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Artur Erbe and Robert H Blick

Center for NanoScience and Sektion Physik, Ludwig-Maximilians-Universität,
Geschwister-Scholl-Platz 1, 80539 München, Germany

E-mail: florian.beil@physik.uni-muenchen.de

Received 10 February 2003, in final form 7 April 2003
Published 15 May 2003
Online at stacks.iop.org/Nano/14/799

Abstract
We present measurements on nanomechanical resonators operating in the
radio frequency range. We apply a set-up which allows the comparison of
two schemes of displacement detection for mechanical resonators, namely
conventional power reflection measurements of a probing signal and direct
detection by capacitive coupling via a gate electrode. For capacitive
detection, we employ a preamplifier, mounted close to the sample and
connected to it via bond wires, which enables direct measurements of the
resonator’s displacement. We observe that the response of the mechanical
resonator depends on the detection technique applied, which is verified in
model calculations. We show results for the detection of subharmonics.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Nanoelectromechanical systems (NEMS) promise to be ex-
tremely fast and sensitive tools for sensor and communication
technology and may also be regarded as ‘quantum-mechanical’
resonators when operated at several gigahertz and ultra low
temperatures. Here, we want to present a detailed investigation
of two different detection schemes important for achieving sen-
sitive displacement detection in NEMS. This is not only ben-
eficial for communication electronics or scanning probe mi-
croscopy, but also for attaining a handle on quantum squeezing
experiments with these mesoscopic mechanical systems [1].
After touching on the fabrication of the nanomechanical de-
vices, we will focus on conventional reflection measurements
and a detailed comparison to direct displacement detection via
a preamplifier will be drawn. This scheme of detection is also
suited for probing quadrature squeezed states [2]. Finally, we
present results on the generation of sub- and ultra-harmonics
in simple beam resonators.

2. Experimental methods

The suspended silicon beams are machined from silicon-on-
insulator materials, covered by a 50–100 nm thick metal

layer. Electrodes are placed close to these, allowing capacitive
excitation and detection (see [3] for details). A scanning
electron micrograph of such a structure is shown in figure 1.
The details of the techniques used to fabricate nanoscale
devices have been reported in more detail in previous work [4–
7]. The resonators are driven via the Lorentz force generated
by placing the structures in an external dc magnetic field and
driving an alternating current along the conducting metal on top
of the beams (magnetomotive excitation). The conventional
way of detecting the resulting displacement of the oscillating
motion is to take advantage of the amplitude dependent
impedance Ẑres of the resonator. The total impedance of the
beam resonator in a magnetic field B under harmonic excitation
at the eigenfrequency ω0 = 2π f0 is given as

Ẑres(ω = ω0) = R +
L2 B2

2µmeff
, (1)

where ω is the frequency, R the dc resistance, meff the effective
mass of the beam, µ the attenuation constant and L is defined
via the length of the beam l as L = l π

2 . Commonly the total
dc resistance of the samples is of the order of 40–50 �. The
change in impedance is detected by tracing the reflected power
using a network analyser in combination with a scattering
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parameter test set (see figure 1). It should be noted that,
depending on the sample’s resistance and its matching to 50 �,
the resonance is observed as a peak, while for other resonances
a dip is found. If R < 50 � than Ẑres is shifted closer to 50 �

in resonance and a dip is observed, as the lower impedance
mismatch means lower reflected power. On the other hand the
resonance is observed as a peak if R > 50 �.

Direct displacement detection is enabled by the
aforementioned gates. The resonator is driven by an induced
Lorentz force, which modulates the capacitance between the
resonator and the gates due to the displacement of the beam.
This change in capacitance induces the measured voltage signal
at resonance δCres ∼ δVres. Low-temperature amplification of
the small voltage signal is desirable, therefore we use a fast
preamplifier (Fujitsu FHX35X) for this measurement. The
transistor in general serves as an impedance converter. The
set-up and the amplifier are shown in figures 1(b) and (c).
As seen the large input impedance has to be accounted for
by placing in parallel a resistor of 10 M�, a capacitor on the
supply line of 47 nF, and an additional resistor of 1.5 k� on the
output. Due to the gigahertz bandwidth of the HEMT we are
able to monitor the charge on the gates with a time resolution
in the nanosecond range. A limitation of this set-up is given
by the low gain and the still large input capacitance of the
circuit. However, a gain increase can be achieved by adjusting
the circuit, while the input capacitance can easily be reduced
by a further length reduction of the bond wire connecting the
gate and amplifier input port.

3. Results and discussion

Several resonators with different dimensions [(4.8 × 0.17 ×
0.19)µm3, (5.0×0.25×0.19)µm3, and (1.2×0.1×0.1)µm3]
were investigated: in figure 2(a) the reflectance spectrum for
a magnetomotively driven beam is shown. This resonator
possesses an eigenfrequency of 81.7 MHz at 4.2 K. The
magnetic field was oriented perpendicular to the beam yet
parallel to the sample surface. It has to be noted that this
is a hybrid resonator, i.e. the combined elastic constants of Au
and Si will determine the response. The inset in figure 2(a)
shows nonlinear effects, seen in a typical hysteresis [5]. The
eigenfrequency can be tuned by electrostatic forces exerted
on the beam when applying a dc voltage Vg at the electrodes
depicted in figure 1(a). As expected, we find the shift in
eigenfrequency � f0 to be dependent on the gate voltage as
� f0 ∼ V 2

g .
Using capacitive detection on an identical resonator for

probing the mechanical resonances leads to the traces depicted
in figure 2(b). By evaluation of the full width at half maximum
δ f0 we observed an enhanced quality factor of�cap = f0/δ f0 =
ω0/δω0 � 4100 as compared with figure 2(a). This value is
increased by a factor of 1.50, which can be explained in the
following way: the maximum induced voltage over the beam
due to its motion in the magnetic field can be written as

Vind(ω) = iωL Bε A(ω), (2)

where ε denotes a mode-specific factor and A the amplitude of
the oscillation. This approach is justified if a periodic motion

2 µm
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Figure 1. (a) Scanning electron micrograph of one of the
nanomechanical resonators: the silicon beam is covered by a thin Au
layer, the left and right electrodes allow application of an additional
dc voltage to tune the eigenfrequency or an ac voltage for driving
purposes. Also pictured is the experimental set-up for sampling the
mechanical properties of the suspended beam. For characterization
we employ a network analyser. (b) Preamplifier: one of the gates is
coupled to the amplifier enabling capacitive detection of the beam’s
displacement. A magnified view of one structure is depicted in the
inset. (c) Circuit diagram of the set-up (see text for details).

at frequency ω is assumed. In the following we simply use for
A(ω) a Lorentzian

A(ω) = 1√
(ω2

0 − ω2)2 + 4µ2ω2
. (3)

In order to derive an equation for the case of capacitive
detection corresponding to equation (2), it is advantageous
to use an expansion to the second order of the capacitance
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Figure 2. (a) Measured resonances for an incident power of
P = −63 dBm for increasing magnetic field strength. This
mechanical resonator is 4.8 µm long, 170 nm wide and 190 nm
thick. The magnetic field is oriented in plane of the sample surface
and perpendicular to the beam. By fitting the peak with a Lorentzian
we get f0 = 81.77 MHz and δ f0 = 29.84 kHz. The inset shows the
observed hysteresis which emerges when tracing the frequency from
low to high (and vice versa) in direct reflection. (b) Resonances in
the spectrum detected by capacitive coupling via the preamplifier.
The incident power was raised from P = −63 to −41 dBm. Values
determined for the eigenfrequency and full width at half maximum
are f0 = 81.69 MHz and δ f0 = 19.89 kHz.

between the gate and beam [5]

C(A) = C(0) +
∂C(A)

∂ A

∣∣∣∣
0

A +
1

2

∂2C(A)

∂ A2

∣∣∣∣
0

A2 + · · · . (4)

In equilibrium the beam is in a state of minimum total energy.
Neglecting contributions from built-in mechanical stresses the
electrostatic energy is minimal, the first derivative of C(A) with
respect to the amplitude A has to vanish (∂C(A)/∂ A)|0 = 0.
Hence, the induced voltage can be written, using equation (4),

as

Vcap(ω) = Q

C(A)
� QC

C0
− 1

2

QC

C2
0

∂2C

∂ A2

∣∣∣∣
0

A(ω)2

= V0 − 1

2

QC

C2
0

C ′′
0 A(ω)2, (5)

where C ′′
0 denotes the second derivative of the capacitance at

A = 0. QC is the accumulated charge on the gate when a
potential V0 is applied to it. The different functional forms of
equations (2), (5) result in two observable phenomena:

(1) Capacitive detection leads to a shift of the resonance

frequency by �ω = ω0 −
√

ω2
0 − 2µ2.

(2) Instead of Vind ∼ A, we find for capacitive detection
Vcap ∼ A2 and thus a width reduction of the resonance.

The ratio of the quality factors 	 = �cap/�ind can be
written as a function of the resonance frequency ω0 and of
the effective attenuation constant µ. Fitting the reflectance
spectrum for magnetomotive excitation with a Lorentzian
yields µ = 94.2 × 103 s−1, and we obtain 	 = 1.55, which
agrees very well with the measured value of 1.50. The observed
shift of the resonance shows the proper sign, while the absolute
value of about 100 kHz is one order of magnitude above the
calculated value. We can conclude that capacitive detection
probes � values larger than the base frequency by a factor of
∼√

2.
This can also be quantified by representing the sensitivity

of a mechanical lever by the minimum detectable force. As
shown by Stowe et al [8] this force for rectangular levers
is limited by vibrational noise and given for a bandwidth of
B = 1 Hz by

Fmin =
√

2κkBT

π� f0
�

√
wt2kBT

l�

√
Eρ, (6)

where κ is the spring constant of the beam, w, t and
l are the width, thickness and length of the beam, E is
Young’s modulus, ρ the density and kB Boltzmann’s constant.
Obviously, the aim is to achieve a considerable size reduction
of the structures leading to increased eigenfrequencies of the
mechanical systems, while another approach is to enhance
the � value. Capacitive coupling between gate electrode
and the metallized resonator is estimated to be 200 aF [9],
which translates, at an excitation power of −42 dBm, into a
force sensitivity of 9.4 × 10−14 N Hz−1/2. Using the set-up
discussed above as an electrometer we find a charge sensitivity
of 1.3×10−3 e Hz−1/2, which is two orders of magnitude better
than previously measured [10]. Since the network analyser
records amplitude and phase of the reflected signal it is also
possible to implement a more sensitive lock-in technique for
detection.

Yet another approach to increase the sensitivity of
the mechanical resonators is given by probing sub- and
ultraharmonics of the mechanical motion. In general these
harmonics are nonlinear phenomena: the stationary forced
oscillation of a linear oscillator follows the frequency of
the exciting force, whereas nonlinear oscillators may show
resonances at frequencies different from that of the exciting
force. In figure 3 we present measurements for two further
resonators with modified dimensions of (5.0 × 0.25 ×
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Figure 3. Radio frequency spectrum of the reflected power for two
different resonators: (a) the resonance at f a

0 = 35.5 MHz can be
assigned to the first resonant mode of the beam, while the resonance
at 26.9 MHz can be explained by subharmonic excitation at
(3/4) f a

0 . The inset shows a finite-element simulation of an excited
mode. (b) Shown is the resonance of the base frequency
f b
0 = 133.6 MHz and an ultra-harmonic at (3/2) f b

0 . In the inset the
variation of the � value with temperature for the two peaks observed
is shown. The full squares refer to the resonance at 133.6 MHz
while the full circles refer to the 192.8 MHz peak.

0.19) µm3 and (1.2 × 0.1 × 0.1) µm3. The magnetic field
was oriented perpendicular to the sample surface so that an
in-plane displacement of the beams is achieved. The measured
reflectance spectrum for the first beam in figure 3(a) shows
two resonances at 26.9 and 35.5 MHz, whereas the spectrum
for the second geometry in figure 3(b) shows resonances at
133.6 and 192.8 MHz. Using finite-element calculations [11]
we can assign the resonances at f a

0 = 35.5 MHz and
f b
0 = 133.6 MHz to the first in-plane transverse modes of

the resonators. In figure 3(a) the resonance at 26.9 MHz
relates to a resonant excitation of a subharmonic at f a

sub =
(3/4) f a

0 [12]. The amplitude of the resonance measured
depends on the form of the excited mode and drops with
increasing eigenfrequencies [13], which explains the higher
amplitude for the low-frequency subharmonic in figure 3(a).
For the second device the resonance at 192.8 MHz can
be assigned to resonant excitation of an ultraharmonic at
f b
ultra = (3/2) f b

0 [12]. These harmonics are due to the
nonlinearity of the restoring force introduced by the clamping
points of the beams. Following classic experiments on
relaxation in crystalline specimens we measured the � value

over a range of temperatures. Each relaxation mechanism
is characterized by its temperature-dependent relaxation rate
τ , which in most cases follows the Arrhenius equation [14].
The contribution of each friction mechanism to the internal
damping is maximal when ω0τ = 1, which results in a peak-
like relaxation spectrum when scanning the temperature. The
insets of figure 3(b) shows the � values of the f b

0 and (3/4) f b
0

resonances from 4–200 K. The linear behaviour is indicative
of a distribution of relaxation rates rather than the occurrence
of one single relaxation mechanism, e.g. related to surface
defects, which otherwise might cause a nonlinear response.

4. Conclusion

In conclusion, we have presented measurements on several
nanomachined resonators operating in the radio frequency
regime. A preamplifier mounted close to the sample enables
us to directly detect the displacement of the nanowires by
capacitive coupling. This is compared to the conventional
method which monitors the reflection of incident power. We
find changes in the �-factors depending on the detection
scheme applied leading to an increase in sensitivity. We
also found evidence for the generation of sub- and ultra-
harmonic resonances. This will allow to further increase
the force sensitivity by pumping the nanomechanical system
on the fundamental mode, while probing capacitively on
the harmonics for application in quantum non-demolition
measurements [2].
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