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Universal transduction scheme for nanomechanical
systems based on dielectric forces
Quirin P. Unterreithmeier1, Eva M. Weig1 & Jörg P. Kotthaus1

Any polarizable body placed in an inhomogeneous electric field
experiences a dielectric force. This phenomenon is well known
from the macroscopic world: a water jet is deflected when
approached by a charged object. This fundamental mechanism is
exploited in a variety of contexts—for example, trapping micro-
scopic particles in an optical tweezer1, where the trapping force is
controlled via the intensity of a laser beam, or dielectrophoresis2,
where electric fields are used to manipulate particles in liquids.
Here we extend the underlying concept to the rapidly evolving
field of nanoelectromechanical systems3,4 (NEMS). A broad range
of possible applications are anticipated for these systems5,6,7, but
drive and detection schemes for nanomechanical motion still need
to be optimized8,9. Our approach is based on the application of
dielectric gradient forces for the controlled and local transduction
of NEMS. Using a set of on-chip electrodes to create an electric
field gradient, we polarize a dielectric resonator and subject it to
an attractive force that can be modulated at high frequencies. This
universal actuation scheme is efficient, broadband and scalable. It
also separates the driving scheme from the driven mechanical
element, allowing for arbitrary polarizable materials and thus
potentially ultralow dissipation NEMS10. In addition, it enables
simple voltage tuning of the mechanical resonance over a wide
frequency range, because the dielectric force depends strongly
on the resonator–electrode separation. We use the modulation of
the resonance frequency to demonstrate parametric actuation11,12.
Moreover, we reverse the actuation principle to realize dielectric
detection, thus allowing universal transduction of NEMS. We
expect this combination to be useful both in the study of
fundamental principles and in applications such as signal proces-
sing and sensing.

Common actuation mechanisms of nanomechanical resonators
can be divided into local on-chip schemes and schemes relying on
external excitation. The former are based on voltage-induced forces
such as internal piezo-electrical9,12, capacitive11, magnetomotive13,
electrothermal14 or static dipole-based dielectric15. Although highly
integrable and efficient, these schemes impose constraints on mater-
ial choice and geometry and thus mostly suffer from large dissipa-
tion16. The latter employ external actuation such as photothermal17

or inertia-based piezo-actuated schemes10, which is less restrictive on
system choice and hence advantageous in terms of dissipation3,10.
However, attaining high-frequency actuation as well as integrability
remains a challenge.

Here, we introduce a driving scheme that integrates external, yet
local actuation for arbitrary resonators, directly based on electrical
signals. It enables independent optimization of both the actuation
and the resonant element. Our mechanism relies solely on dielectric
interaction: A polarizable material experiences an attractive force in
an inhomogeneous electric field directed towards the maximum field
strength. In our case the polarizable element is a doubly clamped

silicon nitride beam, as depicted in Fig. 1a, which serves as a low-
dissipation radio-frequency (r.f.) resonator10. The inhomogeneous
field in the beam plane is created by two subjacent gold electrodes
(see inset of Fig. 1b). A static voltage Vd.c. (direct current, d.c.)
applied to the electrodes induces a strong dipolar moment in the
resonator that in turn experiences an attractive force directed
towards the electrodes. Modulating Vd.c. with an r.f. signal Vr.f. gives
rise to an oscillating force component that drives the resonator per-
pendicularly to the chip plane.

To obtain quantitative insight into the dielectric forces, we carried
out finite element simulations for the given geometry (see Fig. 1). The
black line in Fig. 1b depicts the dielectric force acting on the resonator
as a function of its distance d from the substrate. The force exhibits a
maximum at a distance that is comparable, though somewhat smaller
than our resonator–substrate separation of d < 300 nm. In addition,
the simulations can be used to extract information on the underlying
circuitry. The mutual capacitance of the electrodes is Cmutual < 1.5 fF.
Along with an impedance of R < 50V, this yields a cut-off frequency
fc 5 1/(2pRCmutual) in the terahertz regime, which goes well beyond
attainable frequencies for driven nanomechanical systems4. A simple
analytical model reproduces the simulated behaviour. As the electric
field lines in the inset of Fig. 1b show, the overall dominant field
component in the vicinity of the resonator is parallel to the surface

1Fakultät für Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany.

9 µm

35 µm

0

2

4

6

8

0

2

4

6

8

a b

200 nm

AuAu
SiO

Si

x
z

d

0 400 800

Fo
rc

e 
p

er
 u

ni
t 

le
ng

th
 (p

N
 µ

m
–1

)

Distance, d (nm)
200 600

Figure 1 | Sample geometry and force acting on the nanomechanical
resonator. a, Scanning electron micrograph of a representative device. The
high-stress silicon nitride film (green) forms the suspended doubly clamped
beam and its supports. The four nearby gold electrodes (yellow) are
connected to both a d.c. and an r.f. voltage source used to polarize and
resonantly excite the beam. b, Electrostatic force per unit length in the z
direction, perpendicular to the sample plane, versus distance d from the
electrodes for Vd.c. 5 2 V simulated by a finite element calculation (black)
and approximated by an analytical fit (red). In our experiments d is about
300 nm. The inset depicts a cross-section of the device and shows the electric
field lines obtained by the simulation. We note that the field component Ez

changes sign across the beam along the x direction, giving rise to a finite
hEz/hx, as in equation (1).
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(x direction). Therefore, the induced charge distribution on the
resonator can be approximated by a dipole oriented in the x direction
proportional to the electric field component in this direction:
px 5 xEx, with susceptibility x. The charging qi of each electrode is
described by a point charge. Neglecting the electrostatic contribution
of the influenced charges, the z component of the resulting force Fz in
this simple dipole approximation is proportional to the field gradient
along the x direction:

Fz~px
LEz

Lx
!ExEz

with E rð Þ~
X

i ~ 1, 2

qi

r { ri

r { rij j3

ð1Þ

Using the mutual distance of the electrodes jr1 2 r2j and the resonator
susceptibility x as fit parameters, the simulated results are well
approximated (see red line in Fig. 1b). Neglecting small deformations
of the resonant element by electrical forces, equation (1) predicts a
quadratic dependence on electric field, just as in the case of capacitive
actuation11. Weakly modulating the applied bias voltage therefore
gives rise to an oscillating force:

F Vd:c:zVr:f :½ �~c1 Vd:c:zVr:f :ð Þ2<c1V 2
d:c:z2c1Vd:c:Vr:f :

with c1 a constant

ð2Þ

Equation (2) shows that two independent parameters ensure optimized
actuation: while Vr.f. is employed to actuate the oscillatory motion of the
resonator, the amplitude of Vd.c. independently controls the strength of
the polarization. This striking behaviour is a distinct feature of electrical
realizations of dielectric force gradients. Optically generated gradient
forces which have recently been reported as actuation for nanomecha-
nical resonators18 do not incorporate this polarization tunability
because both polarization and actuating force result from the same laser
field. Unlike for the related concept of laser tweezers employing
polarizing quasi-static electrical fields1, the polarizing d.c. voltage allows
efficient operation even in the case of a reduced susceptibility x(v) in
the frequency regime of resonator eigenmodes.

Our experiments are performed at room temperature in a vacuum of
P , 3 3 1023 mbar to exclude gas damping. Resonators with typical
dimensions of (30–40) 3 0.2 3 0.1mm3 (length 3 width 3 height)
are fabricated from high-stress silicon nitride10 using standard litho-
graphic methods. The drive electrodes are defined by lithographic post-
processing on fully released beams, enabled by the strong tensile stress of
1.4 GPa of the silicon nitride film. Several resonators processed on
different sample chips were investigated. The results shown in this work
are representative and have been taken from three distinct resonators.

Using a standard fibre-based optical interferometer19, we detect
the out-of-plane displacement of the resonator sensitively enough to
resolve the Brownian motion of the resonator, as shown in Fig. 2a.
The fundamental resonance is described by a harmonic differential
equation, with effective mass m, spring constant k0, eigenfrequency
f0~

ffiffiffiffiffiffiffiffiffiffiffi
k0=m

p �
2p, mechanical quality factor Q and external force F.

For the investigated resonators, f0 lies between 5 and 9 MHz, while Q
ranges from 100,000 to 150,000, comparable to values reported
elsewhere10. The frequency spectrum of the thermally driven system
is Lorentzian. Its calculated amplitude20 is used as a calibration to
convert the measured optical signal into displacement. Figure 2b
displays the driven resonator amplitude versus frequency along with
a Lorentzian fit. The measured resonance amplitude (all indicated
amplitudes are half-peak-to-peak amplitudes) for an actuation with
Vd.c. 1 Vr.f. 5 1 V 6 0.2 mV is about 60.8 nm. A simple model based
on the simulated forces yields 60.3 nm when assuming a dielectric
constant of silicon nitride of 7 (the literature21 reports values between
6 and 9), which is in fair agreement. From the experimental data we
estimate that a minimal actuation voltage Vr.f. 5 65 mV is sufficient
to drive more strongly than the Brownian motion for a bandwidth of
50 Hz. With the simulated value of Cmutual < 1.5 fF this translates
into resonantly charging the electrodes by just 0.05 electrons, which

is below recently reported results9. In Fig. 2c individual power res-
ponse traces are plotted as a function of frequency on a colour scale for
a series of Vd.c. and Vr.f. 5 663mV. The corresponding resonant
amplitude is depicted in Fig. 2d. It clearly scales linearly with the
applied d.c. bias voltage, as expected from equation (2). The resonance
frequency decreases quadratically with bias voltage (see fit indicated
by solid black line in Fig. 2c). This can be readily understood from the
force dependence on the distance d (see Fig. 1b). Expanding this
dependence around the equilibrium position d0 yields:

F d0zdd½ �~F0z
LF

Ld
ddzO ddð Þ2 ð3Þ

The constant term F0 leads to a new equilibrium position and can be
ignored. However, the term linear in displacement (at the same time
quadratic in applied voltage) acts as an additional spring constant on
the resonator. It follows from Fig. 1b that this contribution is negative

for the given d < 300 nm. The resulting eigenfrequency ~ff0 therefore
shifts in leading order with the observed quadratic voltage dependence:

~ff 0~
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0{c2V 2

d:c:

m

r
<f0 1{

c2V 2
d:c:

2k0

� �

with c2 a constant

ð4Þ

Figure 3a exhibits a frequency tuning range of more than 100 kHz,
corresponding to approximately 1,000 full width at half maximum
(FWHM < 100 Hz).

Subject to strong actuation, the resonator response enters the non-
linear regime. This can be achieved for relatively small actuation
powers, which do not give rise to a significant thermal heating of the
sample (see Supplementary Information). Higher-order terms in dis-
placement display similar tuning effects22, which will be presented
elsewhere. The voltage tuning enables parametric excitation: a modu-
lation of the resonance frequency at about 2~ff0 can give rise to instability
and self-oscillation of the system even without the applied resonant
force F23,24. Figure 3b depicts the power response versus detection
frequency f near ~ff0 and r.f. frequency modulation power leading to
the modulation amplitude df (see Fig. 3a). The characteristic Arnold
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Figure 2 | Response of the dielectrically driven nanomechanical resonator.
a, Brownian motion at room temperature for Vd.c. 5 1 V without r.f.
excitation. b, Dielectrically driven oscillation with Vd.c. 1 Vr.f. 5 1 V 6 0.2 mV,
corresponding to an r.f. power of 270 dBm. The data in a and b (dots) are well
fitted by Lorentzians (red lines). The magnitude of the Brownian motion is
used to convert the measured signal into the amplitude of the resonator
displacement. c and d, Response of the resonator as a function of frequency
and d.c. bias voltage at r.f. drive Vr.f. 5 60.06 mV. In c, the power response is
logarithmically colour-coded. The resonance frequency decreases
quadratically with Vd.c. (fit shown by the black line). The resonant amplitude
of c is displayed as a function of the d.c. bias in d, reflecting the linear
dependence of the resonator polarization on d.c. bias voltage (fit shown by the
red line).
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tongue7 indicates the region of instability and self-oscillation as experi-
mental evidence of parametric actuation. In particular, when the
resonance frequency ~ff0 is modulated at exactly twice its value with

df tð Þ~df |cos 2 2p~ff 0

� �
t

� �
, theory predicts the transition to occur

when df w
~ff0=Q. For the case shown in Fig. 3a, the transition is

expected for a driving power of 225 dBm, which is in good agreement
with the data. However, we note that there is some ambiguity in
defining the onset of spontaneous oscillation11.

Reversing the actuation principle, we can also electrically detect the
motion of the resonator locally. Therefore, on a different sample, a
second pair of biased electrodes is introduced, which had previously
been shunted with the driving electrodes (see Fig. 1a). The oscillating
motion of the polarized resonator modulates the mutual capacitance
of these electrodes, thereby creating an electrical signal. To avoid cross-
talk from a resonant drive signal, the beam was parametrically excited
around 2~ff0, as discussed above. The dielectric detection scheme uses an
impedance converter near the sample and is demonstrated in Fig. 3c.
To estimate the achieved sensitivity, the response amplitudes of Fig. 3b
and c are compared when the resonator is driven 10 dB beyond the
onset of spontaneous oscillation. An amplitude of 610 nm results in
an electrical signal power of approximately 280 dBm. As the noise
level is about 2100 dBm when measuring at 50 Hz bandwidth, the
sensitivity is approximately 20 pm Hz21/2 for the unoptimized device.
An estimate of the limits of this detection scheme using a more
advanced set-up can be found in the Supplementary Information.

Although other electrical displacement sensors have obtained higher
sensitivities13,25,26, the integration with a highly efficient, material-
independent drive makes our dielectric scheme an interesting candidate
for nanomechanical transduction.

In conclusion, by taking advantage of dielectric gradient forces, we
realize and quantitatively validate a new and widely applicable actuation
and readout scheme for nanoelectromechanical systems. It is on-chip
and scalable to large arrays, broadband potentially beyond the gigahertz
regime, and imposes no restrictions on the choice of resonator material.
It thus enables the optimization of mechanical quality factors of the
resonator without being bound by specific material requirements. The
sensitivity of mechanical sensors scales with the quality factor3, so we
anticipate the scheme to be of interest in the fast-developing field of
sensing5,6. Capable of locally addressing individual resonators, it is
particularly relevant for bio-sensing, where large arrays of individually
addressable resonators are desirable to analyse multiple constituents.
Because the driven mechanical element can be fabricated separately
from the actuating capacitor, it will also permit bottom-up fabrica-
tion27. Using this actuation scheme we demonstrate strong electrical
field-effect tuning of both the resonance amplitude and frequency. This
facilitates parametric excitation of the resonator at 2f, thus allowing
decoupled detection of its oscillation at f. The large frequency tuning
range can, for example, be used for in-situ tuning of several mechanical
elements into resonance28 or coupling to external elements29. Moreover,
the combination of parametric excitation and (even weak) signal
extraction enables digital signal processing based on mechanical ele-
ments, as has recently been demonstrated for microelectromechanical
resonators12. With additional tuning, an almost ideal electromechanical
bandpass filter has been suggested7. Whereas we already achieve highly
efficient actuation, as reflected by the low driving voltages in the micro-
volt regime, the sensitivity of our detection scheme can be significantly
enhanced by, for example, using a microwave tank circuit26. This also
opens a pathway to cooling the mechanical eigenmodes26,30.

Received 31 October 2008; accepted 23 February 2009.

1. Ashkin, A. Optical trapping and manipulation of neutral particles using lasers.
Proc. Natl Acad. Sci. USA 94, 4853–4860 (1997).

2. Jones, T. B. Electromechanics of Particles (Cambridge Univ. Press, 1995).
3. Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76,

061101 (2005).
4. Huang, X. M., Zorman, C. A., Mehregany, M. & Roukes, M. L.

Nanoelectromechanical systems: Nanodevice motion at microwave frequencies.
Nature 421, 496 (2003).

5. Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for
sensing, scanned probe and very high-frequency applications. Nature
Nanotechnol. 2, 114–120 (2007).

6. Jensen, K., Kim, K. & Zettl, A. An atomic-resolution nanomechanical mass sensor.
Nature Nanotechnol. 3, 533–537 (2008).

7. Rhoads, J. F., Shaw, S. W., Turner, K. L. & Baskaran, R. Tunable
microelectromechanical filters that exploit parametric resonance. J. Vib. Acoust.
120, 423–430 (2005).

8. Ekinci, K. L. Electromechanical transducers at the nanoscale: actuation and
sensing of motion in nanoelectromechanical systems (NEMS). Small 1, 786–797
(2005).

9. Masmanidis, S. C. et al. Multifunctional nanomechanical systems via tunably
coupled piezoelectric actuation. Science 317, 780–783 (2007).

10. Verbridge, S. S., Parpia, J. M., Reichenbach, R. B., Bellan, L. M. & Craighead, H. G.
High quality factor resonance at room temperature with nanostrings under high
tensile stress. J. Appl. Phys. 99, 124304 (2006).

11. Rugar, D. & Gruetter, P. Mechanical parametric amplification and
thermomechanical noise squeezing. Phys. Rev. Lett. 67, 699–702 (1991).

12. Mahboob, I. & Yamaguchi, H. Bit storage and bit flip operations in an
electromechanical oscillator. Nature Nanotechnol. 3, 275–279 (2008).

13. Knobel, R. G. & Cleland, A. N. Nanometre-scale displacement sensing using a
single electron transistor. Nature 424, 291–293 (2003).

14. Bargatin, I., Kozinsky, I. & Roukes, M. L. Efficient electrothermal actuation of
multiple modes of high-frequency nanoelectromechanical resonators. Appl. Phys.
Lett. 90, 093116 (2007).

15. Tang, H. X., Huang, X. M. H., Roukes, M. L., Bichler, M. & Wegscheider, W. Two-
dimensional electron-gas actuation and transduction for GaAs
nanoelectromechanical systems. Appl. Phys. Lett. 81, 3879–3881 (2002).

16. Sekaric, L., Carr, D. W., Evoy, S., Parpia, J. M. & Craighead, H. G. Nanomechanical
resonant structures in silicon nitride: fabrication, operation and dissipation issues.
Sens. Actuat. A 101, 215–219 (2002).

a
20

15

10

5

0

–5

–10

–15

–20

–5

–10

–15

–20

–25

–30

–20

–40

–60

R
es

p
on

se
 (d

B
m

)

B
ia

s 
vo

lta
ge

 (V
)

R
ad

io
 fr

eq
ue

nc
y 

p
ow

er
 (d

B
m

)

–80

–100

–120

7.58 7.60 7.62 7.64
Frequency (MHz)

7.66 7.68 7.70 7.72

b c

–40

–60

R
es

p
on

se
 (d

B
m

)

–80

–100 R
es

p
on

se
 (d

B
m

)

–110

–100

–90

7.71957.7189 7.7201
Frequency (MHz)

7.53007.5285 7.5315
Frequency (MHz)
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traces are taken with increasing absolute value of d.c. bias reversing sign
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c, Interferometric versus dielectric detection. b, Interferometrically
measured power response subject to parametric actuation around 2~ff0 at
Vd.c. 5 3 V. The resonance frequency is modulated at 2f with the r.f. power
plotted on the y axis, while the detection frequency f is plotted along the x
axis. c, Power response of a parametrically excited resonator using dielectric
detection at Vd.c. 5 20 V. As in b, the resonator was driven by a frequency
modulation at twice the detection frequency as a function of modulation
power and detection frequency. The response reproduces the
interferometrically measured data from b, even though a sample with a
different electrical environment was used.
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