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Quasi–static transport measurements are employed on a laterally defined tunnel–coupled double
quantum dot. A nearby quantum point contact allows us to track the charge as added to the
device. If charged with only up to one electron, the low–energy spectrum of the double quantum
dot is characterized by its quantum mechanical interdot tunnel splitting. We directly measure its
magnitude by utilizing particular anticrossing features in the stability diagram at finite source–drain
bias. By modification of gate voltages defining the confinement potential as well as by variation of
a perpendicular magnetic field we demonstrate the tunability of the coherent tunnel coupling.

PACS numbers: 73.21.La, 73.23.Hk, 73.20.Jc

Recent works have shown spectacular advancements
regarding the control over single electrons trapped in
semiconductor based quantum dots (QD).1–4 Electronic
states in separate QDs can be coupled, resulting in de-
localized and spatially coherent “molecular modes”.5–8

QDs thus lend themselves as prospective building blocks
for qubits, the elementary units of the proposed quan-
tum computer. Models for QD–based qubits include e.g.
the use of a single electronic spin in one QD.9,10 Alter-
natively, the position of a single electronic charge within
a double quantum dot (DQD) has been proposed.11 For
both approaches, precise control of the coupling between
nearby QDs is of paramount importance. We report on
quasi–static measurements allowing direct determination
of the interdot tunnel splitting of a strongly coupled DQD
charged with up to one electron. Control over the tunnel
coupling via gate voltages or magnetic field is demon-
strated.

Our measurements are performed using an epitax-
ial AlGaAs/GaAs heterostructure that forms a two–
dimensional electron system (2DES) 120 nm below the
crystal surface with a carrier sheet density of ns =
1.8×1015 m−2 and an electron mobility of µ = 75 m2/Vs,
both measured at 4.2 K. The 2DES temperature is esti-
mated to be T2DES ' 100 mK. We use a lock–in fre-
quency of 840 Hz (Fig. 1) or 680 Hz (Figs. 3 and 4).

Fig. 1(a) displays an electromicrograph of the gates on
the surface of our heterostructure. Application of neg-
ative dc–voltages to these electrodes allows definition of
a DQD as well as a quantum point contact (QPC) in
the 2DES. Our layout is based on a gate geometry in-
troduced by Ciorga et al.

2 It allows a measurable single
electron tunneling (SET) current through the QD even
in the limit of only one trapped electron. To elongate
a single QD and split it into a double well potential we
increase the absolute values of the dc–voltages |UgC| and
|UgX| of the center gates (cf. Fig. 1(a)). To keep the
overall charge of the system constant, we decrease |UgL|
and |UgR| on the side gates. The approximately resulting
serial DQD is sketched in Fig. 1(a) in bright tone.

The stability diagram in Fig. 1(b) displays the differen-
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FIG. 1: (Color online) (a) SEM micrograph of the gate elec-
trodes used for defining a DQD and a QPC. Approximate
geometry of the DQD (white area) and electron flow (arrows)
are indicated. (b) Stability diagram of the DQD plotting
the transconductance dIQPC/dUgL through the QPC. A back-
ground signal has been substracted. The open circles indicate
local maxima of current through the DQD at constant UgR.
The bars (Σ, ∆), each corresponding to 1 meV, illustrate the
axis directions, the box the plot range of Figs. 2 and 3.

tial transconductance GQPC = dIQPC/dUgL through the
nearby QPC in dependence on the dc–voltages applied
to gates gL and gR. The QPC serves as a charge sen-
sor, as described in Refs. 12 and 13. The darker lines in
the plot depict reduced transconductance corresponding
to discrete charging events in the DQD while otherwise
the electron number in the DQD is constant. These lines
clearly form a honeycomb structure as expected for a
DQD.14–16 The lack of charging events in the area marked
by 0/0 in Fig. 1(b) implies that here our DQD is free of
extra charges. Note that this area is bordered on its
upper and right side by a distinct line of low transcon-
ductance proving that our resolution is high enough to
detect all charging events for the shown gate voltages.
We mark the area of the plot for which only the right
QD is charged by one electron with 0/1, for which one
electron is trapped in each QD with 1/1, and so on. The
smooth charge redistribution from configuration 0/1 to
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FIG. 2: (Color online) (a) Measurement of SET current
through a one–electron DQD at USD = −0.75 mV and UgC =
−1.47 V (logarithmic scale), including model lines for strong
interdot coupling (see (b)). (b) Corresponding model expec-
tations for SET transport features at finite source–drain bias
in the two cases of weak (dashed lines) versus strong (solid
and dotted lines) interdot coupling.

1/0 contrasts results for weak interdot coupling.14,17 A
second hint at strong coupling is the lack of sharp corners
of the lines of reduced transconductance at triple points
in the stability diagram, where three charge configura-
tions are possible.

The open circles in Fig. 1(b) depict local maxima of
current IDQD through the serial DQD at constant UgR,
recorded in linear response (USD = 50 µV). For weak
interdot coupling we expect finite current through this
system only at triple points in the stability diagram. In
contrast, we also find current along parts of the configu-
ration boundaries away from triple points. This suggests
that the electron can lower its orbital energy by form-
ing a delocalized state, as well indicating strong interdot
tunnel coupling. The configuration boundaries obtained
show excellent agreement with the QPC measurement.
For more than two trapped electrons, coupling to the
leads results in current line broadening; then some phase
boundaries cannot be resolved as separate maxima any-
more. Note that we can perform direct current measure-
ments through the DQD even if it is charged with only
up to one electron.

Starting from the limit of a weakly coupled DQD we
will now outline a model including coherent interdot tun-
nel coupling, describing the static transport properties at
finite source–drain bias. Comparison with measurements
demonstrates our ability to detect and tune the tunnel
splitting of the single electron states in a DQD.

Fig. 2(a) displays SET current through the DQD for
the region of the stability diagram framed in Fig. 1(b)
by a rhomboid, but measured at a source–drain bias of
USD = −0.75 mV. Here, we use a new coordinate sys-
tem reflecting the symmetry properties of the DQD. The
chemical potentials of the QDs marked in Fig. 1(a) as µL

and µR are defined as the energies required to add the
first electron to the respective QD. Our new x–axis mea-
sures the interdot asymmetry ∆ ≡ (µR − µL)/2, while
the y–axis plots the average chemical potential of both
QDs Σ ≡ (µR +µL)/2. Direction and scale of these axes,
indicated in Fig. 1(b) by two black bars, reflect the ca-
pacitances between QDs and gate electrodes.15,16

Narrow current features in the stability diagram at zero
source–drain bias expand to regions of finite current for
|USD| > 0 as displayed in Fig. 2(a). Here µD < µS and for
weak interdot coupling the condition µD ≤ µL ≤ µR ≤ µS

defines a triangular region of finite SET current illus-
trated in Fig. 2(b) by dashed lines.3,15 The triangle base-
line is located on the Σ–axis where µL = µR. The other
two edges have slopes dΣ/d∆ = ±1 corresponding to ei-
ther µR = µS or µL = µD. They meet at the tip of the
triangle with 2∆ = µS−µD ≡ |eUSD|, where e is the elec-
tron charge. The transformation from the coordinates in
Fig. 1(b) to those in Fig. 2 is based on the geometry of
this triangle and on the comparison to a reference energy
scale provided by |eUSD|.

The SET current measurement plotted in Fig. 2(a) il-
lustrates a strong interdot coupling situation, where the
electronic ground states of the two QDs hybridize into
delocalized states. At µL = µR the corresponding chem-
ical potentials µ+ of the symmetric ground state and µ−

of the antisymmetric excited state are separated by the
tunnel splitting 2t0. For finite interdot asymmetry ∆ this
energy splitting becomes

√

(2∆)2 + (2t0)2.

The resulting expected edges of strong (weak) cur-
rent onset are indicated as solid (dotted) model lines in
Figs. 2(a) and (b). Level schemes in Fig. 2(b) sketch the
alignment of µ+ and µ− compared to the lead chemi-
cal potentials µS and µD at nearby intersection points of
these lines and the Σ–axis. For the DQD containing up
to one electron SET is possible in a region spanned by
lines I and III. A first conductance channel opens at line
I where µ+ = µS, and a second at µ− = µS (II). Coulomb
blockade suppresses current for µ+ < µD (III). Thus, the
fourth possible alignment, µ− = µD, does not appear as
current change. Model lines I and II result in an anti-
crossing at ∆ = 0 with tunnel splitting 2t0 = |µ− − µ+|.

At even smaller values of Σ, below line III in Fig. 2(a),
the region of high current (dark area) corresponds to the
onset of the DQD being charged with a second electron.
Here, Coulomb repulsion and exchange interaction have
to be taken into account, causing a different energy spec-
trum. The in comparison to the background slightly
darker graytone in the region 0 <∼ 2∆ <∼ |eUSD| below
line III indicates a small cotunneling current.

Between lines I and II the excited state of the DQD
is permanently unoccupied since µ− > µS. SET is only
possible through the delocalized symmetric ground state.
In Fig. 2(a) we observe current only for small asymmetry
|∆| <∼ t0 between lines I and II. With increasing asymme-
try the ground state is more and more localized in one of
the QDs and current vanishes for |∆| � t0. A smaller sig-
nal for negative than for positive asymmetry is detected.
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FIG. 3: (Color online) (a) Differential conductance
dIDQD/dUSD through the DQD corresponding to the current
measurement shown in Fig. 2(a) (identical parameters, log-
arithmic scale). (b) Corresponding differential transconduc-
tance dIQPC/dUgL through a nearby QPC (linear scale). For
both plots, the model lines are identical to those in Fig. 2.

This broken symmetry hints at a larger tunnel barrier of
the DQD towards its drain contact compared to that on
its source side. In contrast, between lines II and III both
electron states with chemical potentials µ+ and µ− con-
tribute to the current. Here, for ∆ < 0 energy relaxation
from the left to the right QD competes with the tunnel
rate into drain, hindering SET current through the DQD.
For ∆ � 0 localization of the ground state in the right
QD near the source contact causes Coulomb blockade.

In the region spanned by lines II, III, and the Σ–axis we
observe a strong current signal. Here, the chemical po-
tentials obey µS ≥ µ− > µ+ ≥ µD. For small asymmetry
SET through both then delocalized states contributes to
the current. As the asymmetry ∆ and thereby localiza-
tion of the two states in the two separate QDs increases,
direct SET through each of these states is suppressed.
For ∆ � t0 the electronic states of the DQD can be
approximated by the two single QD ground states with
µ− ' µR and µ+ ' µL. In this configuration, resembling
the weak coupling limit, an electron can hop through the
double dot starting from the source contact via the right
to the left dot and finally to drain, loosing energy beween
the two dots.18 This additional energy relaxation process
impedes SET and causes a decrease in total current.

Fig. 3(a) displays the corresponding differential con-
ductance dIDQD/dUSD in logarithmic scale. The tunnel
splitting 2t0, visible as the anticrossing of lines I and II,
is here even more obvious than in the current measure-
ment. Note that the model lines in all Figs. 2 and 3 are
identical. The regions of negative differential conduc-
tance (NDC), plotted in white, reflect the dependence
of tunnel and relaxation rates on USD. We find that lo-
calization increases with growing USD, in turn causing
a slower energy relaxation between the localized QDs.
While this scenario explains NDC between lines II and

III, for the NDC–area above line II in addition higher or-
der tunnel processes have to be considered involving the
excited state with µ− > µS.

In Fig. 3(b) the differential transconductance of the
QPC dIQPC/dUgL is plotted for the same area of the
stability diagram as the measurements discussed above.
The resonances of small signal (dark areas) are caused by
changes of the time–averaged charge inside the DQD.13,14

They follow parts of our model lines already shown in
Figs. 2 and 3. The dark area at the lower plot edge
reflects the onset of charging the DQD with a second
electron. Above this area for each distinct asymmetry
value ∆ only a single charging resonance is observed (the
splitted dark feature). Thus, at this resonance the charge
of the DQD almost discretely switches between zero and
one electron. For ∆ <∼ 0 charging takes place at the
first possible alignment of the chemical potentials of the
DQD and the source contact (µ+ ' µS at model line I).
At a finite asymmetry ∆? > 0, indicated in Fig. 3(b), this
measured resonance jumps to line II with µ− ' µS, where
a second transport channel opens. The jump at ∆∗ > 0
provides information on the rates of an electron entering
and escaping the DQD, suggesting a larger tunnel barrier
towards the drain than the source contact. For µ− > µS,
the rates are identical at ∆ = ∆∗. At ∆ < ∆∗ an electron
tunnels faster into the ground state of the DQD than it
escapes to the drain contact. For ∆ > ∆∗ the escape
rate dominates and the DQD stays mostly empty at line
I. This larger escape rate is caused by increasing localisa-
tion of the DQD ground state in the QD near the drain
contact as ∆ grows positive. Note, that the asymmetric
current along line I allows the same interpretation.

At µ− ' µS (line II) another channel via the excited
state opens. The tunnel rate into this state is large, since
for ∆ > 0 it is predominantly localized near the source
contact. In comparison, for ∆ > t0 the escape rate is
limited by the product of the relaxation rate between
the partly localised QDs and the tunnel rate from the left
QD to the drain reservoir. Thus, below line II the DQD
average charge is approximately one electron. For 2∆ >
|eUSD|, the charging resonance follows line III featuring
µ+ ' µD, where the DQD enters Coulomb blockade.

Fig. 4 plots the tunnel splitting 2t0 and the charg-
ing energy E2 required to add a second electron to the
DQD as a function of center gate voltage UgC (a) and
perpendicular magnetic field (b). E2 is obtained as the
energy difference between the onset of current involving
one compared to two electrons in a symmetric DQD, e.g.
from Fig. 3(a) as the distance between line I and the
center of the dark line at the bottom of the plot. As we
separate the two QDs more by increasing the interdot
tunnel barrier (Fig. 4(a)), both 2t0 and E2 decrease. In
contrast, with growing magnetic field only 2t0 decreases
considerably while E2 stays almost unaltered. Note that
E2 primarily depends on the distance of the centers of
charge of both QDs. In comparison, the tunnel rate is ad-
ditionally influenced by the potential geometry governing
the overlap of the single QD states. Clearly, UgC alters
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FIG. 4: (Color online) (a) Tunnel splitting 2t0 of the one–
electron DQD and charging energy for the second electron E2

in dependence on gate voltage UgC. (b) E2 and 2t0 plotted
as function of a perpendicular magnetic field.

the electrostatic potential geometry whereas B mainly
leads to a compression of the electronic states at almost
constant mean distance, leaving E2(B) unchanged.

Using the WKB–method the tunnel splitting of the
DQD is found to be approximately 2t0 ' 2E0/π

exp(−
√

2m∗Φ d/2h̄), where E0 is the mean ground state
energy of both QDs, m∗ the effective electron mass, and
where d and Φ are the effective width and amplitude of a
quartic tunnel barrier potential. An exponential decrease
of 2t0 at increasing |UgC|, as indicated by a solid line in

Fig. 4(a), suggests a nearly linear increase of
√

Φ d.

Fig. 4(b) displays 2t0 and E2 at a fixed voltage
UgC = −1.47 V in dependence of magnetic field B.
The tunnel splitting remains constant at 2t0 ' 260 µeV
for B <∼ 0.4 T, but decreases for stronger B. At
constant mean distance, we assume each QD to ex-
tend over the Fock–Darwin length scale1,19 lQD(B) ≡
√

h̄/ωcm∗/ 4

√

1 + 4Ω2/ω2
c
. Here Ω characterizes the

parabolic confinement and ωc = eB/m∗. The WKB–
formula then results in a model curve (solid line) showing
qualitative good agreement with our data. For a quan-
titative analysis the actual overlap of the wavefunctions
within a realistic potential had to be considered.

In conclusion, we have directly observed the coherent
quantum mechanical interdot tunnel coupling of a one–
electron DQD employing quasi–static transport measure-
ments. At finite source–drain bias the delocalized elec-
tronic eigenstates of the strongly coupled DQD generate
a distinct pattern in the stability diagram visible in cur-
rent, conductance, and average charge on the DQD. In
all three quantities, the tunnel splitting is immediately
visible as a clear anticrossing and can be quantified after
a coordinate transformation. To tune the tunnel splitting
we modify gate voltages or a magnetic field perpendic-
ular to the 2DES. We propose a simple model and find
our data in qualitative agreement.
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