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Abstract. We present a novel method for opto-mechanical cooling of
subwavelength-sized nanomechanical resonators. Our scheme uses a high-
finesse Fabry–Perot cavity of small mode volume, within which the nano-
resonator acts as a position-dependent perturbation by scattering. In return,
the back-action induced by the cavity affects the nanoresonator dynamics and
can cool its fluctuations. We investigate such cavity cooling by scattering for a
nanorod structure and predict that ground-state cooling is within reach.

Quantum mechanics describes the behavior of matter on different length scales from quarks to
collective macroscopic states referring to superconductivity and superfluidity. Still, in order
to clarify its transition between microscopic and macroscopic range, several experimental
programs aim at observing quantum phenomena at larger scales [1]–[3]. In this respect, reaching
experimentally the quantum ground state of a macroscopic mechanical resonator is appealing,
as it would at the same time allow the study in a quantum regime of a system with a macroscopic
mass, the paradigm of gravitational interactions [4].

Experiments using state-of-the-art cryogeny and capacitive detection techniques
have already approached closely the quantum regime for mechanical oscillators with
eigenfrequencies ranging from 10 MHz to 1 GHz [5, 6]. The recent development of optical
cooling techniques, either active [7]–[9] or passive [10]–[15], creates hope for reaching this
regime beyond the possibilities offered by nowadays cryogenic methods. In optical cooling, the
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Figure 1. A nanomechanical resonator scattering photons in a high-finesse
Fabry–Perot cavity, resonantly coupled to a laser on its left-hand side.

low-noise photons of a laser source are used for extracting thermal energy from the mechanical
oscillator and offer at the same time an extremely sensitive tool for reading its mechanical
fluctuations [16]. The passive cooling technique notably [10]–[15], also called self-cooling
technique, is analogous to Doppler or cavity cooling of atoms [17]–[21] and avoids adding
technical noise in the mechanical system. It is therefore expected to reach in principle physical
fundamental limits. This technique relies on the intrinsic back-action of light on mechanical
degrees of freedom in opto-mechanical systems where photothermal pressure or radiation
pressure effects can arise [22]. It has already been used for cooling different kinds of mechanical
resonators, ranging from millimetric mirrors [11, 12] to atomic force microscopy (AFM)
microlever mirrors [10], toroid microcavities [13] and wavelength-sized micro-mirrors [14]. In
all these cases, the mechanical resonator to be cooled must confine the light in an optical cavity
and has therefore to be larger than the wavelength of photons. In this paper, we describe a novel
method for cooling optically and passively the motion of a nanomechanical resonator smaller
than the wavelength of photons. Nanomechanical resonators have recently been capacitively
cooled by coupling them to a mesoscopic conductor [23]. Our proposal, using back-action in a
situation of intense coupling between optics and nanomechanics, breaks the diffraction barrier
limit met in standard optomechanical devices and allows the investigation by optical means of
quantum phenomena in nanomechanical systems [24].

The principle for achieving cooling is the following: the nanomechanical resonator fluc-
tuates under Brownian motion with a noise distribution peak at its lowest eigenfrequency f0.
When placed in the mode of a high-finesse Fabry–Perot cavity at resonance with a laser of
wavelength λ, it scatters the cavity photons, as depicted in figure 1. Because photons circulate
several times back and forth in the cavity, they need a finite time τ to reach a new equilibrium
after each scattering event. This induces a delay in their back-action on the motion of the
resonator through radiation pressure or dipolar forces. Exploiting this retarded back-action,
we show here that additional optically induced viscous damping is obtained, resulting in a net
cooling of the nanoresonator vibrational fluctuations. Photons leaving the cavity carry away the
excess energy.

Cavity cooling of atoms has already been explored, exploiting a detuning of the cavity
induced by the dispersive response of an atom moving in the cavity [18]–[20]. Aiming here
at cooling a solid-state nanomechanical object, we strongly deviate from this atomic case.
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Loss mechanisms typical for solid-state systems, such as exciton or polariton absorption
resonances, interband and intraband absorption, or even Rayleigh scattering out of the cavity
call for a novel approach including both the absorptive and dispersive optical response of the
nanomechanical scatterer placed in the cavity. The problem of a scattering atom or quantum
dot placed in a focused Gaussian beam in the paraxial limit has been shown to be nearly
equivalent to that of a thin plane of conductivity σ at optical frequencies placed in a plane
wave [25]–[27]. Indeed, a focused laser beam travels beyond the focal plane and at a distance
much greater than its Rayleigh length zr like a quasi-spherical wave with a Gaussian angular
distribution of the intensity. A point dipole emits in the far field like a quasi-spherical wave
as well with a square of cosθ pattern which is not much different from the Gaussian case
for small angles to the optical axis. A homogeneous distribution of point dipoles illuminated
by a diffraction-limited focused laser beam will re-emit as well at distance � zr like a quasi-
spherical wave with a Gaussian angular distribution of the intensity. Therefore, for a plane
detector placed at a distance � zr , the laser light coming from a single point scatterer or
two-dimensional scattering plane illuminated by a diffraction-limited focused laser appears
to originate from the same point. All the cases lead to a superposition of spherical waves,
and the phase and intensity contrast between the excited field and the scattered field can
be computed effectively as if the laser illuminated a homogeneous two-dimensional plane
of scatterers or, equivalently, as if the laser illuminated an effective point scatterer with a
stronger oscillator strength. In the present paper, we focus on a needle-shaped scattering
nanomechanical resonator. A needle illuminated by a diffraction-limited focused laser beam is
the exact intermediate case between the point dipole and the homogeneous scattering plane [28].
The needle is made up of a sum of point dipoles within the diffraction-limited focused spot.
As in previous cases, the needle re-emits a spherical wave by Rayleigh scattering. The difference
is the angular distribution of the intensity in a plane that contains the needle and in the plane
perpendicular to it. So the scattering is effectively similar to the re-emission of an anisotropic
two-dimensional homogeneous plane illuminated by a diffraction-limited focused laser field.
After selecting one principal axis of this plane, we can hence model the nanoscatterer as a thin
plane of transmittance 1/(1 + 6) and reflectance −6/(1 + 6), where 6 consists of a real and of
an imaginary part 6 = 61 + i62, and where 6 = σ/2ε0c. The prescription to determine 61 and
62 relies on a simple measurement of the reflectance and the transmittance of the nanoscatterer
in a focused Gaussian beam of size matching the cavity mode. The field amplitude distribution
in the cavity perturbed by the nanoscatterer is then computed using a system of transfer matrixes
for plane waves [25].

In an empty Fabry–Perot cavity with mirrors of high reflectance r , a laser coupled
resonantly creates a steady-state intensity distribution at position x0 along the optical axis that
can be approximated with P(x0) = 2g P0 sin2(kx0) (figure 1), where P0 is the optical power
impinging on the cavity, k = (2π/λ) the wave number and g the cavity-amplification factor,
which relates to the cavity finesse f such that g = (2 f )/π ' 2/(1 − |r |

2). The nanoresonator
is first placed at a position x0 along this intensity distribution. The cavity is then tuned to its
maximum transmission by adjusting the back mirror position, leading to a transmission T (x0) =

1/[1 + 61(1 + 2gsin2(kx0))]2. The cavity is thereafter actively stabilized on this resonance to
enhance the interaction of photons with the nanoresonator, as well as to reduce the contribution
of the laser noise to the noise of the transmitted photons. At finite temperature, the scatterer
fluctuates around x0 with a small amplitude x such that kx � 1, leading to a fluctuation of the
transmission T (x0, x) for fixed cavity mirrors which can be written after a straightforward but
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cumbersome calculation

T (x0, x) = 1/[H1(x0, x) + H2(x0, x)] (1)

with

H1(x0, x) = [1 + 61(1 + 2g sin2(kx0)) + 2g61 sin(2kx0)kx]2 (2)

and H2(x0, x) = 4g262
2sin2(kx0)(k2x2). The transmission fluctuation enables readout of the

nanomechanical resonator motion linear in x , provided 61 is nonzero. The purely dispersive
effects relating to 62 contribute only to a nonlinear response in x2. Loss mechanisms, for
instance, escape of photons out of the cavity or absorption by the nanoscatterer, are therefore
mandatory for an efficient readout of the nanomechanical motion fluctuation. The location along
axis x0 of maximum sensitivity for this read-out (i.e. the extremum of dT/dx) depends on the
factor g61, which is the ratio between the nanoresonator-induced losses and the intrinsic losses
of the cavity.

The essence of passive cooling relies on a delayed response of the back-action force
F acting on the mechanical system, here the nanoresonator. Neglecting photon fluctuations,
the effective temperature Teff reached by cooling can be written as Teff = Tb(0/0eff), where
0eff is the optically modified damping rate of the nanomechanical resonator, 0 being its
natural damping and Tb the bath temperature. 0eff is in a classical limit given by [10] 0eff =

0[1 + Qm(ω0τ/(1 + ω2
0τ

2))∇F/K ], where the gradient of the force upon nanoresonator motion
dF(x0, x)/dx is denoted ∇F , Qm = ω0/0 is the mechanical quality factor of the nanoresonator,
ω0 = 2π f0 its eigenfrequency, K its spring constant and τ the delay time of the force. In an
empty cavity at resonance with transmission T0, the delay time of photon pressure on the mirrors
is given by the empty cavity storage time τc = gτ0, where τ0 is the time-of-flight of photons
through the cavity. When the nanoresonator is placed at a position x0 in the cavity and the
cavity held on resonance with an average transmission T (x0), the storage time is modified
to τ = τc

√
T (x0)/T0. We will study cases where the variation of the storage time over the

nanoresonator position fluctuations is negligible.
The optical force F0 acting on the nanoresonator when placed at the waist of a forward-

propagating Gaussian wave of power P0 matched to the geometry of the cavity mode can be
obtained by calculating the transmission and reflection by the nanoscatterer and relating the
corresponding Poynting vectors to a net photon momentum transfer to the nanoscatterer F0 =

(261 + 262
2 − 262

1)P0/c. At first order, this force is proportional to 61 and relies then on loss
mechanisms. In our cavity scheme, the nanoscatterer is placed at x0 and the cavity maintained
at resonance. In this configuration, a calculation of the energy-flow imbalance between the
waves traveling forwards and backward on both sides of the fluctuating nanoresonator leads,
by considering the corresponding momentum transfer to the nanoresonator, to the expression of
the static photon-induced force F(x0, x) acting on it

F = (P0/c)[G1 + G2]T

where

G1 = 261[2g61 sin2(k(x0 + x)) + 61

√
2g sin(k(x0 + x)) cos(k(x0 + x)) + (1 + 61)],

and

G2 = 4g62
2 sin2(k(x0 + x)) − 2g62 sin(2k(x0 + x)) − 262

√
2g cos(2k(x0 + x))

+2
√

2g62
2 sin(2k(x0 + x)) + 262

2 .
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Figure 2. Case: g61 = 10, with g = 2 × 104 and 61 = 5 × 10−4. Lower panel:
transmission of the cavity T (x0) and optical force F for zero motion fluctuation
of the nanoresonator (x = 0). Centre panel: amplitude snap-shot of the standing
wave in the corresponding empty cavity. Upper panel: gradient of the force and
of the transmission upon the nanoresonator fluctuation x , as a function of its
average position x0.

We will focus on situations where scattering of photons by the nanoresonator is small
(61, 62 � 1) and the finesse of the cavity large (g � 1).

We first study the case where dispersive scattering is very weak (62 ' 0) and losses
induced by the presence of the nanoresonator dominate other optical losses in the cavity
g61 � 1. Figure 2 displays the case g61 = 10, with g = 2 × 104 and 61 = 5 × 10−4. In this
so-called lossy limit, we see in figure 2 that the force F always points along the incoming
photons, which is a reminder of the broken symmetry of the system induced by the presence
of the laser source on the left-hand side of the cavity. The amplitude of the force is at the most
equal to F0, the force without cavity. The cavity does not amplify the force but provides it with
a gradient over x and a retardation. As a first numerical illustration, we consider the case of a
cylindrical single-wall carbon nanotube of radius r = 0.8 nm and length l = 5 µm oscillating
at f0 = 205 kHz according to the formula f0 = 0.281(r/ l2)

√
E/ρ [29] (Young’s modulus

E = 1 TPa and density ρ = 1.925 g cm−3 for a single-wall nanotube) with a spring constant K =

7.7 × 10−9 N m−1 according to K = (3π/4)Er 4 l−3, a mechanical quality factor Qm = 103 [30]
and 61 = 5 × 10−4 placed in a cavity of g = 2 × 104 [31] at a position of maximum (dF/dx) as
indicated in figure 2. For a cavity of 50 µm length illuminated with P0 = 1 mW of laser power
at λ = 780 nm, this would lead to 0eff ' 0(1 ± 47). When 0eff < 0, a regime of mechanical self-
oscillation is reached [32] but governed here by a purely lossy mechanism in the optical force, in
contrast to recently developed optical back-action schemes for mechanical resonators [10]–[15].
In a second numerical illustration, we consider a cylindrical diamond nanorod (E = 1.14 TPa
and ρ = 3.52 g cm−3) of radius r = 4 nm, length l = 0.5 µm, K = 5 × 10−3N m−1 oscillating
at 81 MHz with Qm = 104 [33]. The cavity-induced modification of the damping becomes
0eff/0 ' (1 ± 7 × 10−2), namely negligible. Still, the interest of using such a stiff nanostructure
will appear in the following section.
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Figure 3. Case: g = 2 × 104, 61 = 10−5 and 62 = 5 × 10−4. The optical modi-
fication of the nanoresonator damping can be described in a thermodynamical
manner following the cycles in the lower part of the figure. The nanoscatterer
moves suddenly from point A to point B, leaving no time for the intensity distri-
bution in the cavity and hence the force to follow. Waiting long enough from B to
C allows the force to slowly recover its equilibrium level. Closing back the cycle
leads to a hysteresis which is characteristic of an irreversible energy transfer and
produces a net viscous force on the nanoresonator, which can damp or amplify
the motion [10, 22].

We now study the contribution of dispersive effects related to 62. Figure 3 displays the
optical force F acting on the nanoresonator when g = 2 × 104 and 62 = 5 × 10−4. Using a non-
vanishing 61 = 10−5

� 62 allows for a readout of x in the transmission. The force can now
be made positive or negative, mimicking dipolar forces. Its direction depends on the energy
transfer between the two optical resonators formed on the left-hand side of the cavity by the
input mirror and the nanoscatterer, and on the right-hand side by the nanoscatterer and the back
mirror. Interestingly enough, and in contrast to the purely lossy case, F here is amplified by the
cavity. The cavity’s role is to provide as before a force gradient, a retardation, but on top of that
an amplification of the force. This threefold advantage is apparent in the following numerical
illustration. We consider the same carbon nanotube as previously and find that the maximum
damping amplification factor becomes 0eff/0 = 4.7 × 105, four orders of magnitude larger than
in the lossy case. At the same time, an optical spring effect occurs, modifying the effective spring
constant to Keff = K [1 − (1/(1 + ω2

0τ
2))∇F/K ] and preventing efficient cooling by driving the

nanotube into an instability regime already at moderate power [34]. The cooling is practically
limited to a temperature Teff/T = 0.2. In contrast, the diamond nanorod is stiff enough to
preclude early appearance of instabilities, allowing a temperature-reduction factor of 700 to
be reached under the same experimental conditions. Starting from a standard liquid helium bath
environment at 1.8 K and neglecting photon fluctuations, the cooling mechanism would bring
the motion of the diamond nanorod to an effective temperature of 2.5 mK, at which the quantum
limit is reached.
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The study of small-sized nanoresonators, such as carbon nanotubes or diamond nanorods,
then appears extremely appealing for investigation of optomechanical phenomena at the
nanoscale. However, we should note that reducing the size of the nanoresonator may also lead to
a reduction of |6| and hence of the force F . The advantage of using a solid-state system is then
apparent since it allows a wide variation of 61 and 62, by choosing the photons’ wavelength or
the material of the nanoscatterer, and hence a direct engineering of the cooling efficiency. Using
an excitonic resonance in a carbon nanotube [35] or an implanted nitrogen-vacancy impurity
resonance in diamond [36], for instance, would allow amplification of both the absorptive
and the dispersive responses, with a controllable ratio between the two. The high aspect ratio
of nanorods offers additionally the possibility of a selective coupling to distinct polarization
modes of the cavity and hence a supplementary degree of freedom in the optimization of
cooling. Together with the reduction of the number of phonon channels eventually coupling
the nanoresonator to the thermal bath, it makes nanorod structures very promising candidates
for studying optically mechanical quantum phenomena at the nano–microscale.

In conclusion, we have studied an optical cavity-cooling scheme of a nanomechanical
resonator scattering photons within a high finesse Fabry–Perot cavity. This geometry, on top of
allowing the use of subwavelength-sized objects, offers the possibility of engineering separately
ultra-high-finesse cavities on the one hand and high-quality factor mechanical resonators on the
other, an issue usually limiting opto-mechanical cooling experiments. Cavity-cooling in a purely
dispersive limit and in a detuned cavity was discussed for atoms and molecules [18]–[20] and
very recently for a macroscopic membrane [37, 38]. Our scheme relies here on a tuned cavity
and in contrast to molecules or atoms, the nanoresonator is attached to a holder and cannot
escape out of the cavity, offering the possibility of setting the motion of the nanoresonator
into self-oscillation [32]. The onset of nonlinear opto-mechanical behavior in this new situation
of intense coupling between nanomechanics and optics will require a more complete theory,
as developed in [39] for studying multi-stabilities in Fabry–Perot cavities. Optical control of
vibration properties of nanomechanical systems would open new routes, not only for sensing
applications, but also for testing the quantum mechanical description of tiny objects.
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