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A laser beam directed at a mirror attached onto a flexible mount adds friction to its mechanical motion
by the Doppler effect. For a normal mirror the efficiency of this radiative Doppler friction is very weak and
practically masked by laser shot noise. We find that it can become very efficient using a photonic crystal
mirror near its photonic band gaps. As an example, a Bragg mirror used at the long wavelength edge of its
band stop can be efficiently optically cooled using the Doppler friction. The opposite effect opens new
routes for optical pumping of mechanical systems: a laser pointing at a Bragg mirror and tuned at its short
wavelength edge induces amplification of the vibrational excitation of the mirror leading eventually to its
self-oscillation. These new effects rely on the strong dependency of a photonic crystal reflectivity on the
wavelength.
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In a visionary paper of 1967, Braginski and Manukin [1]
predicted that a mirror in motion relative to a light source
would not only be subjected to radiation pressure but
would also experience a less-known force opposing its
velocity, namely, radiative viscous friction [2]. This veloc-
ity dependent force is due to the Doppler effect and to
illustrate it they imagined a perfectly reflecting mirror
attached to a lossless spring oscillating back and forth
facing a light source of constant illumination power P0.
They found that the mechanical oscillations of the mirror-
spring system would damp dissipatively at a rate 2P0=mc2.
Practically, however, this damping rate is exceedingly
small even for the smallest diffraction-limited sized mir-
rors of mass m in the range of 10�15 kg [3] and it is not
surprising that such a fundamental radiative damping has
not yet been detected.

However, a point missed so far in the literature is that
radiative damping is necessarily accompanied by funda-
mental fluctuations in radiative pressure due to the pho-
ton’s statistical fluctuations [4]. So in reality two effects
oppose each other. The larger the laser power, the larger the
Doppler damping of the mirror oscillations but at the same
time the larger the mirror fluctuations. In this work we
determine that an equilibrium between damping and fluc-
tuation is theoretically but impractically obtained at infi-
nite laser power. In such an equilibrium we find that the
mirror-spring mechanical oscillator fluctuates at an effec-
tive Brownian temperature of h�=2kB, which would be
typically few thousands of kelvin for a photon frequency
� in the visible or near-infrared range. In fact, even using a
powerful shot noise limited laser source, Doppler friction
is practically not detectable even for a perfect mirror with
near unit reflectivity and this unless 2P0=mc

2 approaches
the natural damping rate of the spring. Even for the small-
est mirrors masses m of 10�15 kg and a record-low spring
mechanical damping rate of 1 Hz, such a condition would

necessitate laser fluences of 200 MW=cm2, a power den-
sity that would destroy even the best highly reflecting
mirrors. In this work we show that by using a photonic
crystal in place of the mirror and exploiting the very strong
wavelength dependency of the reflectivity near its photonic
band gaps, the radiative friction is not only amplified up to
5 orders of magnitude but it can also have its sign reversed
to become a negative radiative damping. In this context, a
negative damping is to be understood as a source of me-
chanical energy extracted from light that feeds the oscillat-
ing photonic crystal opposing in this way the natural
damping of the spring. This work provides a method
used to reveal the elusive fundamental Doppler friction
of a moving mirror as well as a way of finding out if a
negative Doppler friction can be measured.

A laser beam at wavelength � and power P illuminates
the mirror of reflectivity R��� as schematized in Fig. 1. The

FIG. 1. (a) Schematics of a mirror of reflectivity R��� and
mass m mechanically attached and thermally anchored to a
spring of rigidity K. The friction mechanisms internal to the
spring are responsible for losses of mechanical energy at a rate �.
A laser of power P is directed at the mirror from the left.
(b) Schematics of the reflectivity wavelength dependency of a
Bragg mirror. The gradients of R are maximized at the edges �B
and �R of the mirror band stop.
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radiation pressure acting on a moving mirror varies in
proportion to the Doppler shift. We show here that because
of this dynamic, the Brownian fluctuation of the suspended
mirror loses its energy to the electromagnetic field. We find
that the efficiency of Doppler cooling can be much in-
creased using a mirror with a large and negative gradient of
R���. We also show that an amplification of the vibrational
excitation can be reached for positive large enough gra-
dient of R���. Large gradients of reflectivity are found at
the edges of the band stop of a Bragg mirror or more
generally near the photonic band gaps of a photonic
crystal.

The movable mirror of mass m is subject to a force Fph

due to radiation pressure. Its position x and velocity v of
the center of mass of the mirror obey Newton’s equation of
motion, namely, m�dv=dt� �m�v� Kx � Fph � Fth.
The Langevin force Fth is introduced here in order to
account for the Brownian fluctuation of the center mass
of the mirror coupled to a thermal bath at temperature T.
The damping rate � of the mirror mechanical fluctuation is
a factor characteristic of the spring holding the mirror. The
momentum transferred to the mirror per photon is given by
@�k0 � kR�. Here the incoming photons have their wave
vector k0 � 2�=� and the reflected ones have kR oriented
in the opposite direction. In the reference frame of the
laboratory, when the mirror moves away from the light
source, the reflected photons have their momentum re-
duced by Doppler effect such that kR � �k0�1� 2v=c�.
The radiation pressure is given by the rate of photon
momentum transfer to the mirror and is also reduced by
Doppler effect such that Fph � RdN=dt@�k0 � kR�, where
dN=dt is the number of impinging photons per unit time.
The dependency of the radiation pressure on v is Fph �

2R�dN=dt�@k0�1� v=c�, and by making use of the laser
power P � @k0c�dN=dt� it is also Fph � �2RP=c��
�1� v=c�. In addition, when the mirror reflectivity is a
function of �, as in the case for a Bragg mirror operated
near its band-stop edge, R also depends on the mirror
velocity through the Doppler effect. In this case, we expand
R���v=c�� in the experimentally relevant limit of v=c	
1. To the first order in k, the reflectivity is R�v=c� ’ R0 �
�v=c���dR=d��, so in the same way, to the first order in
v=c the radiation pressure is Fph ’ �2R0P=c��1� v=c�
�v=c���=R0��dR=d���. Using this expression in the equa-
tion of motion and grouping the velocity terms together we
obtain an effective Newton equation of motion
m�dv=dt� �m�effv� Kx � Fph;0 � Fth with a constant
radiation pressure Fph;0 � 2R0P=c and a Doppler modified
damping rate

 �eff=� � 1� �2R0P=mc2���1� ��=R0��dR=d���: (1)

The constant force Fph;0 only shifts the average position
of the center of mass and will be ignored in solving the
effective equation of motion. For dR=d� 
 0, the optical
contribution to the effective dissipation term �eff takes

energy away from the mechanical Brownian fluctuation
and turns it irreversibly into electromagnetic energy
through the Doppler effect. This amounts to cooling of
the Brownian fluctuations of the mirror. We now determine
the temperature of the vibrational motion of the mirror. For
a harmonic oscillator the equipartition theorem links the
temperature to the time averaged amplitude hxx�i of the
Brownian fluctuation, namely, �1=2�kBTeff � �1=2�Khxx�i.
In experimental conditions it is not the temporal depen-
dency x�t� but rather its spectral distribution x! that is
typically measured. The spectrum x! is in fact a Fourier
transform of x�t�. A mathematically convenient property of
Fourier transformation is that the time averaged value
hx�t�x��t�i term equals the frequency averaged value
hx!x

�
!i. In Fourier space Newton’s effective equation is

��m!2 � im�eff!� K�x! � Fth;!, from which we ob-
tain the spectrum x! � �Fth;!=m�=��!2 � i�eff!�
K=m�. Here, for a nonabsorbing mirror, the spectral de-
composition Fth;! of the thermal fluctuation driving force
does not depend on the light and is evaluated from the
situation in the dark. A reasonable guess about the nature
of the driving force Fth;! is that there is no preferred
frequency for the thermal fluctuations in the range of the
mirror mechanical vibrational frequencies. This is reason-
able at a vibrational mechanical frequency much lower
compared to typical phonon frequencies with high density
of phonon modes within the mirror material (THz). Within
this approximation we assume the spectral power density
Sth of thermal excitation of the mirror to be frequency
independent, such that for any given frequency window
d! the amplitude of the thermal driving force obeys
Fth;!F

�
th;! � Sthd!. Using the expression of x! given

above we obtain after some algebra �1=2�Khx!x�!i �
�Sth=�4m�eff�. The left-hand side of this equation is
�1=2�kBTeff under the assumption of equipartition and we
end up with �1=2�kBTeff � �Sth=�4m�eff�. Since the spec-
tral power density Sth is not light dependent, in the dark we
also have 1=2kBT � �Sth=�4m��. Comparing both expres-
sions we obtain T=Teff � �eff=�, showing that an increase
in �eff leads to cooling [5,6]. This conclusion is premature
because thus far we have ignored the effect of photon shot
noise. For a given laser intensity we need to include the
fundamental shot noise power fluctuation that induces a
corresponding shot noise in the radiation pressure and
hence drives an additional vibrational fluctuation or an
added vibrational temperature. This added fluctuation
could counteract the Doppler cooling. This fluctuation
force Fshot is very much analogous to Fth, but is propor-
tional to the square root of the laser power. Here
Fshot;!F

�
shot;! � Sshotd! with a frequency independent

power density Sshot � �2R0=c�2�Ph��=2�, where h� is
the photon energy. Assuming no correlation between the
Brownian and shot noise, we obtain the new prescription
�1=2�KTeff � ��Sth � Sshot�=�4m�eff� leading to the ex-
pression for the effective vibrational temperature:
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 Teff � �T � pTphot�=�1� p�1� rR��; (2)

where we defined (i) the unitless reduced laser power p �
2R0P=�mc2��, (ii) the reflectivity gradient rR �
��=R0��dR=d��, and (iii) an effective photon temperature
kBTphot � R0h�=2. The power dependent term in the de-
nominator originates from the Doppler effect while the one
in the numerator is due to the photon shot noise. We see
that for a mirror with a constant reflectivity dR=d� � 0,
the Doppler effect tends to lower the effective temperature
while the shot noise terms increase it. For such a mirror, the
condition Teff < T, namely for cooling, is only possible
when Tphot < T or R0h�=2< kBT. For visible or near-
infrared photons and for high reflectivity mirrors R0 � 1,
this condition cannot be satisfied at room temperature. For
a mirror with a large and negative reflectivity gradient,
however, such that rR< 0, Doppler cooling of the vibra-
tional mode becomes possible when Tphot=�1� rR�< T
or R0h�=�2�1� rR��< kBT. This gives a stringent con-
dition for the reflectivity gradient. At room temperature
using 1 eV photons on a mirror with R0 � 0:5, namely for
Tphot � 2900 K, the condition on the reflectivity gradient
would be�rR> 8:7. Experimentally this can be obtained
using a Bragg reflector and a photon wavelength tuned at
the higher wavelength edge of the band stop of the reflec-
tivity [Fig. 1(b)]. Values as high and negative as ��=R0��
�dR=d�� � �105 are in fact within experimental reach in
the visible and near-infrared [7]. Doppler cooling saturates
using large enough laser power at Tmin � Tphot=�1� rR�.
With the numerical example above this would be 29 mK.

Another interesting aspect of Bragg mirrors is that they
also offer the opportunity to set the gradient rR positive
enough to reach �eff 
 0 in Eq. (1). In this regime the
mirror gains energy and starts to self-oscillate under the
illumination of a cw laser. It enters possibly in a regime of
nonlinear dynamics similar to the one predicted by
Marquardt and co-workers [8] for deformable Fabry-
Perot cavities and observed for instance in microtoroid
cavities [9]. This effect would be interesting to demon-
strate in this context of a cavityless system. The gain
condition implies using a laser power large enough so
that P=�>mc2=�2R0�rR� 1��. The energy term P=�
represents the laser power averaged over a mechanical
relaxation time constant 1=�. This energy is compared to
mc2, the relativistic energy of the mirror, so we anticipate
already the Doppler induced optomechanics might be very
weak for macroscopic mirrors. We recently prepared a gold
mirror (dR=d�� 0) mounted on a silicon nanolever [3]
with a mass in the 10�15 kg range. For such a mirror and
for R0 � 0:5, the condition for self-oscillation would be
reached when P=�> 90=�rR� 1�. Using a damping rate
�� 10 sec�1 and rR� 105, this would imply using laser
power of 90 mW in order to enter a regime of self-
oscillation. In order to increase the Doppler effect we see
from Eq. (2) that one needs to decrease the mass m. For a

Bragg mirror, this can only be done within bounds because
photons probe the material periodicity within a finite pene-
tration depth. The mass cannot arbitrarily be reduced by
thinning the material; at some point the reflectivity and its
gradient will degrade. Also, the lateral dimensions of the
reflector cannot be reduced much less than the diffraction
limit [3]. In the visible range we anticipate that the smallest
masses would be in the 10�15 kg range.

Now we compare the strength of Doppler cooling with
cavity cooling established in Refs. [5,6,10,11]. A Fabry-
Perot cavity of length L separating the mirrors and finesse
F > 1 stores electromagnetic energy with a typical ring-
down time constant �� �F=���0, where �0 � L=c is the
photon time of flight across the cavity. � is the typical time
the cavity needs to build or lose energy upon a sudden
change in laser power or in mirror separation. The photon
pressure acting on the mirrors is proportional to the stored
power so that the force acting on the mirror near a cavity
resonance is not only enhanced by the cavity but also
retarded with respect to the mirror separation fluctuation.
Retarded terms amount to velocity dependent force terms
similarly to the Doppler effect discussed above. For a
cavity with at least one of the two mirrors mounted on a
spring, this retarded effect induces an optical modification
of the mechanical damping rate and consequently a modi-
fication of the vibrational temperature in the same way
developed above. In order to cool the vibrational fluctua-
tions of the mirror, it is necessary to detune slightly the
laser wavelength to the red with respect to the cavity
resonance [5,6,10–15]. Optimum detuning �fL=�g is ob-
tained on the maximum slope of the dependency of elec-
tromagnetic energy stored in the cavity with respect to
wavelength or mirror separation. This is the case when
�fL=�g � �1=�g

���

3
p
�. The reverse effect, namely optome-

chanical excitation, is obtained for blue detuning. We
establish the extremal effective temperatures

 Teff ’ �T � pgTphot�=�1 p�L=��g
3=�g2!2

0�
2
0 � 1��;

(3)

where g � 2F=� is proportional to the cavity finesse F.
The sign depends on the side of the detuning with respect
to a cavity resonance. For a given vibrational frequency
!0 � �K=m�

1=2 it turns out that optimal cooling (or pump-
ing) is obtained at the condition !0�� 1.

In expressing Eq. (3) we made the reduced power p �
2R0P=mc2� appear explicitly in order to make a direct
comparison with Doppler cooling. The term in the denomi-
nator is usually much larger than unity and we see that
cooling efficiency using cavity effects can be made
stronger by a factor as large as g3�L=�� than Doppler
cooling. Already for a finesse as low as g � 10 and for a
length L � 20 000�, the cavity cooling can be made 107

more efficient than direct Doppler cooling and this consid-
ering equal mirror masses, laser powers, and damping
rates. The use of large finesses allows a significant ampli-
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fication of laser cooling but at the same time imposes that
the moving mirror be part of a Fabry-Perot cavity and this
is not always convenient. We stress however the fact that
all semiclassical models derived thus far do not include
directly the Doppler effect. In this framework, while mim-
icking it, cavity cooling cannot be interpreted as Doppler
cooling. For completeness we introduced Doppler effect in
our formalism of cavity cooling and found that it gives rise
to corrections to the cooling efficiency that are small for
cavity finesses g� 1 [16]. Interestingly enough, we
should also note that in the Hamiltonian approach devel-
oped by Law [17] to describe the mirror-cavity field inter-
action, the Doppler effect is automatically taken into
account as a result of momentum conservation in the
system. Using a similar approach in the case of a single
mirror under laser illumination would help to provide a
comparison between Doppler and cavity cooling in a quan-
tum framework.

We finish this Letter on an estimation of the cooling
power involved with Doppler effect.

In the dark, the mechanical fluctuation dissipates its
thermal energy kBT=2 per mechanical degree of freedom
and this at a rate �. The dissipated power is therefore
�kBT=2�� and is in equilibrium with the power that feeds
the fluctuation. When the mirror reflects the laser light, the
effective vibrational mode end temperature is Teff . When
the vibrational mode is cooled down to a temperature Teff ,
the steady state heat load in the mirror is �kBTeff=2��.
Consequently, in order to maintain a temperature Teff , the
optical cooling extracts energy from the fluctuations of the
mirror position at a rate Pcool � kB�T � Teff��=2, which is
always smaller than kBT�=2. So the maximum cooling
power is kBT�=2 both for Doppler and cavity cooling.
This is in the range of 10�18 W at room temperature for
� in the 103 sec�1 range. This might appear as a very weak
cooling power, but it can be efficient enough to cool the
lowest energy vibrational modes of an elastically sus-
pended mirror since such modes are generally weakly
coupled to the thermal bath.

In conclusion, we presented a simple formalism for laser
Doppler cooling of the center mass fluctuation of a mirror
attached to a spring. This effect is very weak but can
become sizable when the mirror reflectivity is made to
depend strongly on the photon wavelength. We also
showed that effective temperature obtained through cavity
cooling, in a formalism that does not include Doppler
effect, mimics direct Doppler cooling but with a cavity
amplification factor which is proportional to the third
power of the cavity finesse and can easily reach 10 orders
of magnitude. The reciprocal effect of Doppler cooling,
namely Doppler optical pumping of the mirror motion, was
also predicted. Interestingly enough, we showed that the

use of an appropriate Bragg mirror should allow overcom-
ing the shot noise limit and use directly the Doppler effect
to set the mirror motion into self-oscillation. This could
provide a very simple and noninvasive method to optically
pump the motion of tiny mechanical resonators used in
high sensitivity force detection.
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Aspelmeyer, and A. Zeilinger, Nature (London) 444, 67
(2006).

[12] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin,
Phys. Rev. Lett. 99, 093902 (2007).

[13] I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J.
Kippenberg, Phys. Rev. Lett. 99, 093901 (2007).

[14] C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M.
Aspelmeyer, Phys. Rev. A 77, 033804 (2008).

[15] A. Dantan, C. Genes, D. Vitali, and M. Pinard, Phys. Rev.
A 77, 011804 (2008).

[16] C. Metzger, I. Favero, and K. Karrai (to be published).
[17] C. K. Law, Phys. Rev. A 51, 2537 (1995).

PRL 100, 240801 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
20 JUNE 2008

240801-4


