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Abstract—We propose a method to detect and track multiple
moving biological spot-like particles showing different kinds of dy-
namics in image sequences acquired through multidimensional flu-
orescence microscopy. It enables the extraction and analysis of in-
formation such as number, position, speed, movement, and diffu-
sion phases of, e.g., endosomal particles. The method consists of
several stages. After a detection stage performed by a three-di-
mensional (3-D) undecimated wavelet transform, we compute, for
each detected spot, several predictions of its future state in the
next frame. This is accomplished thanks to an interacting mul-
tiple model (IMM) algorithm which includes several models corre-
sponding to different biologically realistic movement types. Tracks
are constructed, thereafter, by a data association algorithm based
on the maximization of the likelihood of each IMM. The last stage
consists of updating the IMM filters in order to compute final es-
timations for the present image and to improve predictions for the
next image. The performances of the method are validated on syn-
thetic image data and used to characterize the 3-D movement of
endocytic vesicles containing quantum dots.

Index Terms—Bayesian filtering, cell biology, data association,
microscopy, multiple particle tracking, quantum dots.

I. INTRODUCTION

A. Cell Biology and Tracking

AT PRESENT, a considerable part of biological imaging
is shifting toward in vivo multidimensional fluorescence

microscopy, allowing for the visualization of specific biological
processes in real time and three dimensions. The introduction of
novel microscopy techniques like optical sectioning or confocal
microscopy has opened the road to a whole series of research
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perspectives dedicated to the study of cellular dynamics, and to
the links between cellular functions and spatial-temporal local-
ization. For example, nowadays, it is routine in cell biology to
film cells, organelles, and pathogens to document infectious dis-
ease processes in living systems [1]–[4]. In many such applica-
tions, the fluorescently labeled biological objects are visualised
as small bright spots superimposed on an uneven background,
where a spot is defined as an object which is relatively small and
compact and has no clear border, and whose intensity is both dif-
fuse and higher than that of its immediate neighborhood. The
reliable quantitative study of motility and dynamic properties
requires the computation of parameters like number of spots,
position, spatial distribution, movement phases, speed, and dif-
fusion coefficients and, therefore, requires that all the spots in
the image sequences are detected and tracked [5], [6]. In the
context of living cellular systems, spot tracking can be made
particularly difficult by the facts that the dynamics of each spot
can change over time or that spots may aggregate temporarily
making their appearance change and their proper detection more
difficult [6]. Not surprisingly, many biological object motility
studies are based on the study of a few hand-picked particles
which represent only a small subset of the total [2]. On top of
being tedious and time consuming, this type of manual tracking
is prone to many errors, highly dependent on operator’s skills
and perception [1], and can introduce a strong bias in the anal-
ysis. It is, therefore, of utmost importance to develop methods
to perform the tracking in an automatic, reproducible, and un-
prejudiced manner.

A large body of work has addressed the tracking of single
particles in optical microscopy (see, e.g., [7], for a review)
and of multiple spots in military or video imaging [8], [9].
Conversely, relatively little effort has been devoted to multiple
particle tracking (MPT) in the cellular and molecular imaging
domain [10]–[17]. Conventional MPT methods are based on
simple intensity thresholding [10] or local maxima extraction
[11] for detecting the spots and on nearest neighbor association
(NNA) [10] or constrained NNA [11] to perform the tracking.
These methods work well on image sequences showing a
limited number of very bright spots on a uniform background,
but they fail as soon as the intensity of the spots is not modal,
the spots are embedded in noisy images, the density of spots is
high, or the displacement of spots is higher than the interspot
spacing. In [12], a solution to improve on the previous methods
is proposed. It uses the combination of four techniques, namely
highly sensitive object detection, fuzzy logic-based dynamic
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object tracking, computer graphical visualization, and mea-
surement in time space. Although this method is effective when
working with well separated objects, it shows some limitations
in keeping up with aggregating ones. A more robust algorithm
is presented in [13], [14]. Based on ideas from operational
research and graph theory, it proceeds in four steps: particle
detection; generation of candidate matches, i.e., a set of pos-
sible displacement vectors between successive frames; scoring
of candidate matches; and selection of the candidate subset
with maximum global score and no topological ambiguity.
This method, however, relies on a number of heuristic rules
and on a priori information on the movements of objects to be
effective. Also, the extension and application of the algorithm
to four-dimensional data has not been reported.

Here, we report a method to perform the detection and the
tracking of microscopic spots directly on four dimensional
(3-D+ ) image data. It extends and outperforms our previous
work [15]–[17] by being able to detect with high accuracy
multiple biological objects moving in three-dimensional (3-D)
space and by incorporating the possibility to follow moving
spots switching between different dynamics characteristics.
Our method decouples the detection and the tracking processes
and is based on a two step procedure: first, the objects are
detected in the image stacks thanks to a procedure based on a
3-D wavelet transform; then, the tracking is performed within a
Bayesian framework where each object is represented by a state
vector evolving according to biologically realistic dynamic
models. The main advantage of wavelet-based detection is to
be robust to the local variation of contrast and to the imaging
noise. The Bayesian tracking allows us to predict the new
position of a spot knowing its past positions and increases the
reliability of the data association step.

B. Bayesian Multitarget Tracking

Bayesian multitarget tracking methods consist of filtering
successive measurements coming from a detector. They are gen-
erally split into two subprocedures: Bayesian filtering and data
association. The generic formulation of Bayesian filtering is to
compute the successive posterior densities from the
set of already detected measurements
and the following system:

(1)

(2)

where is the measurement of a hidden evolving signal
obtained at each time step through the observation process (2)
with a time prior (i.e., the assumption made on the evolution of
state through time) given by (1). The exact solution to this
problem is constructed in two steps. First, a prediction of the
prior density is computed by

(3)

based on a Markov assumption on the process . Then, from
(3), and thanks to the Bayes rule, the update of the posterior
density is obtained as

(4)

In practice, however, this scheme cannot be applied because
the multidimensional integral in (3) and (4) cannot be computed
in the general case. Several solutions have been proposed to
make the problem tractable by imposing some constraints on
the density distributions. Depending on the constraints and on
the a priori information available on the system, the solution
to the posterior density can be optimal like in the case of the
well known Kalman filter (KF) (optimal in the MMSE sense
for a linear Gaussian density) [18], suboptimal (yet more ef-
ficient to approximate the posterior density in nonlinear/non-
Gaussian cases) in the case of the extended Kalman filter (EKF)
[8], the Kalman unscented filter [19], and the particle filter (PF)
[20]–[22] or exact in the case of the grid-based filter (GBF)
[22]. All the previous filters are bound to use just one dynamic
model in their scheme, however, which is problematic when the
objects’ dynamics vary with time as it is the case with biolog-
ical objects. The interacting multiple models (IMMs) filter [23],
[24], instead, has been designed, first in the context of radar
imaging, with the capability to have different models in parallel,
and to select and switch to the model which is more accurate to
represent the movement during a given period. The IMM has
the additional ability to rapidly self adapt to transitions. This al-
together makes the IMM the best choice for our application and
here we report its first application to biological imaging and pro-
pose several models adapted to biological object dynamics.

Data association is a crucial step when tracking several
particles in the presence of clutter. Indeed, as the detection
may miss or wrongly detect objects, naive association methods
will create inconsistent associations leading to disconnected
trajectories in subsequent images. Among the numereous
methods that have been developed to tackle this problem, the
most popular algorithms are the nearest neighbor (NN) [8], the
joint probabilistic data association (JPDA) [9], [25], and the
multihypothesis tracking (MHT) [26], [27], but none of them is
really adapted to our specific needs. The NN is very sensitive
to noise and performs quite badly even with moderate noise
levels. The JPDA, which computes the joint probability of all
the different associations, requires the number of objects be
known in advance and remain constant during the sequence,
a condition not met in our applications where the number of
particles varies in time. The MHT algorithm is very compelling
conceptually as it is based on the dynamic computation of the
probability tree describing all possible associations of parti-
cles over time. Notwithstanding its theoretical advantages, it
rapidly becomes intractable because the complexity increases
exponentially with the number of tracked objects. There are
no established and reliable implementations for applications
where the number of considered objects exceeds a few units;
thus, the MHT could not satisfy our demand of being able to
handle several tens or hundreds of particles. We, therefore,
propose an association method based on a maximum likelihood
approach that has proved to achieve better results than an
optimal NN (i.e., that minimizes the distance sum) approach
with a reasonable complexity.

C. Tracking of Vesicles Labeled With Quantum Dots (QDs)

To validate the performances of our method on real biological
microscopic data, we have tracked endocytic vesicles to monitor
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the effect of the overexpression of the protein tau in the micro-
tubule dependent transport of single vesicles in living Hela cells.
Vesicles were marked with red fluorescent inorganic CdSe/ZnS
QDs. We compared the results obtained in nontreated cells with
those in cells transfected with tau-GFP. Our results are in agree-
ment with the work from another team [28] where the analysis
of microscopy data was done manually and confirm that tau does
not alter the speed of motors but reduces the mean 3-D trajec-
tory range of endocytic vesicles [28]. This confirmation is very
encouraging and it opens the way to an increased use of auto-
matic tracking methods to analyze complex biological image
sequences.

D. Organization of the Paper

The paper is organized as follows. In Section II, we briefly
describe the detection method. Section III presents the different
algorithms used to perform the tracking together with an eval-
uation of the IMM filter. The results achieved by the presented
method are then evaluated in Section IV, where results are pre-
sented both for synthetic sequences and for real biological mi-
croscopy sequences.

II. SPOT DETECTION

We have developed a spot detection method which is based
on a shift invariant 3-D discrete wavelet transformation of the
image stacks and on the selective filtering of wavelet coeffi-
cients. This method extends our previous work on two-dimen-
sional (2-D) images [29] and presents several advantages over
simpler segmentation methods: 1) It is robust to local varia-
tions of contrast and to the imaging noise. 2) It allows us to
efficiently segment fluorescent spots imbedded in noisy images
such as those acquired with real-time confocal microscopy. 3) It
enables to select spots of a specified size. 4) It allows us to dis-
card low-frequency objects that are present in the background
and that would hinder any conventional threshold based method.
5) It allows us to take into account the difference in resolution
along the axis by selecting filters of different length in , ,
and (typically, we use a B3-spline filter [30] in the and di-
rections and a Haar filter in ). Given an input noisy image stack

, and its wavelet transformation ,
wavelet thresholding is performed with Jeffreys’ noninforma-
tive threshold [31] as an estimation of the significance of
wavelet coefficient at a given scale and position

(5)

where is the standard deviation of noise at scale in the
wavelet domain (we assume that the noise is stationary at each
scale). The choice of this threshold function is motivated by the
fact that other functions like Donoho’s hard or soft threshold
[32] are too drastic in cutting wavelet coefficients and do not
allow for weak objects to be detected. To characterize the spots,
we compute a correlation image stack which is the

direct multiplication of denoised wavelet image stacks corre-
sponding to the selected scales

(6)

The correlation reduces the remaining noise and has significant
values only at locations that correspond potentially to spots.
After binarization, each connected component (spot) in is ex-
tracted to create a measurement vector
consisting of its location , volume and mean inten-
sity at time [16]. This vector is used in the following steps
to create the spot trajectories. An example of detection result is
presented in Fig. 1.

III. TRACKING

To establish the trajectories, it is necessary to link the suc-
cessive vectors representing the set of available measure-
ments on the system. To avoid creating inconsistent associations
leading to disconnected trajectories in subsequent images, two
important facts have to be taken into consideration. 1) A detec-
tion does not necessarily correspond to a real object but could
have been generated by clutter, and 2) an object might have been
missed (not detected). To properly handle these situations, the
tracking algorithm has to be able either to terminate a track if
a wrong measurement has been generated or to provide a pre-
dicted measurement that will be used to temporarily retain a
track in case a real measurement can be assigned in the subse-
quent images. Another major problem is that biological object
dynamics vary abruptly and frequently over time leading to as-
sociation problems. To handle this, we use an IMM filter with
several dynamic models that allow us to achieve a good predic-
tion during the transition between movements.

A. IMM Filter

The IMM filter is a Bayesian state estimation algorithm for
a system represented by Markovian switching coefficients. It
was originally developed by Blom [24] and used by Blom and
Bar Shalom [23] first in the context of radar imaging. We re-
call, here, the principles of this method. We want to compute
the posterior density as a weighted sum of gaus-
sians based on the assumption that the generic
system presented in (1) and (2) is reduced to a set of switching
linear models with additive Gaussian noises and, thus, has the
form

(7)

(8)

where is the system state vector at time , is the measure-
ment vector at time , and is the state transition matrix for
the event (event defined as “model is active at time ”).

is the observation matrix for . and are the process
and measurement noise vectors, that are mutually uncorrelated
zero-mean white Gaussian processes with covariance matrices

and . We denote by the index of the
models.
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Fig. 1. Detection of vesicles in 3-D. (a) original real 3-D microscopy image
stack showing QD-labeled vesicles. (b) Result of the detection by the proposed
method.

The switching between models is governed by a finite state
Markov chain with probabilities of
switching from to . The optimal approach for fil-
tering the system state would be that every possible sequence
of models be considered, thus involving an exponentially in-
creasing number of filters. To make the computation tractable,
the IMM estimator [9], [23] uses instead an approximation
which is to consider the two most recent sampling periods only.
The IMM estimator is a recursive process consisting of several
steps at each iteration.

First, the initial input for each KF at time step (also called
the mixed estimated state and covariance, and noted with a “0”
superscript) is computed by

(9)

(10)

where the conditional model probabilities are given by

(11)

and the predicted model probability by

(12)

Second, for each filter, the state prediction and co-
variance prediction are computed for each model with
the standard KF equations [8], [18] with initial values given by

(9) and (10). These predictions are used in the association step
which provides to each track the measurement that corre-
sponds to the best global solution as detailed in Section III-D
and from which it is possible to compute the state estimation

and the covariance estimation . These estimations can
be computed in parallel for each model as they are totally inde-
pendent from each other.

Third, as the innovation is considered to be a -dimen-
sional Gaussian statistic with zero mean, it follows that the like-
lihood of each filter matched to is given by

(13)

where and are, respectively, the inno-
vation and the covariance of the innovation of KF .

Then, the probability for is

(14)

and the combined state estimate and covariance are

(15)

(16)

B. Capability of the IMM

To illustrate the capability of the IMM to self-adapt to dif-
ferent movement types as well as to the switching between them,
we simulated a one dimensional signal that switches between
two linear models. To simulate the noise and the measurement
process , the signal was corrupted by sequentially adding two
Gaussian noises with different variance to the original signal.
The measurement was then filtered back independently by a
KF using one of the models and an IMM filter with both models
being active. Fig. 2 shows that the IMM produces an estimation
that is globally much more reliable than the KF. Conversely, the
KF is more efficient on the local portions of the signal (
to 70) that corresponds to its model, which is well in accor-
dance with the fact that the KF is the optimum solution for a
linear Gaussian system. Fig. 3 illustrates that switching between
models is tractable thanks to the multimodal posterior density
which is computed by the IMM.

C. Proposed Dynamic Models

To adapt the IMM to biological imaging, we propose to use
three different models of dynamics: random walk (RW), first-
order linear extrapolation (FLE), and second-order linear ex-
trapolation (SLE). They model Brownian motion and directed
movement with constant speed or acceleration, which are repre-
sentative modes of motion encountered in biology [3]. We make
the additional realistic hypothesis that, during movement, the bi-
ological objects can switch abruptly between the three models.
This description is complemented by the hypothesis that the
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Fig. 2. (a) (Hidden) Signal is estimated with a KF and an IMM filter from
noisy measurements . We can see that the KF fails to adapt itself to the abrupt
switching between models. On the contrary, the IMM filter switches from one
model to another with a lower error. (b) Comparison of the mean-square error
(MSE) of KF and IMM estimations.

Fig. 3. Reconstructed propagation of in the example of Fig. 2 from
IMM parameters. As expected, the density becomes bi-modal when the signal
switches from one model to another one.

volume and the mean intensity of each spot remain approx-
imately constant with an additive gaussian noise. By writing the
state vector as a concatenation of three successive locations

(17)

each of three models can be represented by a linear application,
thus enabling us to take into account in the IMM up to three con-
secutive vector states while still lying within a Markov process
of order 1. The three models are as follows.

1) The RW model which makes the assumption that the
next state is defined by the previous state and an addi-
tive Gaussian noise

2) The FLE model which makes the assumption that the
next state is defined by the linear extrapolation of the last
two 3-D locations while keeping the same intensity and
volume

3) The SLE model, which makes the assumption that the
next state is defined by the linear extrapolation of the
three last 3-D locations while keeping the same intensity
and volume

The observation model related to the measurement vector
(II) is common to all three models

(18)
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D. Association

To form the correct tracks, it is necessary thereafter to go
through an association stage. This consists in finding the best
assignment between the new measurements obtained at the de-
tection step and the predicted measurements provided by the
IMMs. The assignment is made as follows. First, we compute
the maximum likelihood of the innovation among the models in
each IMM that we denote . That is to say, for each
measurement , and each IMM filter ,

, we find the value which maximizes (13). Each
of them is used to form the following matrix:

...

...

(19)

This is done only for the measurements which are within the val-
idation gates (i.e., the Mahalanobis distance between predicted
and estimated measurements is inferior to the square of a given

which is determined from a table as corresponding
to a gating probability chosen to be at least 0.95).

The assignments are then found ac-
cording to the following:

(20)

with

(21)

The search for assignments stops when . Even though
this assignment technique is sub optimal in a global sense, i.e.,
it may occur that

(22)

it produces in our application context much better results than an
algorithm for optimal assignment between two sets like, for ex-
ample, the Jonker and Volgenant algorithm [33]. When dealing
with our data, the JVC algorithm was not able to output correct
associations on more than the first five time points in a sequence.
This can be explained by the fact that the JVC algorithm requires
the cardinality of the two sets be equal, an assumption that is not
met in our case as we are trying to resolve an ill-posed problem
where the number of predicted measurements never equals the
number of measurements.

E. Refinement

Once the association of each prediction with a measurement
is accomplished, each IMM filter (track) is refined. Reliable
state estimations of each object are computed with (15), while
(14) enables each IMM to update the probabilities of their asso-
ciated models.

IV. RESULTS

A. Validation of Automatic Tracking on Synthetic Data

In order to assess the quality of our method and its suitability
to biological data, we have generated sequences with artificial

Fig. 4. Example of detection of synthetic spots. (a) Synthetic
image stack with 40 synthetic spots and added Gaussian noise . Note
the similarity with real microscopy data in Fig. 1. (b) Detected spots.

TABLE I
INFLUENCE OF THE NUMBER OF SPOTS ON THE QUALITY OF TRACKING.

TABLE I SHOWS THE MEAN RESULTS FOR THE ANALYSIS OF FIVE
SEQUENCES OF THIRTY 100 100 10 IMAGE STACKS FOR EACH
SPOT DENSITY. RESULTS ARE EXPRESSED AS THE PERCENTAGE

OF TRUE POSITIVES AND FALSE POSITIVES GIVEN BY
THE TRACKING PROCEDURE

spots whose characteristics are as close as possible to fluores-
cent spots. The spots are represented by 3-D Gaussian shapes
with different random covariance matrices in order to get dif-
ferent shapes of different sizes. For example of generated spots
and of their detection, see Fig. 4.

To test the robustness of the tracking algorithm to the density
of spots, we included 10, 20, 30, or 40 spots in
image stacks (the resulting spot density then being 0.1, 0.2,
0.3, and 0.4, for 10, 20, 30, and 40 spots) and generated five se-
quences of 30 time points for each condition (20 sequences in
total). Here, the size of the test volumes was kept small in order
to achieve relatively high densities of spots within tractable vol-
umes. In each sequence, the spots were made to move randomly
and their direction changed randomly at a random time of be-
tween one and five frames, with an additional random modifica-
tion of the covariance matrix of the 3-D Gaussian shapes with
time to make their aspect change. To simulate real world con-
ditions, spots were allowed to temporarily aggregate and cross.
Also, a simulated background was generated by using a mixture
of Gaussians with high variance and white Gaussian noise was
added to the sequence in order to represent the noise present
in typical microscopy images. Finally, the image stacks have a
lower resolution in the direction to simulate the anisotropic
resolution of 3-D microscopy images. Table I gives a summary
of the influence of the density of spots within the same volume
on the performances of the algorithm. The results show that even
with a high density of spots the performances of the algorithm
are satisfactory and that the IMM clearly outperforms the results
achieved by using a KF with any of the three models (RW, FLE,
or SLE) taken alone. Fig. 5 shows a synthetic sequence that was
generated with 160 synthetic spots in a volume similar to the
real data shown in Fig. 6, resulting in a similar spot density of

. By applying the IMM filter to the data on this se-
quence, we could achieve a tracking with 85% of true positive
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Fig. 5. Example of tracking 160 synthetic spots in a image sequence of 30
image stacks. The various types of simulated dynamics can be

appreciated by the variety of the path.

Fig. 6. Tracking of QDs in a 3-D+ sequence. (a) View of the original stack. (b)
Two-dimensional view of the tracks. (c) Three-dimensional view of the tracks.
This last view makes it clear that vesicle trajectories are not confined in a 2-D
plane. Field of view is m.

and 6.1% of false positives, which is in good agreement with the
results in Table I.

B. Tracking of QDs

We used our method to investigate the effect of the over-ex-
pression of the protein tau in the microtubule dependent trans-
port of single vesicles in living cells. Tau is a microtubule as-
sociated protein (MAP) which regulates microtubule polymer-
ization [34]. Independent experiments performed by a different
team [28] have shown that tau does not alter the speed of moving
vesicles but it affects the frequency of attachment and detach-
ment of vesicles to the microtubules [28]. To monitor vesicle

Fig. 7. Average MSD in four sequences of vesicles in nontreated cells (blue
curves) and in four sequences of vesicles in cells transfected with tau (red
curves). The curves show that in tau-transfected cells the motion is confined to
a smaller volume than in the case of the nontransfected ones.

tracking we marked them with red emitting fluorescent inor-
ganic CdSe/ZnS QDs and imaged them with time lapse 3-D
fluorescence microscopy. A typical image stack acquired with
the experimental setup described in Appendix I is presented in
Fig. 6.

In the experiments, we monitored the dynamics of QD-con-
taining vesicles over periods of several minutes without ob-
serving a decrease in the fluorescence emission. We compared
the results obtained in nontreated cells and in cells transfected
with tau-GFP for a total of about 30 cells in eight sequences
(several cells can be found in one sequence). For each sequence,
between 150 to 200 vesicles were tracked at the same time. For
each trajectory, we computed the transport speed, the trajec-
tory range R, defined as the largest distance separating the first
and any other point in the sequence, and the mean-square dis-
placement (MSD), defined as MSD < >, where

is the distance traveled in seconds. Fig. 7 shows the
MSD curves corresponding to the movement of vesicles in cells
for four sequences in the presence of tau (red) and for another
four sequences in the absence of tau (blue) (each curve is the
average of the MSDs for all vesicles in any of the sequences)
and shows that in tau-transfected cells the motion is confined in
a smaller volume than in the case of the nontransfected ones.
From the data analysis, we found a mean speed of 0.12 and
0.11 m/s and a mean trajectory range of 1.48 and 0.95 m
for nontreated and transfected cells, respectively. Therefore, we
can confirm the result in [28] that tau does not affect the mean
motor speed. On the contrary, as already suggested by Fig. 7,
the overexpression of tau induces a reduction of almost a factor
1.6 for the value for the 3-D mean trajectory range. Also, from
the values of the MSD curves corresponding to the two groups,
we found the diameter of the mean diffusion volume to be 1.7

m in absence of tau and 1.0 m in presence of tau.

V. CONCLUSION

We have presented a method to detect and track fluorescence
spots presenting different and switching movement types in
3-D+ live biological microscopic images. The method uses
a shift-invariant 3-D wavelet transform for the detection of
spots, an IMM algorithm with different transition models for
the prediction and estimation of the state of the object and a
data association method based on the maximum likelihood
for establishing trajectories. We have shown on generated
sequences and on real microscopy data sequences that this
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multistage algorithm makes it possible to establish valid tra-
jectories even in presence of a high density of spots. We have
assessed the validity of our method by monitoring the effect
of the overexpression of the protein tau in the microtubule
dependent transport of single vesicles marked with QDs in
living Hela cells and confirmed independent results that tau
does not affect the mean motor speed. We now plan to apply our
method to study the role of pathogen dynamics in the triggering
of infectious diseases.

APPENDIX I
QDS SYNTHESIS AND MICROSCOPY SETTINGS

The synthesis of colloidal CdSe/ZnS nanoparticles is de-
scribed in detail in a previous paper [35]. The hydrophobic
particles were silanized with phosphonate silane as described
in [36] to achieve water solubility. HeLa cells were grown
in Dulbecco’s modified minimal essential medium (Gibco,
Cergy-Pontoise, France), supplemented with 10% fetal calf
serum. For the experiment they were plated at a concentra-
tion of cells/ml on 12.5 cm round glass coverslip.
After 24 h, the cells were transfected with the tau-GFP vector.
Hydrophilic fluorescing nano-crystals with an emission wave-
length of 637 nm were added to the medium to achieve a
resulting concentration of 10-nM nanocrystals. The cells were
then incubated for additional 4 h to allow the cells to completely
ingest the nanocrystals and then rinsed two times with PBS to
remove residual nano-crystals in the medium. Samples where
observed with an inverted microscope (Leica) equipped with an
100 oil-immersion objective and a 100-W mercury lamp. For
every image, one channel in differential interference contrast
mode and two individual channels in the fluorescence mode
were recorded using the GFP filter set to image tau-GFP and a
red filter set to image the QDs. The time-lapse sequences were
recorded using the software Metamorph (Universal Imaging,
WS). Nanocrystal subcellular traffic was tracked by recording
on the red channel five planes separated by 0.5 m. For each
plane, we used an integration time of 200 ms, which results in
total acquisition time of 1 s for each stack. For each cell, a
total of 60 stacks were acquired at an interval of 1 s.
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