i.e.
the non-equilibrium case. The shaded areas mark the width of incompressible regions and will
be discussed below. We have performed measurements on five different samples with a Hall bar
width of 3 µm or 10 µm and mobilities of µ ' 1.4 × 106 cm2 Vs−1, µ ' 3 × 106 cm2 Vs−1 and
µ ' 8 × 106 cm2 Vs−1 on wafers I, II and III, respectively. Here, we only present data measured
on wafers I and III at a temperature of T ' 1.7 K. However, many more data taken so far confirm
the results discussed below. It is important to note that the voltages applied to the confining gates
are more negative than the pinch-off bias measured to be ∼ −0.25 V. This is experimentally
tested and implies that the side gates are wide enough to prevent any leakage currents across the
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Figure 1. (a) Scanning electron microscope photograph of a typical sample. Top
gates are colored in light gray. The voltage VL (VR) is applied to the three lhs
(rhs) gates. A constant current ISD is impressed at the source (S) contact and
flows into the grounded drain (D) contact. The other ohmic contacts A1, A2, B1

and B2 are used as voltage probes. A magnetic field perpendicular to the 2DES
is directed upward and defines a left-handed chirality for electrons moving along
the 2DES (dashed arrows), which are essentially the (Landauer–Büttiker) edge
state electrons. (b) Qualitative sketch of the energy of the relevant Landau level
(thin dashed line), which is pinned to the chemical potential (Fermi energy) at the
edges. Here ISD = 0 and VL < VR < Vdepl < 0, where at Vdepl the 2DES beneath
a gate is completely depleted; µS and µD are the chemical potentials defined at
the source versus drain contacts. Also shown is the electro-chemical potential
µ∗(x) (thick dashed line) across the Hall bar. The shaded areas mark the width
of incompressible regions. (c, d) The same as (b) but for the non-equilibrium
case ISD > 0 or ISD < 0.

electrostatically defined barriers to the side contacts A1, A2, B1 and B2. In the pinch-off regime,
we can indeed assume that the width of the barriers exceeds the width of the confining gates of
100 nm, which is at least an order of magnitude larger than the magnetic length—the relevant
length scale that defines the overlap of the electronic wavefunctions. Hence, we can neglect
leakage currents caused by tunneling of electrons below the side gates.

3. Results and discussion

It has often been argued that applying a higher gate voltage should result in a softer edge
potential profile (as e.g. proposed in [10]). However, numerical results obtained by solving
the 3D Poisson equation self-consistently indicate just the opposite: for a more negative gate
voltage applied, the density profile becomes sharper [29]. Our own numerical results are
shown in figure 2, where an efficient fourth-order grid technique is used to obtain electrostatic
quantities for the specific wafer parameters and applied gate voltages. Clearly, the steepness of
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Figure 2. Self-consistently calculated electrostatic potentials as a function of
the distance to the gates shown for four representative negative gate voltages.
The horizontal dashed line indicates the Fermi energy EF ' 10.75 meV. The
shaded area (yellow) indicates the gated region. Directly below the gates the
2DES is depleted for gate voltages below −0.25 V (pinch-off regime). The inset
shows the calculated potential distribution in 2D for the symmetric case of
VL = VR = −1.5 V applied to the gates on both sides of the Hall bar. Data shown
in the main figure are calculated along the horizontal line in the inset. Note that
all the dark (blue) regions are depleted at the inset.

the confinement potential increases strongly as the gate voltage is decreased (to more negative
values). We find that the depletion length increase is weaker than proportional to the applied
gate voltage, other than previously predicted in [10].

Figure 3 displays the measured Hall resistance RH of a Hall bar realized in wafer I
(d = 10 µm) as a function of the perpendicular magnetic field 0 < B < 3.5 T. The gate voltages
are VL = −1.2 V and VR = −0.3 V. They create a harder confinement potential on the left-
hand side (lhs) of the Hall bar compared to the relatively soft rhs edge (see figure 1(b)). The
Hall curves displayed in figure 3 are measured at ISD = ∓2 µA (lhs y-axis) and ISD = ∓5 µA
(rhs y-axis). Parts of the curves, namely in the region of filling factors ν ' 6 and ν ' 4, are
shown again in the inset of figure 3, where we have also added data for ISD = ∓10 µA (curves
for ISD = ∓5 µA and ISD = ∓10 µA are vertically shifted). For ISD = ∓2 µA, the Hall plateaus
are well established, where they are pretty much smeared out for ISD = ∓10 µA, independent
of the current direction. This observation can be attributed to the well-known breakdown of the
IQHE, usually explained (within the edge channel models) by scattering between (many) edge
channels [27]. Interestingly, for the intermediate current value of ISD = ∓5 µA, the breakdown
is more pronounced for one of the two current directions, namely ISD < 0.

Exactly this behavior is predicted by the screening theory [14]; within this calculation
scheme the current-induced breakdown of the IQHE is caused by inelastic scattering between
compressible regions (Joule heating) [30]. Essentially the width of the incompressible strips
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Figure 3. Hall resistance of a Hall bar with a width of d = 10 µm defined
in wafer I (µ ' 1.4 × 106 cm2 Vs−1). An asymmetric confinement potential is
created with VL = −1.2 V and VR = −0.3 V causing a hard lhs edge and a soft
rhs edge of the Hall bar. The main plot shows RH for ISD = ∓2 µV (lhs y-axis)
and ISD = ∓5 µV (rhs y-axis). The inset displays detailed views of the section
including filling factors ν = 6 and ν = 4 of the same data and, in addition, for
ISD = ∓10 µA. For clarity, the curves for |ISD| > 2 µA in the inset are vertically
shifted. To avoid any confusion, we note that broken lines depict always ISD < 0,
regardless of the color code.

decreases as the current is increased. However, as long as there is at least one incompressible
strip across the Hall bar, dissipationless current is possible resulting in the plateau value of
RH. In agreement with the screening theory, we assume two incompressible strips, just one
on each edge of the Hall bar [13]. On the one hand, the asymmetric confinement causes
the incompressible strip on the softer edge to be wider than the one on the harder edge
(for figure 3, the lhs edge), as sketched in figure 1(b). On the other hand, a large current generally
results in a widening (narrowing) of the incompressible strip at the edge of the higher (lower)
electrochemical potential (figures 1(c) and (d)) [14]. For the higher electrochemical potential
on the softer edge (figure 1(c)), the result is therefore a very narrow incompressible strip on the
hard edge and a very wide incompressible strip on the soft edge. The direct consequence is a
more stable incompressible strip (on the soft edge) and a wider Hall plateau at the onset of the
breakdown regime. For the data shown in figure 3, this situation is reached for ISD > 0. For the
opposite current direction ISD < 0, the narrow incompressible strip imposed by the hard edge
potential is compensated for by the widening due to the large excess current; however, the wide
incompressible strip on the soft edge is reduced in width. Accordingly, the breakdown is already
observed for lower absolute values of the current (figure 1(d)).

Within this scenario, it is possible to compensate for a reversal of the lateral asymmetry
of the confinement potential by reversing the direction of the impressed current. This
prediction [14] is experimentally tested in figure 4, where we plot RH (B) taken at ISD = ∓6 µm
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were measured after illumination of the sample at T = 1.7 K, causing a higher
charge carrier density but no qualitative change in the investigated effects.

on the same wafer as above. Between the two sets of curves the asymmetry of the confinement
potential is reversed by exchanging the soft and hard edges of the Hall bar (while the magnetic
field direction is unchanged). For the harder edge on the lhs of the Hall bar (lhs axis, two curves
on top), the Hall effect is more stable for ISD > 0, as already observed in figure 3. In contrast,
if the lhs edge is the softer one, the Hall effect is more stable for ISD < 0. As expected, the
general behavior remains unchanged whenever we inverse both, the direction of the current and
the direction of the lateral confinement potential. However, a reversal of only one of the two
quantities near the onset of the breakdown of the IQHE causes a drastic change in the width of
the Hall plateaus. We interpret this behavior as a rectification of the IQHE.

Figure 5 plots an example of the same behavior, but observed on wafer III with a much
higher mobility of µ ' 8 × 106 cm2 Vs−1 and a Hall bar width of d = 3 µm measured at
ISD = ∓1 µA. Here, we apply VL = −0.4 V and VR = −1.5 V defining the harder edge on the
rhs of the Hall bar. Note that the smaller absolute value of the breakdown current observed in
the high-mobility sample might be explained by a smaller width of this Hall bar. As expected
the breakdown of the IQHE is more pronounced for positive current, causing a higher chemical
potential at the lhs edge of the Hall bar. In figure 5, we additionally display the longitudinal
resistance (rhs y-axis). It shows the breakdown behavior in agreement with the RH (B) data.

We observe the same behavior over a wide range of mobilities, charge carrier densities,
Hall bar widths and contact combinations. While here we show only a small selection of our
data, we have performed many control measurements, always leading to the same systematic
result, namely rectification of the IQHE in a Hall bar with an asymmetric lateral confinement
potential as a function of the direction of the impressed current (at the onset of the breakdown
of the IQHE).
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In the following, we discuss our results in light of conventional theories versus the
screening theory of the IQHE. Both the original bulk and edge theories fail to describe the
experimentally observed smooth transition regions between the plateaus of the Hall resistance
(and the corresponding finite longitudinal resistance) in a self-contained way. Instead the
transition between Hall plateaus is phenomenologically explained by assuming broadening
of the Landau levels and corresponding narrowing of the Hall plateaus. Hence, one would
expect a narrowing of the Hall plateaus as the mobility is decreased (and the disorder is
increased). However, in experiments the opposite behavior is observed, namely the plateaus
become wider as the mobility is decreased. To heal this discrepancy, the localization is—again
phenomenologically—invoked, such that disorder induces localized states, which then results
in broader plateaus for the low-mobility samples and causes an insulating bulk state. The edge
theories take, in addition, the confinement potential into account, as the edge states are a direct
result of the Landau levels cutting the Fermi energy at the edges of the Hall bar. However, no
detailed assumptions are made regarding the shape of the confinement potential.

In our experiments, we observe the effect of an impressed current on the Hall resistance
(altering the transition regions between the plateaus) as a function of the lateral shape of the
confinement potential. In this regime, we cannot expect the conventional theories to explain our
findings. Moreover, calculations within these conventional models are performed in the linear
response regime, whereas here we use large currents, clearly putting us out of the linear response
regime.

The screening theory is based on numerical calculations of the exact shape of the
confinement potential by taking the direct Coulomb interaction between charge carriers as well
as their quantum mechanical properties into account [13, 14]. In contrast to the conventional
theories, the screening theory allows self-consistent numerical calculations even in the nonlinear
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response regime, which results in predictions at the onset of the breakdown regime of the
IQHE. The observed rectification of the IQHE at the onset of its breakdown is beyond the
scope of conventional theories. Our results qualitatively confirm the predictions of the screening
theory. It should be noted that the present form of the screening theory does not account for the
local temperature (and local heating effects) in a self-consistent way. However, a reasonable
prescription for such a calculation is already given in the literature [30]. In this calculation
scheme, a large impressed current melts (narrows) the incompressible strips, finally leading
to the experimentally observed breakdown. While the screening theory predicts the width and
location of incompressible strips omitting local heating effects, the additional assumption of
local heating as treated in [30] results in qualitative agreement with our experiments.

4. Summary

In summary, we have experimentally investigated the current-induced breakdown of the IQHE
on narrow, gate-defined and high-mobility Hall bars. As a function of a lateral confinement
potential, where one edge of the Hall bar is hard and the other is soft, we find an asymmetric
breakdown of the IQHE. In detail, the hard edge tends to become highly dissipative for a
large current, while the dissipation-suppressed edge channel stays stable along the soft edge.
The observations cannot be explained within the conventional theories of the IQHE, but are in
agreement with the predictions of the emerging screening theory.
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