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Nonlinear acoustoelectric transport in a two-dimensional electron system
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We study both theoretically and experimentally the nonlinear interaction between an intense surface acoustic
wave and a two-dimensional electron plasma in semiconductor-piezocrystal hybrid structures. The experiments
on hybrid systems exhibit strongly nonlinear acoustoelectric effects. The plasma turns into moving electron
stripes, the acoustoelectric current reaches its maximum, and the sound absorption strongly decreases. To
describe the nonlinear phenomena, we develop a coupled-amplitude method for a two-dimensional system in
the strongly nonlinear regime of interaction. At low electron densities the absorption coefficient decreases with
increasing sound intensity, whereas at high electron density the absorption coefficient is not a monotonous
function of the sound intensity. High-harmonic generation coefficients as a function of the sound intensity have
a nontrivial behavior. Theory and experiment are found to be in a good agreement.

INTRODUCTION paperst2~1®The application of a dc voltage to the crystal can
result in the current amplification of soulfd*’and in the

The interaction between surface acoustic wa@s\W’s)  formation of stationary nonlinear wavést*1® Analytic re-
and mobile carriers in quantum wells is an important methodsults in the theory of nonlinear acoustic waves in bulk pi-
to study the dynamic properties of two-dimensioaD) ezocrystals with free carriers were mostly obtained in the
systems. The SAW can trap carriers and induce acoustiimit of small amplitudes or for the case of very intense
charge transport as has been investigated in a number afoustic wavet?'3®For nonlinear SAW's in crystals with
systems in view of possible device applicatidnalso, the  a 3D electron gas, a theory was developed in the limit of
SAW-method was applied to study the quantum Hallvery high amplitudes, when the SAW bunches electrons near
effects>™ electron transport through a quantum-pointthe crystal surfact® Another theoretical aspect related to the
contact] lateral nanostructurésand commensurability ef- generation of the second harmonic of a SAW was studied in
fects in a 2D systerhHowever, all those experiments have Ref. 19 by using the coupled-amplitude method and pertur-
been done in the regime of small signals and linear interacbation theory. A theory of acoustoelectric interactions in a
tion. A recent paper by Rottet al® reports strongly nonlin- 2D electron system was developed mostly for the linear re-
ear acoustoelectric effects in a 2D electron gaBEG),  gime of interactiorf®2*
which become possible in hybrid structures based\gBs Here, we study both theoretically and experimentally the
semiconductors and LiNbQ °!! In these experiments an transition from the linear regime of the acoustoelectric inter-
intense SAW breaks a 2DEG into moving electron stripesaction to the limit of strongly nonlinear effects in a 2DEG.
and all characteristics of the acoustoelectric interaction ar©ur theoretical results are applied for a description of experi-
strongly modified as compared to the linear case. In modermental data on hybrid structur®s* We pay attention to den-
hybrid structure¥ the SAW-induced potential amplitude can sity dependences of the absorption coefficient and the SAW-
become comparable with the band-gap of a semiconductovelocity shift because the electron density is a tunable
The previous pap@on nonlinear effects in the hybrid struc- parameter in experiments on 2D systems. Such dependences
tures with a 2DEG includes a brief qualitative analysis. Herewere not discussed in detail in the context of 3D
we present a detailed theoretical study of nonlinear acoustsystems2~1® |t turns out that for low densities, the absorp-
electric effects in a 2D electron system and develop dion coefficient is a decreasing function of the sound inten-
coupled-amplitude method for intense SAW'’s interactingsity caused by the trapping of electrons in the SAW piezo-
with a 2DEG. Using our theoretical results we can explainelectric potential. At sufficiently high electron density,
main experimental observations. Including the effect of elechowever, the absorption coefficient is a nonmonotonous
tron diffusion we find a good quantitative agreement be-function of the sound intensity. This behavior can be under-
tween theory and experiment for the case of the SAW abstood in terms of a dynamical screening effect. Also, our
sorption coefficient in the nonlinear regime. guantitative analysis shows that the absorption coefficient at

Nonlinear acoustic waves in bulk piezocrystals with freeroom temperature is strongly reduced due to electron diffu-
carriers were discussed in a number of theoreticakion. A nonmonotonous behavior with increasing sound in-
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tensity was also found for the intensities of higher harmonics \% A4 Y,
in a short device. contact contact
The coupled-amplitude method with the introduction of \
fast and slovxé leasriables was used before for a description of 1DT1 IDT2
bulk systems:*™ However, the formulas from the bulk z
theory cannot be directly applied to surface waves because cﬁ i ﬁ
the complex character of the lattice vibrations in a SAW. To /
develop the coupled-amplitude method in a 2D system, we
introduce a local velocity shift and a local absorption coeffi-
cient in an integral form through an electron current, a SAW
potential, and an electromechanical coupling coefficient of a
microstructure. The resulting formulas can then be applied tc
any type of SAW's interacting with a 2DEG. Moreover, us-
ing our approach, we can find solutions for higher harmonic

semiconductor film with
InGaAs quantum well LiNbO,

FIG. 1. The cross section of a hybrid semiconductor-

. . . S . %iezocrystal structure. An epitaxial lift-off film has a thickness
for arbitrary SAW intensity. This is in contrast with pertur- - m. The Ohmic contacts are formed to a 2D electron gas. The

bation methods deY?'gged earlier for 3D systems and valid §f,n5p0rt gate with applied voltayg is used to control the conduc-
small SAW intensities.” At very high intensities, we find ity of the electron plasma. A high-frequenéy) signal is applied
analytical asymptotic dependences for the high-harmonic ing the metal interdigital transducer IDT1 in order to generate sur-

tensities in a 2D system. _ o face acoustic waves. A surface acoustic wave propagates though a
As has been shown befOI’e, the linear appl’OXImatlon h0|d§amp|e and is detected by the transducer IDT2.

when én<Ng, whereNg is the equilibrium 2DEG density

andén is a density perturbation due to a SAW. In the linearbeing bonded to a piezoelectric host crystal, in our case,
theory, the absorption coefficiefi® and the SAW-velocity  LiNbO;.2° The semiconductor layer contains an InGaAs-
shift due to the 2DEG502 are given by the well-known AlGaAs quantum wellQW) with a high-quality 2DEG, to

relatiorf®?! which Ohmic contacts are formed. The distance between the
0 ) QW and the piezocrystal is only 32 nm, whereas the distance
_ Ous i I’ Kgil(q) ioolom, @ between the QW and the top transport gaté=s450 nm. In
0?29 2 1+i(oglom+Dealv?)’ our modelx andy are the in-plane coordinates amds the

normal one. The QW plane correspondszted, and the
whereq is the SAW wave vector;? is the sound velocity in  SAW travels in thex direction(see Fig. 1 By changing the
the absence of a 2DEG;, and D, are the 2DEG conduc- transport-gate voltag¥,; one can tune the electron density
tivity and the diffusion coefficient, respectivel;(iff is the  Ng(Vy) in a QW. In this structure, traveling SAW’s can in-
effective electromechanical coupling coefficient:,(q) duce very strong piezoelectric fields in the semiconductor
=v§eeﬁ(q)/(2rr), where e.4(q) is the effective dielectric layer due to the strong piezoelectricity of the host LINbO
constant in a 2D system. In most piezoelectric crystals, thérystal. A SAW is induced and detected by the metallic in-
coupling K2,<1. In GaAs,KZ%,=0.000 64, whereas in the terdigital transducers IDT1 and IDT2, respectively, at room
hybrid structures as studied here, it is two orders of magnitémperaturé. The acoustoelectric current is measured be-
tude larger, in the range of 0.610.051° but still much less fween two Ohmic contacts labeled 1 and 2 in Fig. 1.

than unity. The goal of this paper is to describe the acousto- SAW'S in a piezoelectric crystal with a 2D plasma are
electric interaction for the case of large amplitude SAW's,described by the system of equatiths

when én~ Ng and the perturbation theory is no longer valid.

At the same time, the couplin§Z; will be assumed to be PUi = CikimImdiUi + Piik 1 kb, 2
much less than unity. Below, we will generalize the results

following from Eq. (1) for the strongly nonlinear case, when €(X3) 90 p—4mpidid U= —4mend(xs—d),  (3)
on~Ns. wheree= —|e| is the electron charge, is the mass density,

The paper is organized in the following way. In the first
section, we will give the general equations for SAW's on atensor,p”k is the piezoelectric tensoun,(x,z,t) is the lattice

piezoelectric 'crystal. The second section is devoteq to %isplacement and(x,z,t) andn(x,t) are the electrostatic
coupled-amplitude method developed for the case of intens otential and the 2D electron density, respectively. In Egs.

SAW’s. The third and fourth sections are about phenomen ] .
related to large-amplitude SAW’s in a 2DEG. Then, we will (@), (3), we have used the notationgf=4f/dx, and f
discuss experimental data on the hybrid structures and appfy ¢f/t, and the sum convention for repeated indexeés.

our theoretical results for the interpretation of experiments. € time, andz=z, x,=y, andx; =x are the coordinates.
In our geometry, the SAW propagating in tRkelirection

is a purely Rayleigh wave, in which only two components of
the displacement), andu,, are nonzero. Hence, the electric
In usual GaAs-based microstructures it is very difficult tofield E is also polarized in thexz) plane. This case corre-
realize SAW's with high-amplitude potentials because thesponds to the hybrid structures studied in experim&rifs,
electromechanical coupling in GaAs is relatively weak. Awhere the 128°-rotate¥ cut of LiNbO; is used. The surface
strong piezoelectric interaction can be achieved in hybridf the thin GaAs film is (001). The SAW propagates in the
structure&® (Fig. 1). Those consist of a semiconductor layer [110] direction of GaAs and direction of LiINbO;.

and e is the dielectric constant. Further,,, is the elastic

I. MODEL AND GENERAL EQUATIONS
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The electron 2D plasma is described by the usual hydro+c.c., wheref ,(x) is an envelope function. Also, the electric
dynamic equations field E can be written in the way similar to E7).

) The solutions(6), (7) are a sum of linearlike SAW'’s,
9j(x,t) —o (49  Which slowly vary in the amplitude and in tiprofile. The

IX ' z distribution of lattice displacement® is a sum of expo-

nential functions exp- yj[g,+ &n(X) |2}, wherey;[q] are the

dp(x,d,t) an(x,t) coefficients depending also on material const&h@n short
T X —eD. ox (5) distances {-A) the envelope functiong,(x) can be re-
garded as constants and we can solve E)s:(5) consider-
ing only the “fast” variablex,;. n,(x) and ¢,(x) should be
considered here as the functions of the parameters
a,,a,, ..., Ny, andgy. Then, havingh, and ¢, as functions
ofaj,a,, ..., Ny, andEy, we can find the behavior @f,(x)
on long-range scale~ 1% \.

en(x,t)+

wherej is the 2D electron currenty=|e|ung(x,t) is the
2DEG conductivity,u is the mobility, andD, is the electron
diffusion coefficient. Equatioii5) is valid in the long wave-
length limit, whengl.<1, wherel is the electron mean free
path.

_The wave equation$2), (3) should be solved together — the glectrostatic potential is written in a self-consistent
with the boundary conditions at the surface 0 and at the way:
interfacez=d. At z=0, these conditions are the following:
¢(Z:0):O and Uzi:CZ”m(é’mU|+O7|Um)/2+ p|zk(5’|¢20. ¢(X,Xl,2): ¢ind+ d)SAWa (8)
Hereo,; is thez component of the stress. The top metal gate
is thin and does not influence the boundary condition for thavhere ™ and ¢S”" are the potentials induced by a 2DEG
stress tensor. At the semiconductor-piezocrystal interiace, and by piezoelectric charges of a SAW. Using E8). we
u;, ando,; should be continuous, ard,(z=d+8)—D,(z  write
=d-96)=4men, where 6—0 and D;=-¢€(2)d¢ '
+27Pik (AU, + dyuy) is the electric displacement. For sim- €(2)3,0;p™=—4mrend(z—d), 9
plicity, we assumed above that the 2DEG is located directly
at the semiconductor-piezocrystal interface. €(2)9;0; > =41pPj 9; 9| Uy . (10)

Il. COUPLED-AMPLITUDE METHOD ¢ and $>*W can be expressed by the harmonic amplitudes
ndand M. For  example, ¢™=g¢g9(x,2)
The system of nonlinear equatio®—(5) can be simpli- T 2n=12.... Ir?d(x!z)el_q”)(“fc-c- In the limit Fmag?\~K§ff
fied in the limit of weak electro-mechanical couplitig, <1, we find from Poisson’s equatidsee Appendix Aand

~p?(ce)<1. In this limit, we can introduce two coordi- fom the conservation of charge
nates, the “slow” variablex and the “fast” variablex; =x

—v2t.3415The solution is of the forntsee Appendices A and ind(y d)= 2776_””()()' EMx,d)=—iq,é™(x,d),
B), . €et(dn)dn nx 5
(13)
u(x,z,t) =u(x,Xq,2) = Ug(X,2) + :Ez an(x) jn(x)=vgenn(x),
XU z;q,+ 69,(x)]e'9*1+c.c., wheren=1,23... . Here e.s(q) =[ e, + €5coth(q|d)]/2 is

6) the effective dielectric constant including the gate electrode
effect, ande, and ¢, are the dielectric constants of a host
piezocrystal and a semiconductor, respectivly.

H(XZ)= (X, X1,2) = do(X,2)+ X, an(X) The nth harmonic of the SAW potentiap3*" is given
“hae only by a,(x) and by material constants and can be easily

X DY z;q,+ 50,(X) e"9*1+c.c., found from the Poisson equatioil0). At z=d we have

SAW(x,d) =Cpan(x), where the coefficien€, depends on

@) the geometry and the material constants. For example, in a

This solution is written as a sum of harmonics with wavecrystal of the type of GaA<C,,=p,9(d,), whereg(q,) is a
vectorsg,=ng, whereq>0 is the wave vector of the ini- complicated function ofj,. Below, we will give the neces-
tially generated SAW neax=0. The vector A%z;q]  sary relations for the hybrid structures.
=(U%zq];®%zq]) and the quantitysq, are determined To find the harmonic amplitudes, and ¢,,, we have to
by a linear system of equations as given in Appendix B. Thesolve Eqgs.(3), (4), and(5) regarding the “slow” variablex
envelope functiona,(x) are slowly changing on the scale of as the constant. The slowly varying quantities(x) and
N=27/q. Itis assumed that the SAW intensity related to thej,(X) can be found as Fourier components of the solution
vector A% z;q] is unity and thus the total SAW intensity is n(x;,x) from a “fast” equation in terms of;. In a self-
lsaw=Sn=12_.Jan(X)|>. The functions uy(x,z) and consistent approach, the electron densify,,x) is deter-
do(x,2) describe the static spatial distributions, that can bemined by the SAW-induced potential atz=d,
induced by a SAW. dSW(xg, x,d) = p5™M(x,d) + =15 . Chan(x)ed i+ c.c.,

The functionsj(x,x;,t) andn(x,x;,t) can be written in  through a nonlinear equatiérBy using Poisson’s equation,
the standard formf(x,x;,t)="fo(x)+=Z,212 . fo(x)e'9*r  the results of Appendix A, and Eq&) and(5), we obtain
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leln(xy,x)

d +oo
- d_xl{ ﬁx dx;G(xy—x7)N(X7,X)

+ESAW(xq,X) —eDe%)(ll’x)—evson(xl,buo,
(12)

+o @ik =Xy
G(xl—xi)zeﬁx dkm, (13
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and the static electric field&g(x,d) can be neglected.

Equations(14) and(15) can now be applied to various types
of SAW’'s by introducing specific electromechanical
coupling coefficients.

Ill. ACOUSTOELECTRIC TRANSPORT
IN A TWO-DIMENSIONAL PLASMA

Here, we intend to consider the SAW absorption and the
acoustic charge transport in the regivie=V,. The behav-
ior of a 2DEG in an intense SAW at small distances\(

whereby is a constant, which occurs after one integration inc@n be assumed to be periodic and is described by nonlinear

the conservation-of-charge equati@. Taking into account
'\ <1, we assume that the solution of H@2) is periodic
in - Xq, Ng(Xy,X)=ng(xs+AN,x).  Also, {ng(xq,X))
= [3ng(X1,X)dx;, /N =ng(x), whereny(x) plays the role of a
“local” 2D density.

The functionsa,(x) are connected by the system of non-
linear equationgsee Appendix B

G ~19anla.az, .. . ino.Eqlan, (14
where
K2(dn) 27 eny(x)
Pnlan 2. - o Bol = = 5 ) 5o
_i Kaa) J0EF
2000m(dn) | pSAY(x)|?
andn=1,2,3... .

The local velocity change of a SAV§v, and the local
absorption coefficient',, can be expressed bq,,:

ov, I,
5Qn _Qn_o |?- (16)
S
Using the relation
[ES"om(dn)
KZ(On) = ————— (17
inn
(see Ref. 2ftand Egs(11) we write
dun(x) (B "(x1.2)] (x1,%)) 19
v 200(x) !
ESMW(xq,%)j(xq,X
Fn(x)=< (X1,X) [ (X1,X)) (19

In(X)
Here we use the notatiod$(x,,x))= f5f(xy,X)dx, /X, and
fa(x1,X) =Fn(x)expianx,) +c.c.

In this section, we have assumed théf,<1 and ne-
glected the terms d%a,/dx?xéq,da,/dxxKd and

déq,, /dxe= Kgﬁ. The static electric fieldgby(x,z) in Eq. 7,
which can be induced by a SAW, will not play an important

equation(12). At long distances¥$\) the SAW behavior is
determined by complex amplitudeg(x), that can be found
by Egs.(14) and (15). First, we define the boundary condi-
tions atx=0: a;(0)=yI14(0) anda,(0)=0 forn=2,3,... .
Here,1,(0) denotes the SAW intensity generated by IDT1.
In this case, for a relatively short sample the SAW contains
mostly the fundamental SAW harmonic=1 with a small
admixture of the higher harmoniecs=2,3, ... . So, ifollows
from Egs.(14) and (15)

al(X): al(O)(1+ iX5q1[a1(0),0,0, e ;no,o]). (20)

We assume thafl,(0)—14(L)]<1.(0), where L is the
length of a semiconductor film and(L) is the intensity
detected at the IDT2. The latter is valid in a short sample
wherel';L<1. The first-harmonic absorption coefficient per
unit length, which is measured in the experiments,
is [11(0)—14(L)1/[11(0)L]=2Im{5q,[a;(0),0.Q...;n0,0]}
=I"1(a1,0,0....;n0,0)=I"y and the velocity shift
is 6v4(a1,0,0,...:n0,0)/v2=—Re(5q,[a1,0,0 . . .;n0,0]/q)
=6v,lvg.

The amplitudes of higher harmonics in a short sample
turn out to be given by

a,(x)=ix lim a,éq,[a4(0),0,0 .. .a,, . ..;ne0]

a,—0
WKgf‘f(qn) enn(o)
= , 21
€er(dn) Cn @)

wheren=2,3,4... . Here, we assume that,(0)—1,(L)]
>1,, which is valid for a short sample whefgL <1, and
we take into account that for the strongly nonlinear cBge
~TI',,. The intensity of thenth-harmonic is given by ,(x)
=|ay(x)|? and

lon M2 KZx(an)

|an|2 N 20n0m(an)

|Cn|2: (22)

[see Eq.(17)]. By using Eq.(21) we find the intensities of
high harmonics ak=L:

I,(L)= lim |a,69,[a4,0,0,... a,, ...;0,0|?L2

anﬂo

= TL2(KZi €crr) Anv 262Nn(0) |2,

role in this paper because we will consider the case withTo calculatel’; and v, we numerically solve Eq.12) for

no voltage applied to the Ohmic contactg,&V,) and a
relatively short device with.<1/I'°. Thus, ¢o(x,d)=const

the parametera; #0 anda,=0 whenn=2,3,... .Then we
can find the Fourier components 0fx;,a;). We now cal-
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culate the electron density(x;,a,) in the long wave-length S N N LA A
limit gd<<1. In this limit the function given by Eq(13) is [ N =0910cm®
reduced toG(x;—X;)=(4med/ ) 8(x;—x;) and Eq.(12)
now writes as

o
&
N

3
o

—
W
T

—

n(x,) (10101/cm2)

4meddn(xq,a;)

leln(xq,a1) u) — . ax +F*eod qx, + x1) _
s
dn(xq,a;) g
1:41 :
—EDeT_evgn(Xl,al)_bozo, (23) L‘—' 4

where the SAW-induced piezoelectric field is taken in the

form ESAY=F3"Wcos(gx, + x1), andx; is the phase of the

first SAW harmonic. For simplicity, we put in the following 2
x1=0. The constarlb, in Eq.(23) is directly connected with

the kinetic motion of a SAW and thus vanishes Q0.

Dividing Eqg. (23) by n and then integrating over; we get I &kﬁx
0 I P 1 "

SAW 0 0.2 0.4 0.6 0.8 1 1.2
47ed Fl . saw
el py = n(xq) + Sin(gxy) [ —€eDelIn[N(x1)] o (V)
S
dx’ FIG. 3. The calculated absorption coefficient of the first har-
Xl . . . . AW
= const+ evgxl+ boJ 1 _ (24) monicl'; as a_functl_on of the _p_otentlal amplltudﬁ mduc_ed_ by
0 n(xi) a SAW for various fixed densiti@8;. The parameters are similar to

those in Fig. 2. The dots show the experimentally measured absorp-

. . - tion coefficientl’; at the gate voltage- 7.5 V. This voltage corre-
The left-hand side of the above equation is periodic and thu§ponds to the maximal attenuation at the smallest rf power. In the

the right-hand side should be periodic as well. It implies thaﬁnset we plot the calculated local carrier concentraticas a func-

boS5dXi/n(X;) = —evd\. tion of the in-plane coordinate, for different total carrier concen-
A numerical solution of Eq(23) n(x;) at T=300 K and  tration Ng. The numbers attached to the plots correspon in

at various averaged densitidg=(n(x,)) is shown in the units of 1d° cm 2.

inset of Fig. 3. Here, we use the following parametgrs

=33 um, x=5000 cn?/Vs, D=u(KT/e), e=12.5, and

(I)SAW ; ;
v2=3.8x10° cmi/s. It is seen that with decreasifg, the %:_< L sinax)j(xa)

formerly homogenous 2DEG turns into moving electron vg 211 ,
stripes.
It follows from Eqs.(18),(19) that <F‘I’chos(qxl)j(xl)>

Iy

8 'd)fAW:OV

The calculated absorption coefficidnf as a function of the
electron densityNg for various potential amplitude@fAW
=F3"WIq is shown in Fig. 2. It was calculated from Egs.
(25) and the numerical solution far(x;). The potential am-
plitude ®3*" can be easily connected with the SAW inten-
sity 1, by using Egs. 17 and 22 wiﬂﬁgﬁ found numerically
E - - - in Ref. 9. As an example, in the hybrid structures at SAW
gate voluage (V) ] frequenciesf =114 and 340 MHz K2, is about 0.015 and
0.035, respectively.

We see in Fig. 2 that with increasirig;”" the absorption
coefficient in general decreases and its maximum is shifted
to the higher values dlNg. This nonlinear behavior can be

0 3 10 15 20 understood qualitatively as follows. For the densities

N, (10" 1/em’) Ns<NT®, the electron plasma forms the moving charge
stripes andothe electron velocify(eNy) is very close to its
H max H H

monicI'; as a function of the carrier densily; for various poten- maXImumv_S. HereNs den(_)tes the denglty CogrA(?/;/spondlng
tial amplitudes 5", =33 um, w=5000 crV/s, and T to the maximum of the functiof';(N) at fixed®7™". We

=300 K. Inset: The measured attenuation of a SAW as a functioVil Sho‘(’)\’z below that in the casel_\lS<N2“aX_ Iy
of the gate voltage for different high-frequeng§) powers applied  =|€|Ns(v¢)“/(I11)<Ng/l; . This asymptotic behavior fol-
to the IDT1;f=114 MHz. lows from the Weinreich relatiof?. In the regionNg> NI,

attenuation (dB/mm)

L=0.235mm {]

r, (1/cm)

10V

FIG. 2. The calculated absorption coefficient of the first har-
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1.0 T T

] 08}

0.6f

n o n,max

1 /1

-8 -6
gate voltage (V)

ov /v 5 (%)
)

-0.4
0.0
2.5
-0.5
2.0
-0.6
_07 [ Ouou\I- L | I T T T T T T T | 1. 1.5
0 5 10 15 £
N; (10"°cm?) =< 10¢
FIG. 4. The calculated SAW-velocity change, as a function 05k
of the electron density for various potential amplitude%*w. The
parameters are similar to those in Fig. 2. Inset: The measured ve
locity change of a SAW as a function of the gate voltage for dif- 0-%_0
ferent high-frequency (rf) powers applied to the IDT1;f SAW
=114 MHz. o (V)
the electric currentrE, decreases with increasings be- FIG. 5. The calculated intensities of higher harmonics with
cause of the screening effect. Thus, the absorption coefficiert2, 3, and 4 as functions of the potential amplitdb@*" for two
decreases as well. electron densitied=10'"° cm 2 (upper part and Ng=10"* cm?

In Fig. 3 we plotl'; as a function of the SAW potential (lower par}. The parameters are similar to those in Fig. 2.
OV for a fixed 2DEG density. For electron densities less
than about 18 cm™?, the functionl;(®3*") is always de- ~ plex and strongly differs from the weak-nonlinearity behav-
creasing. At higher densitids, (®*Y) has a maximum. We ior. At very large ®7*", the high-harmonics  intensities
attribute this behavior to the screening effect in a 2DEG. Attends to saturaté;,— 1, nax. At higher electron densities the
high density and smalb$A", the absorption is strongly sup- Saturation ofl, occurs at larger SAW potentialsee Fig. 3.
pressed because of screening. The intense SAW, however,

ran?d”k’t‘Les tge 2Dt'.EG a”d];f.c‘.msteqt“e{‘t')t" reduces Scr.‘fﬁ”.'”g' IV. ANALYTIC RESULTS FOR ACOUSTOELECTRIC
us, € apsorpton coefrnicient starts to Increase wi In- EEFECTS IN A 2D ELECTRON PLASMA

creasing®?™", when ®3*V is not so large. At larger
®SAY | the plasma becomes broken into stripes Bncde- In this section, we will give some analytic expressions
creases with; as 11,818 describing various acoustoelectric effects in a system with a

The velocity shiftév,; numerically calculated by Eq&25) 2DEG. For simplicity, we will not take into account diffu-
is shown in Fig. 4. With increasing SAW intensiiy, in-  sion, hence assuming.=0 in the formula for the current
the case of a totally depleted 2DEG. By analyzing Eg§)  ties or at low temperatures. It is convenient to start with the
and the functiorj(x,), we can see that, in the limit— o, We]nrellgrzls relation for a 2D system in the nonlinear
5le1/q)§AWOCl/\/|_, as in a 3D plasm¥ regime:* Assuming 'thatn(xl). and j(x;) are periodic

In Fig. 5 we show results of numerical calculations for thefunctlons we can rewrite E¢12) in the form
intensities of the high harmonidg /I , max=|Nn|%/N2, where

j(x))—v2en(xy) =by. (26)

2
eff

I ma= | (CI>SAW—>00)=7TL2K—q v2e?N?
, max™=nt =4 €t TS ST Obviously, it is valid in the limitk 2,<1. Using Eq.(26) we
can write (j)=|e|u(nE)=—u(jE)/v]. From this equa-

This formula was obtained taking into account tHat| fion we now get the Weinreich relation

—Ng when ®3*"—. The quantitiesl,, were calculated
from the Fourier components of the functinfix;). At small 0
amplitudesb$AY, 1, (A", being typical for weak non- (JEw _ vs 5

linearity. At larger®3*", the behavior ofl, is quite com- Gy ’ @7)
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where(jE,) is the dissipation in a SAW. To get E®7), we
have neglected the averaged electric fi¢leg =0 assuming
the caseV,=V,.

We now consider Eq. 23 witlD,=0. At fixed ®3*%,
there is a critical densiti;;, for the formation of stripes in
a 2DEG. WhenNg<N,; the plasma is split into electron
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sacrificial layer below the active semiconductor system. The
thin ELO film with a thickness of only 500 nm is then trans-
ferred onto the host LiNbQcrystal. The parameters for this
structure were described already in the beginning of Sec. I.
The geometry of the structure is shown in Fig. 1. For further
details related to the fabrication procedure of such quasi-

stripes. If Ng>Ng;;, the plasma is continuous but can be monolithic structures we refer the reader to Refs. 8—10. The

strongly modulated in space. For the chke<N,;;, the con-
stantby in Eq. (23) becomes zero and thus E@®3) has
formally two solutions

SAW 0
fi(x )=c0ns§—isin(qx )—E LX'
1A 41leld Vo Amleld™
fa(x1)=0. (28)

The solution has to be a periodic continuous combination o

these two functions. It follows from E@28) that in the limit
00> 0 Nei=®5"e /(47| €|d), whereoo=|e| uNs.
When Ng<N;; the plasma turns into stripes, which

means that electrons are totally trapped and the local electr

velocity in a 2DEG reaches its maximuiji(eNg)=v?.
From the Weinreich relation, we gefl';=(jE,)/I;
=[e|Ng(v )/ (el 1)< 111 1 240

Equations(23) and (24) can be used to find an asymp-
totic formula for I'; and (j) in the large density limit
when o¢>o0n,. In the limit o¢>0,, n=Ng
— (e @) /(47| e|d)sin(gx) [see EqQ.(28)]. By using the
above and Eq926) and(27), we have in the limitog> o,
and in the regionb "< ®

q)crit

5 -V

wherer .= qKZ2:/2 and® ;= N4 |e|d/ €. This equation
is valid when @— ®")/® > o/ ay. Equation (29)

reproduces the numerical data fBr(®3"") in Fig. 3 at
large densities. The asymptotic formu[29) was given be-
fore in Ref. 26 without noting the condition,> o ,,. In the
linear regime of interactiod’; and v, are given by the
formula(1).

SAW
@ 1

P crit

4o,

max o

2
I'y= ) (29

experiments were performed for two SAW frequencfes
=340 MHz andf=114 MHz at room temperature.

The SAW in our experiments can be strong enough to
break up an initially homogenous 2D plasma into moving
stripes. The transition to the regime of moving electron
stripes was directly observed in the experiments on acoustic
charge transportACT) in samples with specially designed
injection and detection datédn these experiments the ve-
lfocity of the ACT signal first increases with the SAW inten-
sity and finally saturates at the sound velocity. The latter
manifests the formation of stripes. Strongly nonlinear effects
are also observed in the attenuation data. The attenuation of
& SAW with f =114 MHz for different intensities is plotted
In the inset of Fig. 2 as a function of the transport-gate volt-
age, which determines the averaged electron density in a
2DEG. At small SAW intensities, the electronic sound at-
tenuation"® as a function of the conductivity, is described
by the well-known linear-theory equatidft) and exhibits a
maximum. This linear regime is realized in our experiments
at the smallest SAW intensities of aboutl2 dBm (inset of
Fig. 2. It is seen from the inset of Fig. 2 that at high SAW
amplitudes the attenuation is strongly suppressed and its
maximum is shifted to higher gate bias or conductivity, re-
spectively. The experimental data for a SAW with the fre-
quencyf=340 MHz look qualitatively similar to those for
f=114 MHz and were given earlier in Ref. 8.

The nonlinear regime of interaction is described by the
theory given in Secs. Il, Ill, and IV. To quantitatively com-
pare theory and experiment, we now express the SAW po-
tential amplitude®3*" through the input radio frequency
(rf) power P. The SAW intensity can be written als
=lgaw=2(P/w)10 '-"1° where the width of the transducer
w=0.55 mm. The insertion lossd$l) in the transducers
were measured to be 15 dB. Then, the SAW potential can be

In the end of this section we consider an asymptotic bewritten using Eq.(22) as ®3""=Kqp/21,/(qoyy), where

havior for the high-harmonic intensitids, in the limit 1,
— . The electron densityg(x,) at high®3*" can be writ-

KZ2,=0.015 forf=114 MHz® In Fig. 3 we also show the
experimentally measured absorption coefficient at the gate

ten in a parabolic approximation. Then, by calculating thevoltageV;=—7.5 V. This voltage corresponds to the maxi-

Fourier components n,, we find

that Inymax_lr'l
o (BAY) ~2Boc| 113 wheren=23, ... .

V. COMPARISON WITH EXPERIMENTAL DATA

mal attenuation for the smallest rf power,12 dBm (see
inset of Fig. 2. From the linear theory we find that the ab-
sorption coefficient is maximal &i;=0.9x 10'° 1/cn?. One

can see from Fig. 3 that the experimentally measured func-
tion I'y(®3"™) for V,=—7.5 V is in very good agreement

The experiments involving SAW’s were performed on thewith the calculated one foNg=0.9x10'° cm™2. Here we

hybrid semiconductor-LiNb@ structures fabricated by the did not use any fitting parameters. This quantitative agree-
epitaxial lift-off (ELO) technique developed by Yablonovich ment becomes possible if we account for the diffusion coef-
et al?’ The structures contain a 12-nm-thick high-quality ficient. The maximal absorption coefficient as calculated
Ing ,Gay gAs quantum well(QW) embedded in modulation from the linear theory i§'%" =7.6 cnmi . Without diffusion
doped A} ,GaAs barriers. In these structures, the thin this value is aboufl’,=14.3 cm . Thus, the diffusion
semiconductor layered system including a QW was tightlystrongly suppresses the SAW absorption.

bound to the lithium niobate host crystal by the van der At fixed SAW power and a sufficiently small densit,
Waals force$-°The MBE grown quantum well structure is the 2DEG is divided into stripes arld; increases with in-

removed from its native GaAs substrate by etching an AlAscreasing the gate voltage. In our thedrye< N in the regime
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L5 ————7—"——"1 7 long sample, where the contribution of high harmonics can
be very important?®2° This long-distance transformation to
high harmonics was studied experimentally for SAW'’s inter-
acting with a 3D electron gas of a semiconductor on a
piezocrystaf®?° In the presence of a dc voltage applied to
] e, . . ! the crystal, it is possible to expect the appearance of nonlin-
r e o * ] ear waves with a stationary profile or with a stationary en-
] ergy flow!?1428|n a wave with a stationary energy flow the
wave shape is periodically changed in sp&tanother sce-
nario can relate to chaotic dynamics in an acoustoelectric
systent® Equation(14) can be used to numerically model
these phenomena in 2D electron systems at long distances.

To conclude, we have studied strongly nonlinear acousto-
[ ] electric phenomena caused by the interaction between a
e — SAW and a two-dimensional electron system. In the experi-
0 50 100 150 200 . .

mental measurements performed on hybrid semiconductor-

RF power P (mV) piezocrystal structures the SAW attenuation, the SAW veloc-
ity change, and the acoustoelectric current are strongly
modified in the nonlinear regime due to the formation of
moving electron stripes. By using a coupled-amplitude
method we have modeled the decay and transformation of
of stripes, which explains the increase of the attenuation aAW'’s in the nonlinear regime. Using our theoretical results,
small gate voltages in the inset of Fig. 2. At a sufficientlywe could explain our experimental findings and distin-
large gate voltage, the absorption coefficient as a function ofuished between different regimes of the nonlinear acousto-
V, starts to decrease because of the screening effect in edectric interaction at large SAW intensities.
high-density 2DEG modulated by a SAW. The interplay of
these two effects Iead_s to th_e shift of_the maximum of the ACKNOWLEDGMENTS
functionT"{(V;) shown in the inset of Fig. 2.

The change of the SAW velocity due to the electron We would like to thank D. Bernklau and H. Riechert for
plasma is shown in the inset of Fig. 4. With increasing rfthe fabrication of the excellent MBE material, W. Ruile for
power the curves in Fig. 4 are again shifted towards largethe strong support from the SAW device side, and A. V.
electron conductivity which can be understood in terms ofChaplik and M. K. Balakirev for helpful discussions. We
screening. With increasing SAW intensity the electron ratefully acknowledge financial support by the
plasma is strongly modulated or even split into stripes ar‘@olkswagen-Stiftung and by the Russian Foundation for Ba-

the screening of piezoelectric fields by electrons becomes n@jc ResearcliGrants No. 99-02-17019 and 99-02-17127
so effective. Thus, the shift of the SAW velocity due to elec-

trons decreases with increasing the SAW intensity. The ex-
perimentally observed shift is in qualitative agreement with
our modeling shown in Fig. 4. However, our theory does not Here we intend to briefly discuss the electrostatics of the
reproduce the character @b,(V,) in the region of small  hybrid structure. The spacing between the 2DEG and the top
electron densities. Likely, the measurement of the SAW vemetg| gate in the fabricated structures is much larger than the
locity is not so sensitive to a low-density electron system ingjstance from the 2DEG to the AlGaAs-LiNgOnterface.
comparison with the attenuation method. _ Thus, to model the screening effects, we will assume that the
In Fig. 6, we show the quantith, P/l ¢ as a function of  5peq s jocated right on the AlGaAs-LiNbOnterface. It is
the rf_power to yenfy the Weinreich relat|qn. The acoUSIO- v enient to solve this problem by a Fourier transform in
electric current(j)=1,g(P) was measured in a “short cir- terms ofx and by remaining the vertical coordinate The

cuit geometry, where the Ohmic contacts are dire¢uiyth- relation between the Fourier components of the electrostatic
out resistoy connected to the current measurement

H indr . :
instrument. For more details on acoustoelectric current meaP—Otent'aIW [z:K] induced by 2D electrons and the 2DEG

surements we refer to Ref. 11. We see from Fig. 6 that thgensitynk is found from the Poisson equation and from the
Lo : corresponding boundary conditions

ratio I';P/1 ,c has a weak power dependence. Thus, our ex-
perimental data are well described by the Weinreich relation. _ 2men
Slight deviations from the Weinreich relation seen in Fig. 6 W z;k]= el
can come from the density dependence of the mobility K] €er(k)
n(Ng), that is expected to be relatively weak at room tem-where eeri(K)=[€pt €5 coth(k|d)]/2. The function G(z)
perature. The reason is that the main electronic scattering sinhk|z/sinHk|d, when 0<z<d, andG(z)=e" M=% for
mechanism at high temperatures is due to acoustic phonoms<z.23
and is relatively insensitive to the 2D density. Taking the electron density in the form of(x,x;,t)
=no(X)+ =12, Na(X)€9X1+c.c., we can write for the
induced electrostatic potentialp™(x,x, ,z,t) = ¢g%(x,2)
The theoretical results obtained in Sec. II, can also ber Zn-12,. ¢n°(x,2)€'%1+c.c., whereg,=ng. Using Eq.
applied to study dynamics of SAW's at large distances in A1), we find ¢n%(x,2)=2men,(x)G(2)/[dneer(dn)]

T . P/ Iae (arb. units)

0.5F f=340 MHz
r T =300 K '

FIG. 6. The measured ratid’;P/l,. as a function of the
high-frequency (rf) power P for f=340 MHz; T=300 K. The
acoustoelectric currenf,e was measured in its maximum.

APPENDIX A

G(2), (Al)

CONCLUSIONS
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+ 8pn(x,2), wheren=1,2,.... Thecorrection 8¢(X,2) Equation B3 contains first and second spatial derivatives
~da,(x)/dx~ 8q,~K%; [see Eq(15) for 5q,] and is small and can be written asLyA;,=e"Pfo(x)Lo(q)A°
compared toW"{zq,]. Thus, regardingn,(x) as the  +f/(x)L,(q)A%+f4(x)o(q)A°]=0, where f'=df/dx.
constants, ~we  obtan at z=d:  ép%xd)  Neglecting the second derivativél(x), that is ~ g2,
=2men,(X)/[dnéer(dn) ] @andE,,(X,d)=—iq, Ir?d(xad)- In WKgﬁ, we have

other words, we consider the envelope functiongx) as

constants and solve Poisson’s equation in terms of the A ) -

“fast” variable x;. Again, it is valid in the limit I'%q Lo(a)A®+i 6L 1(q)A%=0. (BS)
~KZ<1.

As an example, we now calculate the correction Now we turn to the nonlinear theory, where the equation
o¢n in the linear regime of interaction, when [A=0 is also valid. The operatdr is determined by the
n(x,xy,t) =Ng+ny(x)e'Pr+ny(x)e”'¥  with  ny(x)  equations similar to Eq$B1)—(B3) but with nonlinear quan-
~I%2-ia0vdvx  Erom the Poisson equation we find tity IT,(x), that is defined byl (x)=—en,(x)/ $n(x,d).

:ﬁle .
Sd1(x,2)~(L°12+iqvs/vd)ny(X)F(z), where F(2)~1 In the nonlinear case the vectorA=Ay(X,2)
for z~ 1/q. +32h-12 . an(X)An(x,z)e'9"1+c.c.. Each term in the equa-
tion LA=0 should be zero, and sba,(x)A,(x,z)e'%*
APPENDIX B =e'I*1[a,(X)Lo(q.)An+a,(X)L1(a,)A,]=0. To get the

: 4
In order to solve a system of nonlinear equatié®)s-(5) latter equaﬂfn, we have neglecteﬂﬁqn_/qx~ Keﬁ_ and

we will use some of results from a Iinear-responsedzan/dxz~Keff- We can solve the equationA=0 if we

theory22L In a linear theory the total electrostatic potential choose Aq(x,2)=A%z,q,+6qn(x)], where the vector

and the 2D density can be written a®[x,zt] A°zq]is defined above in the linear theory. Using EBp)

=Wz k]e™ 1t andn(x,t) =n,e** ! respectively. Here We get

w is the SAW frequency. It is convenient to introduce a

quantity IT, by means of the relatioen,= —1I,W[d;Kk], day(x)

whereW[d,k] is the Fourier component of the electrostatic dx 9n(X)an(x), (B6)

potential atz=d. Equations(2), (3) are now written as

wzpui+cik|mﬁmﬁku|+p|ik(9|&kW[x,Z,t]=O, (Bl) where 5qn(x) is given by the equation fOﬁq“n [Eq (B4)]
with correctionsllq—IT,(x) and [Tg—TI =II. Equation

—4mPiy 9,9 U+ (€d;d; — 4mIl 6(X3—d))W[X,z,t]=0. B6 is used in Secs. | and Il to describe the acoustoelectric
(B2) phenomena in a 2DEG. Using Eg$8) and (11) and
Above equations should be solved together with the neceghe results of Appendix A, the denominator iﬁqn(xg
sary boundary conditions considered in Sec. I. Then, we rdsee Eq. (B4)] is rewritten as ¥ II,(x)/II;

write Egs.(B1), (B2) in the form =—TI1,(x) $7*"(x)/eny(x). Then, by using Eq(B4) and
R the conservation-of-charge equatiq»n(x):vgenn(x), we
LinAiin=0, (B3)  obtain
HereL,, is a linear operator and,=(u[x,z,t],W[x,z,t])
= (U9 z;k],WO[ z;k])e"™*~ Tt |t follows from the boundary 59.(x) KZ2(qn) 27  en,(x)
g _ 21 _ 0 X)=—
conditions thak=q+ 4q;,,“~ whereq=w/vg and Gn 2 e(qn) ¢§AW(X)
K2 T1,/11° 2 ; SAWs
5q"n:¥ q—qo, g:qezfiq) ) (B4) i Kere(dn) in(X)Ej; . (B7)
1+Hq/Hq 21508 4770017

Now a solution of Eq(B3) can be written ag\;,=A%z;q
+ 8qin 1fo(X) €191, where fo(x)=¢€'%in* and x,=x—v5t.  We use this equation in Sec. [see Eq.(15)]. To obtain
A% z;q+ 8qy,] is a vector, that can be found from the matrix above results, we have neglected the terms &kex) and

given by the boundary conditior3s. 5q9/,(x) assuming thakZ, is a small parameter.
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