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A method is presented that overcomes bandwidth limitations arising in a fiber-optic setup
transducing mechanical motion. The reflected light from a sample incorporating a nanomechanical
resonator is analyzed. Modulating the incoming laser intensity at a suitably chosen frequency, the
mechanically induced oscillation of the reflected light is coherently downconverted to a frequency
within the detection bandwidth. Additionally, based on the mechanical nonlinear response, the
optical signal can be quantitatively converted into displacement, yielding a sensitivity of 7 pm /�Hz
at optical power levels of 20 �W. We detect and image mechanical modes up to the seventh
harmonic of the fundamental mode at 7.7 MHz. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3155164�

The resonant motion of micro- and nanoelectromechani-
cal systems is increasingly investigated. Their small masses,
high quality �Q� factors, and high integrability make them
equally interesting for fundamental research as well as appli-
cations in sensing and signal processing.1,2 Optical setups are
among the most sensitive ones for the detection of the me-
chanical motion. With decreasing dimensions and increasing
resonance frequencies of the mechanical systems the detec-
tion of the motion requires increasingly complex setups.3 In
particular, sensitive optomechanical transduction typically
employs reference beams3 and/or optical cavities.4 These ap-
proaches equally require very stable lasers and optical paths.
We employ a simpler fiber-optical setup, as sketched in
Fig. 1 and described, e. g., in Ref. 5.

In this setup the sample is illuminated with light coming
out of a bare close-by glass fiber and the scattered light is
collected with the same fiber without additional optical com-
ponents. Our investigated nanomechanical system consists
of a stretched SiN wire6 of dimensions 35 �m�250 nm
�100 nm, length, width, and height, respectively. The me-
chanical actuation is induced by dielectric forces caused by
an essentially spatially inhomogeneous electrical field gener-
ated by suitably biased electrodes close to the resonator as
discussed elsewhere.7 Since the motion of the resonator only
weakly modulates the reflected laser intensity, significant
amplification of the detected signal oscillating at radio fre-
quency of the mechanical resonances is required. Typically,
amplifiers exhibit a trade-off concerning bandwidth, amplifi-
cation factor, and amplifier noise. The photodiode with an
integrated preamplifier �Thorlabs PDA55� used for this work
has variable gain and bandwidth �maximum of 10 MHz�. The
datasheet shows that these quantities are approximately in-
versely proportional whereas the amplifier noise is rather
constant with varying bandwidth. In order to exceed the am-
plifier constraints, we introduce a modulation of our laser
intensity at frequency fRF, as sketched in Fig. 1. Here, a
square-wave modulation of the laser intensity is imple-
mented with a homemade switching circuit. We actuate the
mechanical resonator with frequency fRF− fLO. This driving

signal is coherently generated by mixing the signal that
modulates the laser with the signal of a local oscillator, op-
erating at fixed frequency fLO=0.9 MHz employing a home-
made single sideband modulator. Consequently, the light re-
flected from the driven mechanical resonator contains
frequency components at the sum �2fRF− fLO� and difference
�fLO� frequency. The sum frequency typically exceeds the
bandwidth of our detector and is suppressed. However, the
difference frequency is coherently detected using a network
analyzer. Sweeping fRF while retaining fLO=0.9 MHz yields
the frequency-dependent response of the mechanical resona-
tor at fRF− fLO. In the following all experiments are per-
formed at room temperature and a pressure below 5
�10−4 mbar.

A typical response curve can be seen in Fig. 2�a�; fitting
a Lorentzian line shape yields the mechanical resonance fre-
quency and quality �Q� factor. With the stroboscopic detec-
tion scheme, we are able to investigate also harmonic modes
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FIG. 1. �Color online� Schematical transduction setup; the electronic path is
plotted in black; the area surrounded by the dashed rectangle depicts the
optical path; arrows indicate the direction of signal propagation. The sample
containing a string as nanomechanical resonator is mounted in vacuum just
below the end of the optical fiber as indicated. As the sample is actuated at
fRF− fLO and the illuminating laser intensity is modulated at fRF a coherent,
low-frequency beat at fLO is created on the photodetector.
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of our mechanical resonator at frequencies beyond the band-
width of our photodetector. The ability to record several
modes has been demonstrated to be advantageous for
sensing.8 In Fig. 2�b�, resonance frequencies and quality fac-
tors are displayed versus the respective mode number n cor-
responding to the number of antinodes along the length of
the resonator. In contrast to a doubly clamped beam,9 the
frequencies can be clearly seen to scale linearly with mode
number. As the implementation of the employed actuation
scheme is spatially symmetric, we are not able to excite all
antisymmetric, even n, modes. From the resulting spectrum,
one can deduce that the model of a string can be safely
employed to describe the resonant motion. The relatively
large Q values are found to decrease with increasing fre-
quency, a phenomenon generally observed6 but still not
quantitatively understood. In Fig. 2�c�, we scan the detection
fiber along the wire and plot the locally obtained phase of the
oscillation; a method for convincingly identifying a given
mode. It is noteworthy that techniques relying on modulation
of the driving amplitude are not able to retrieve this informa-
tion, see for example Ref. 10. Using a direct detection
scheme of the mechanical resonance under cw illumination,
we obtain a somewhat higher displacement resolution �yet
bandwidth limited� and are able to measure the Brownian
motion of the fundamental mode at 300 K. This enables us
to quantitatively convert the measured signal into
displacement.11

In the following, we describe how the nonlinear behav-
ior of the resonator can be employed to transfer this displace-
ment calibration to the higher harmonics. Related experi-
ments have been reported in Ref. 12. At large driving
amplitudes, the restoring force F�z� exhibits nonlinear terms

in displacement z. For convenience we write F�z�=k ·z
+meff�3 ·z3. Here meff, k=meff�2�f�2, and meff�3 denote the
effective mass, linear spring constant, and cubic contribution,
respectively, of the mechanical mode considered. For the
case of a string, the spatial modes are described by a cosine,
thereby a simple calculation yields the restoring force up to
cubic order. We define L as half the wavelength of the reso-
nant mode, which for the fundamental mode equals the
length of the string l and for the higher modes L= l /n with
n=2,3 , . . .. With E, �, and � being Young’s modulus, tensile
stress, and density of the resonator material, we obtain

F�z�
meff

=
�2�

L2�
z +

�E + 3/2���4

4L4�
z3. �1�

We note that this result reflects the well-known fact that
a string doubles its resonance frequency when halving its
length. Assuming a density of �=3000 kg /m3,13 the mea-
sured frequency of the fundamental mode translates into a
tensile stress of �=830 MPa, significantly less than the
given specifications of the unprocessed SiN films �1400
MPa�. For the amplitude conversion we note that the nonlin-
ear term scales with the length as �3�L−4. The differential
equation employing the nonlinear restoring force, the so-
called Duffing equation, can be solved in the case of a
steady-state oscillation, yielding a frequency-dependent
amplitude �z�= �z��f�. The explicit calculations are not pre-
sented here and can be found for example in Ref. 14. With
increasing actuation amplitude, the initial Lorentzian line
shape begins to bend over to one side and eventually be-
comes bistable, a nonlinear phenomenon often seen in
nanomechanics.15 We fit the measured resonance curves near
the onset of bistability with the solution of the Duffing equa-
tion. For the fundamental mode we thereby derive an abso-
lute value for �3. With the given geometry this translates into
a Young’s Modulus of E=100 GPa, reduced with respect to
the literature value of spatially homogeneous SiN films
around 300 GPa.13 Applying the obtained values, continuum
mechanics predicts a flexural contribution to the restoring
force less than 2%.6 To extend the calibration to the case of
the harmonics, the values for �3 are rescaled to obey 1 /L4

scaling with respect to the fundamental mode �see Eq. �1��.
Thus a scaling factor is obtained to convert the measured
detector signal into displacement. Figure 3�a� shows such
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FIG. 2. �Color online� �a� Mechanical response and Lorentzian fit of a
nanomechanical stretched SiN wire with dimensions 35 �m�250 nm
�100 nm length, width, and height, respectively, driven around the second
harmonic mode. �b� Resonance frequencies and quality factors of the fun-
damental mode and all observed harmonics are plotted vs mode number n,
reflecting the number of antinodes along the length of the wire. To empha-
size the scaling behavior of the frequencies a linear fit is shown. �c� Spatial
distribution of the phase of the observed mechanical modes as measured
with the detection fiber moved by position x along the wire �see Fig. 1�. For
clarity the curves are offset in phase with respect to each other.
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FIG. 3. �Color online� �a� Nonlinear response of the fifth harmonic mode;
experimental data �black� and theoretical fit �red�. The fit is employed to
convert the detected signal into mechanical displacement. ��b� and �c�� Com-
parison of signal transduction using stroboscope �a� and �b� and cw illumi-
nation �c� measuring with 50 Hz bandwidth. Note that the driving amplitude
in �a� and �c� are identical; therefore the noise floor in �c� can be estimated
to be about 2 nm and is substantially larger than the one of about 50 pm �b�
achieved in the stroboscopic detection scheme.

263104-2 Unterreithmeier, Manus, and Kotthaus Appl. Phys. Lett. 94, 263104 �2009�

Downloaded 09 Jul 2009 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp



rescaled measurement and the corresponding nonlinear fit.
The fitting procedure proves to be surprisingly stable, even
in the case that none of the fitting parameters, such as f0 ,Q
are held fixed. In contrast, if we directly employed literature
values for E, appropriate for our wafer material, the conver-
sion would yield amplitudes that are approximately half as
large.

Using above calibration, we are able to determine the
sensitivity of our setup. Figure 3�b� shows a weakly driven
resonance detected in the stroboscopic mode, from which
one can deduce a noise floor of about 50 pm measured at a
bandwidth of 50Hz. This corresponds to a sensitivity of
7 pm /�Hz at an average incoming laser power of 20 �W.
The values obtained for the other modes deviate slightly
from this value; we attribute this to the modulation amplitude
of our laser that is measured to be not completely constant
over the whole range of modulation frequencies �data not
shown�. Normalized to the laser intensity, these sensitivity
values are comparable to those reported in Ref. 5 based on
cw illumination. To quantify the signal-enhancement caused
by the stroboscopic downconversion technique, Fig. 3�c�
shows the same resonance as Fig. 3�a� employing cw illumi-
nation. The obtained maximum in the spectrum therefore
corresponds to an amplitude of 3 nm, whereas the noise floor
translates into an amplitude of at least 2nm rms, about a
factor of 50 worse than in Fig. 3�b�.

Assuming that the modulation of the illuminating laser at
higher frequencies does not increase the noise of the optical
signal detected at frequency fLO, the detected signal de-
creases only in proportion to the mechanical displacement of
the string and the sensitivity is expected to be independent of
frequency.

Other stroboscopic techniques have been reported that
do not require additional optical components: Ref. 16 em-
ploys short light pulses freezing the mechanical motion that
produce phase-shifted spatial images and typically achieves
displacement resolutions not exceeding nanometer. Another
recently reported time-domain technique,17 employing local
interferometric effects, is equally based on short probing and
excitation pulses. There, displacement resolutions in the pi-
cometer regime are observed up to resonator frequencies in
the GHz regime. However, as pulsed excitation is applied,
this technique imposes challenges when studying steady-
state phenomena.

In conclusion we demonstrate a simple stroboscopic
technique to coherently detect nanomechanical motion, sepa-
rating the detection frequency fLO from the frequency of me-
chanical motion fRF− fLO. This allows to far exceed band-
width limitations imposed by sensitive detection electronics.
Based on this approach sensitivities of the mechanical dis-
placement down to 7 pm /�Hz are demonstrated at an aver-
age incoming laser power of only 20 �W and resonant mo-
tion between 7 and 55 MHz. It is expected that this technique
facilitates detection ranging in the GHz regime. Nonlinear
characteristics of the mechanical resonator are employed to
quantitatively convert the measured signal into displacement.
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