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Single-Electron-Phonon Interaction in a Suspended Quantum Dot Phonon Cavity

E. M. Weig,l’>l< R. H. Blick,"" T. Brandes,? J. Kirschbaum,' W. Wegscheider,3 M. Bichler,* and J. P. Kotthaus'

1Cem‘erfor NanoScience & Sektion Physik, Ludwig-Maximilians-Universitdt, 80539 Miinchen, Germany
“Department of Physics, University of Manchester, Institute of Science and Technology (UMIST),
Manchester M60 10D, United Kingdom
3Institut fiir Angewandte und Experimentelle Physik, Universitdit Regensburg, 93040 Regensburg, Germany
“Walter-Schottky-Institut, Technische Universitiit Miinchen, 85748 Garching, Germany
(Received 7 April 2003; published 30 January 2004)

An electron-phonon cavity consisting of a quantum dot embedded in a freestanding GaAs/AlGaAs
membrane is characterized using Coulomb blockade measurements at low temperatures. We find a
complete suppression of single electron tunneling around zero bias leading to the formation of an energy
gap in the transport spectrum. The observed effect is induced by the excitation of a localized phonon
mode confined in the cavity. This phonon blockade of transport is lifted at discrete magnetic fields
where higher electronic states with nonzero angular momentum are brought into resonance with the

phonon energy.
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In the context of quantum computation the operation of
qubits is limited by the decoherence induced by the
coupling to the environment [1]. One of the major sources
of decoherence for solid state qubits based on single
electron transistors (SETs) [2] and quantum dots [3] is
the electron-phonon interaction. Its impact on single elec-
tron tunneling was initially explored by Fujisawa et al. [4]
and Qin et al [5] and theoretically confirmed by Brandes
and Kramer [6]. Thus, the next step towards control of
dephasing of electronic quantum states is to restrain
coupling to the environment by confining the phonon
spectrum in quantum dot cavities. Moreover, tailoring
the mode spectrum of the phonon cavity opens up the pos-
sibility to investigate the ultimate limit of single electrons
interacting with individual phonon modes of their host
crystal. This is achieved by embedding a low-dimensional
electron gas into a suspended phonon cavity [7-9].

Already back in 1967, Duke et al. [10] modeled inelas-
tic tunneling through a barrier, finding that collective
phonon modes can be excited by the tunneling electron.
According to their calculations characteristic zero-bias
conductance minima in the tunnel conductance can be
attributed to this effect. In recent years, electron back-
action on mechanical degrees of freedom has been theo-
retically discussed by Schwabe et al [11], Blencowe [12],
and Nishiguchi [13]. The additional implications of
phonon confinement in an electron-phonon cavity were
modeled by Debald et al. [14], pointing out the possibility
to control electron dephasing by tailoring the phonon
spectrum.

Here we report on the experimental observation of a
new blocking mechanism of single electron transport
which is found in such a cavity [cf. inset of Fig. 1(a)
showing the differential conductance in the linear trans-
port regime], evidencing the coherent interplay between
single electron tunneling and the excitation of localized
phonon modes confined in the cavity as predicted by
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Duke et al [10]. The underlying physics of coherently
coupling discrete electronic states with discrete phonon
modes bears resemblance to cavity QED [15].

A phonon cavity containing a suspended single quan-
tum dot is shown in Fig. 1(a). The scanning electron
micrograph taken under an angle of 65° allows us to
visualize the three-dimensional character of the sample.
The freestanding 130 nm thick GaAs/AlGaAs membrane
contains a low-dimensional electron gas which is located
40 nm below the sample surface. The 400 nm thick
sacrificial layer of Aly3Gag,As supporting the membrane
has been completely removed beneath the displayed part
of the sample in Fig. 1(a) creating a clear spacing between
the membrane and the GaAs buffer. Details on the em-
ployed sample material as well as the fabrication proce-
dure can be found in previous publications [8,9]. The
quantum dot is located in a 600 nm wide bar between
two geometrically defined point contacts formed by pairs
of symmetric indentations. As a result of edge depletion
the dot diameter is reduced to about 450 nm [8]. The two
constrictions are wide enough to allow ballistic transport
through the cavity, but can be depleted to form tunneling
barriers. In Fig. 1(a) a strip of electron gas situated close
by serves as an in-plane gate electrode.

The presented measurements are performed in a dilu-
tion refrigerator with a base temperature of 7 = 10 mK
which corresponds to a minimal electron temperature of
T. = 100 mK. A negative voltage V, is applied to the gate
electrode in order to create tunneling barriers and to
vary the electrochemical potential of the dot denoted
u(N + 1) = E(N + 1) — E(N) in the level diagrams of
Fig. 1(b) discussed below. A bias voltage V can be
applied between the source and the drain reservoirs.
The differential conductance G = dly/dV is recorded
with respect to both V, and V4 showing clear Coulomb
diamonds depicted in logarithmic gray scale representa-
tion in the left part of Fig. 2 (white: 0.02 uS, black:
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FIG. 1 (color online). (a) Suspended quantum dot cavity and
in-plane gate formed in the 130 nm thin GaAs/AlGaAs mem-
brane. The inset shows the blocked differential conductance in
the linear transport regime. (b) Level diagrams for single
electron tunneling including phonon blockade: (i) In the ortho-
dox model electrons sequentially tunnel through the dot, if the
chemical potential w(N + 1) is aligned between the reservoirs.
(ii) Tunneling into the phonon cavity results in the excitation of
a cavity phonon with energy /i{),;, leading to a level mismatch
€o and thus to phonon blockade. (iii) Single electron tunneling
is reestablished by a resonant higher electronic state u*(N + 1)
which is enabled to coherently reabsorb the phonon and to
hereby replace the ground state.

6 wS). The right part of the figure displays the corre-
sponding line plots near zero bias V4 = 0 uV. Fig-
ure 2(a) shows data taken at an electron temperature of
T. = 100 mK and a perpendicular magnetic field of B =
500 mT, where a quasicontinuum of energetically higher
states produces a Coulomb blockade diamond known
from conventional quantum dots [3,16]. The charging
energy Ec = ¢?/Cs = 0.66 meV corresponds to a dot
capacitance of Cy = 240 aF from which a dot radius of
r = 275 nm and an electron number of about 1400 can be
deduced. The striking difference as compared to conven-
tional quantum dot measurements is observed for the
same temperature but zero magnetic field where we find
complete suppression of conductance around zero bias for
gate voltages V, < —600 mV [cf. inset of Fig. 1(a)]. As
illustrated for the three adjacent resonances in Fig. 2(b),
this is seen in the energy gap €, opening between the
diamonds in the gray scale plot as well as in the line plot
showing zero conductance. The resulting blockade of
transport can be overcome only by applying a positive
or negative source drain bias of |Vy| = €;/e = 100 uV
[see also Fig. 3(a) magnifying a single resonance]. As
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FIG. 2. Transport spectrum of the suspended quantum dot
and conductance near zero bias: (a) Single electron resonances
taken at an electron temperature of 100 mK and a perpendicu-
lar magnetic field of 500 mT. (b) At zero magnetic field
conductance is suppressed for bias voltages below 100 uV
due to phonon excitation. (c) The conductance pattern at
350 mK shows that phonon blockade starts to be surpassed
because of thermal broadening of the Fermi function supplying
empty states in the reservoirs.

discussed in [17] the curvilinear shape of the diamonds
may reflect gate voltage induced mechanical deforma-
tions of the system. At larger temperatures the electrons
gain enough energy to overcome phonon blockade when
the broadening of the Fermi distribution function in the
leads approaches 4kg T = €. This is displayed in Fig. 2(c),
where clear single electron tunneling resonances are
found again at 7 =350 mK and B=0T.

A strikingly similar energy gap has been observed in
measurements on a single C¢y SET [18]. Our results can
therefore be compared to recent theoretical models for
transport through such a molecular single electron tran-
sistor coupled to a single vibrational mode [19-21]. We
have extended these models [22] in order to analyze the
origin of the observed blockade mechanism. The picture
corresponding to the classical limit of a strongly over-
damped vibration mode is illustrated in Fig. 1(b): (i) In
case of a conventional, nonsuspended SET sequential
single electron tunneling occurs whenever Coulomb
blockade can be overcome. This is the case if the electro-
chemical potentials of source, drain, and the dot wu,, wg,
and w(N + 1) are aligned such that the (N + 1)th electron
can tunnel elastically. This situation can be compared to
the elastic emission of a gamma-ray photon from a nu-
cleus embedded in a crystalline matrix described by the
well-known Mossbauer effect [23]: The crystal takes up
the recoil of the photon as a whole so that no recoil energy
is transferred to the solid, and the photon energy remains
constant. (ii) This behavior changes dramatically for a
quantum dot embedded in a suspended phonon cavity
[24]. Microscopic calculations of the phonon spectrum
in a cavity orientated in the [100] direction perpendicular
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to the sample surface reveal van Hove singularities in the
cavity phonon density of states which are accompanied by
an extreme enhancement of phonon emission [14]. As a
result of this strong electron-phonon coupling, single
electron tunneling induces mechanical excitation of the
suspended quantum dot in the form of a localized cavity
phonon of energy £{),,. With a simple infinite thin-
plate model the lowest van Hove singularity for a cavity
thickness of z = 130 nm is found at /i{},, = 3hcL/z =
73 ueV for quantized dilatational phonon modes
(AQy, =~ 145 wpeV for flexural modes) with ¢ = 4.77 X
10° cm/s being the longitudinal velocity of sound in bulk
GaAs. This prediction compares well to the observed
energy gap €, = 100 ueV so that we conclude that quan-
tized phonon modes are excited within the cavity. Other
known mechanisms for suppression of conductance such
as spin blockade or interference effects in single or double
quantum dots are excluded by a detailed comparison of
our findings with data from previous studies on bulk
quantum dot systems [25].

Flensberg has shown [21] that in the strongly over-
damped, classical limit (quality factor Q = Q,;,/y <1
for small phonon lifetime y '), the energy cost of the
mechanical excitation goes along with a drop of the
chemical potential w(N + 1) in the dot, which leads to
a blockade of single electron tunneling. The energy gap
€ = gh{),, then depends on the Franck-Condon cou-
pling constant g. For Q — 0 the ‘“Mdssbauer picture”
[10] applies in analogy to a single nucleus emitting a
photon. Opposite to the situation described in part (i) of
Fig. 1(b) the cavity now picks up the “recoil” energy of
the tunneling electron whereas the electron system im-
mediately relaxes to a new ground state. As a result the
(N + 1) electron system remains in the phonon blockade
at a reduced energy as depicted in part (ii) of Fig. 1(b). On
the other hand, Q — o0 would correspond to coherent
cavity phonons where the Franck-Condon factors yield a
series of phonon sidebands n{) with weights given by the
Poisson distribution e 8g"/n! at zero temperature with
n = 0 corresponding to elastic tunneling.

To reestablish single electron tunneling, the energy
transferred to the cavity can be regained as displayed in
part (iii) of Fig. 1(b) where the cavity phonon is reab-
sorbed exciting a higher lying electronic state w*(N + 1).
To this end, the excited cavity phonon mode coherently
exchanges energy with the provided electronic excited
states u*(N + 1) which can be understood in terms of
(damped) Rabi oscillations [22].

The phonon gap € is recorded with a higher resolution
in Fig. 3(a) showing the central region of Fig. 2(a) in the
same gray scale. The conventional shape of the Coulomb
diamonds is marked by solid lines. Clearly, the asymmet-
ric shape of the gap can be discerned: The crossing of the
two solid lines indicates the position of the missing single
electron tunneling conductance peak. The onset of con-
ductance [denoted * in Fig. 3(a)] occurs at a slightly
different value of V, by which the half diamonds are
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FIG. 3. Transport spectrum for (a) B = 0, (b) 170, (c) 260,
and (d) 450 mT. The line plots give the conductance near zero
bias. At certain magnetic fields (b),(d) excited quantum dot
states with higher magnetic momentum are brought into reso-
nance with the cavity phonon reenabling single electron tun-
neling. Otherwise (a),(c) transport is suppressed due to phonon
blockade with an excitation barrier of around 100 ueV.

offset as indicated by dotted lines. This offset is also
explained by the model developed in Fig. 1(b): At the
onset of conductance at Vi = €y/e the energy level
(N + 1) must be aligned with the upper reservoir in
order to permit single electron tunneling. Hence, the
initial level position is shifted by 6V, = €)/2ea (where
a = C,/Cy) on the gate voltage axis.

In Figs. 3(b)-3(d) the same region is plotted for per-
pendicular magnetic fields of 170, 260, and 450 mT. It can
be seen that for (b) and (d) phonon blockade is lifted
leading to single electron tunneling resonances near zero
bias. However, for the intermediate field in (c) the block-
ade is present. As mentioned above the lifting of the
phonon blockade at low temperatures requires coherent
coupling to an energetically higher lying state u*(N + 1).
According to the data displayed in Fig. 3 the excitation
energies w*(N +1,B) — u(N + 1, B =0) can be tuned
in and off resonance [cf. part (iii) of Fig. 1(b)] by means
of an applied magnetic field. We therefore conclude that
the excited states w*(N + 1) possess angular momentum
h(€=1,2...).

A direct comparison of the magnetic field dependence
to transport spectroscopy on the dot is depicted in Fig. 4
where we consider two adjacent resonance peaks « (right,
cf. Fig. 3) and B (left). In Fig. 4(a) conductance traces are
recorded for bias voltages from 0 to —800 uV at B =
0 mT with excited states marked lines. The zero-bias
conductance is plotted logarithmically as a function of
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FIG. 4 (color online). (a) Line plot of conductance resonances
a and B at different source drain bias voltages between 0 and
—800 wV. Ground and excited states are marked by lines. The
conductance at Vg = 0 wV is suppressed. (b) Conductance
near zero bias for resonance « plotted against gate voltage
V, and magnetic field B. Finite conductance appears for 57,
170, and 400 mT. (c) Similar plot for resonance B. Nonzero
conductance is found for 230 and 510 mT.

both gate voltage V, and magnetic field B for & and B in
Fig. 4(b) (white: 0.01 wS, black: 0.2 w«S) and 4(c) (white:
0.01 uS, black: 2 uS), respectively. For resonances a and
B we find excited states at energies ui' =230 eV,
e =440 peV, ugd =740 peV and ug' =380 ueV
and ,LLEZ =760 pneV. Strikingly the number of states
matches the number of discrete magnetic fields at which
phonon blockade is lifted at 57, 170, and 400 mT in « and
230 and 510 mT in B. For higher magnetic fields the
increasingly complex excitation spectrum [16] being
characterized by multiple level crossings and mixing of
states provides a quasicontinuum of excited states to fully
restore single electron tunneling.

The presented measurements demonstrate that for
freely suspended quantum dot cavities conductance near
zero bias is completely suppressed as single electron
tunneling gives rise to the excitation of a discrete cavity
phonon. The resulting energy loss leads to a suppression of
linear electron transport and to the formation of a distinct
energy gap. This phonon blockade effect can be overcome
at bias voltages large enough to bridge the energy gap,
or at a sufficiently high bath temperature. A third
mechanism circumventing phonon blockade is given by
aligning higher lying electronic states such that elec-
tronic transport is enabled through these states after
reabsorption of the cavity phonon in a process similar
to Rabi oscillations.
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