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Ballistic electrons in an open square geometry: Selective probing of resonant-energy states
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We report on the interplay between classical trajectories and quantum-mechanical effects in a square geom-
etry. At low magnetic fields the four-terminal resistance is dominated by phenomena that depend on ballistic
trajectories in a classical billiard. Superimposed on these classical effects are quantum interference effects
manifested by highly periodic conductance oscillations. Numerical analysis shows that these oscillations are
directly related to excitations of particular eigenstates in the square. In spite of open leads, transport through an
open cavity is effectively mediated by just a few~or even a single! resonant-energy states. The leads injecting
electrons into the cavity play a decisive role in a selection of the particular set of states excited in the dot. The
above selection rule sets a specific frequency of the oscillations seen in the experiment.
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Ballistic semiconductor quantum dots are rewarding
jects for studying relations between quantum mechanics
corresponding semiclassical electron dynamics. A numbe
semiclassical predictions have been recently made for tr
port characteristics of ballistic quantum dots whose class
counterparts are chaotic or regular, respectively.1 Many of
the above predictions have been tested in rec
experiments2 and the difference in transport properties
chaotic and regular billiards has been found.3

Transport characteristics of open dots are often analy
on the basis of the known properties of the correspond
closed structure.4,5 Recent theoretical studies of the effects
leads on the electron dynamics in open dots are rather
tradictory. Reference 6 shows that the statistics of the spe
for open dots are exactly the same as that of the corresp
ing closed systems. At the same time, the results7–9 suggest
that the leads attached to the dot may change the level
tistics, so that a transition to chaos can occur in a nomin
regular system. Besides, when dot openings become l
enough, the eigenenergy levels interact and acquire a fi
broadening due to the finite lifetime of electrons in the d
This energy broadening might be much bigger than the m
energy level separation, resulting in overlapping of ma
resonances. Under these conditions it is not clear wheth
discussion of transport through the dot based on the pro
ties of the Hamiltonian of the closed structure is still mea
ingful for the open system.

In this paper we investigate ballistic transport in an op
nominally regular square geometry. We show that despite
lifetime broadening induced by the leads, transport throu
the structure is still effectively mediated by just a few~or
even a single! regular eigenstates of the isolated square. T
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geometry of the leads injecting electrons into the cavity pla
a decisive role in the selection of the particular eigensta
excited in the dot. The above selection rule sets a spe
frequency for the oscillations seen in the experiment.

Our device@schematically shown in the inset of Fig. 1~a!#
consists of a patterned high mobility GaAs/AlxGa12xAs het-
erostructure which contains a two-dimensional electron
65 nm below the surface. AtT54.2 K its electron density is
ns5331015 m22 and the elastic mean free path
l e58 mm. The pattern was produced by electron beam
thography and transferred onto the sample by a caref
tuned wet etching step. The square geometry with a sys
dimensionL52.4 mm has quantum point contact~QPC!–
like openings at its corners serving as contacts to the sys
The openings are adjusted to support roughly three mode
that charging effects are not important. The whole struct
is covered by a metal gate which allows one to tune
Fermi energy in the system. The sample is cooled in a d
tion refrigerator with bath temperatures between 1.4 K a
30 mK. At low temperatures (T,1 K! both the elastic mean
free path and the phase coherence length of the elect
exceed the dimensions of the device. Typical four-termi
measurements of the resistanceRi j ,kl5(Vk2Vl)/I are made
by passing a currentI through the contactsi and j and mea-
suring the voltage drop across the other two contacts (k and
l ). The longitudinal resistanceRL5R12,34 has a negative
value at zero magnetic field; see Fig. 1~a!. RL then rises
sharply and has a pronounced maximum atB'0.7Bc and a
further one atB'2Bc (Bc is the the magnetic field when th
cyclotron radius at the Fermi energy,Rc5\kF /eB, equals
side of the square, 2Rc5L). The Hall resistance
RH5R14,32 in this regime exceeds the linear valu
R10 209 © 1997 The American Physical Society
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RH5B/ens and has plateaulike structures which are clos
related to the corresponding features inRL . For higher mag-
netic fields,B>0.2 T, Shubnikov–de Haas~SdH! oscilla-
tions and quantized Hall plateaus appear.

Figure 1~b! shows the results of numerical calculation f
a square dot of sizeL51 mm in the four-terminal geometry
depicted in the inset.RL andRH are computed in the frame
work of the multiterminal Landauer-Bu¨ttiker formalism.11–13

To calculate the transmission probabilities we solve a
quantum-mechanical scattering problem making use of
hybrid recursive Greens function technique,10 generalized for
the presence of four leads. The effect of finite temperatur
accounted for in a standard way, as a convolution of
transmission coefficients over energy, with the derivative
the Fermi-Dirac distribution.12,13

FIG. 1. ~a! Measured longitudinalRL and Hall resistanceRH for a bal-
listic square geometry~right inset!; size of the square,L52.4 mm,
Tbath530 mK, Bc corresponds to the magnetic field when the cyclotr
diameter equals to the size of the square,Bc575 mT. ~b! Upper panel:
calculatedRL and RH in the four-terminal geometry shown in the inse
L51mm, T5250 mK,Bc5165 mT. Left inset shows collimated electro
beam in a single QPC. Lower panel: transmission coefficientsT21 and
T41 ; the insets show classical ballistic trajectories illustrating the enha
ment ofT21 atB;0.9Bc andT41 atB;1.3Bc ~peak positions differ from the
classical expected valuesB/Bc51 and 1.5 due to the strong collimation o
the electron beam over the diagonal of the square!.
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The dimension of the simulated device is smaller by
factor of 2.4 than the dimension of the real one~otherwise
the calculation would become forbiddingly large!. Therefore,
one cannot expect a direct one-to-one correspondence
tween the experiment and the numerical simulations. A
given magnetic field the ratioRc /L ~and consequently, the
spatial extent of the wave functions relative to the size of
square! is bigger for the simulated device. Therefore, inte
ference effects are of a greater importance, giving rise t
rich structure which is not seen in the experiment. Howev
the relative peak positions ofRL ,RH are in good qualitative
agreement. The lower panel of Fig. 1~b! shows the calculated
total transmission coefficients,T21 and T41, from lead 1 to
leads 2 and 4, respectively~coefficientsT31 and R11 are
rather featureless and are not displayed here!. Pronounced
peaks seen in the the transmission coefficients can be dire
attributed to the classical ballistic orbits as depicted in
insets. An interplay between these coefficients in the fo
terminal Landauer-Bu¨ttiker formula11 causes the particula
peak positions detected in both numerical simulations
experiment. A negativeRL seen in experimental and calcu
lated longitudinal resistances atB;0 is caused by the en
hancement of the diagonal transmission (T41.T21,T31) due
to the classical horn collimation effect~see inset!. Similar
magnetoresistance anomalies related to the geometrical
nances and collimation effect have been detected in nar
junctions in Hall-bar geometry and are well explained with
the classical ballistic transport picture~see Ref. 12 for a de-
tailed review!.

At lower temperatures (Tbaths530 mK! reproducible bal-
listic fluctuations are superimposed on these classical eff
in the experiment. This strongly suggests that these fluc
tions are phase coherence effects arising from electron in
ference in the dot.

We tune the electron density, and thus the Fermi ene
inside the square by varying the voltage on the surface g
At zero magnetic field we find a strong oscillatory behav
in both the experimental and the calculated longitudinal
sistance as a function ofkF5(2pns)

1/2 ~Fig. 2!. In order to
understand the nature of these periodic oscillations we st
the probability density distributionuC(x,y)u2 in the dot. In
this analysis we limit ourselves to a two-terminal geomet
where the dot is connected to reservoirs only by leads 1
2. ~The calculated two-terminal resistance has the same

e-

FIG. 2. Measured~a! and calculated~b! resistance oscillations as a func
tion of the Fermi wave vector and their Fourier transforms~FT! ~insets!;
Tbath530 mK ~a!, T5250 mK ~b!. Periodicity of the measured and calcu
lated oscillations as extracted from the FT,DkF

expt51.753106 m21,
DkF

num52.173106 m21.
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55 R10 211BALLISTIC ELECTRONS IN AN OPEN SQUARE . . .
FIG. 3. Upper panel: probability density distribu
tion uC(x,y)u2 in the dot calculated for
kF51.123108 m21 ~left! and kF51.1343108 m21

~right!. Lower panel: expansion coefficientsucmnu2~see
text! showing a contribution of the eigenstatesm,n me-
diating transport at the givenkF .
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quency of oscillations as the longitudinal four-terminal o
and, therefore, the above limitation does not affect our c
clusion on the origin of the fluctuations.!

In Fig. 3 uC(x,y)u2 is displayed for two representativ
values of kF . The origin of the wave function patter
becomes clear when we numerically expand the ca
latedC(x,y) ~which is a solution of the scattering proble
in the open dot! onto the set of eigenstates of th
square, cmn5(2/L)sin(pmx/L)sin(pny/L) @with eigen-
energiesem,n5\2/2m* (km

2 1kn
2); km5pm/L, kn5pn/L#.

This is equivalent to finding the coefficientcmn of the com-
plex two-dimensional sine-Fourier transformC(x,y)
5(m(n cmnsin(pmx/L)sin(pny/L). The lower panel of
Fig. 3 shows the calculated expansion coefficientsucmnu2
representing the contributions of the eigenstatesm,n in the
corresponding wave-function patterns. We find that only
coefficientscmn with quantum numbersm,n lying near the
circle of radiusR5Am21n25kFL/p give nonvanishing
contributions. Broadening of the resonant levels due to
effect of the dot openings ink space is less than the distan
between neighboring eigenstates whose quantum num
differ by one, ukn2kn61u5ukm2km61u5p/L. This makes
us conclude thattransport in open structures is effective
mediated by the eigenstates of the corresponding closed
with eigenenergies lying in close proximity to the Fermi e
ergy, em,n'EF. By examining the wave function pattern a
-

-

e

e

ers
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-

kF is varied, we are in a position to identify a particular s
of eigenstates which contribute to the conductance at a g
EF . In the system under consideration where the aspect r
‘‘dot size/dot opening’’ is 10, the above set typically consis
of just a few or sometimes even a single energy level.

At a given Fermi energy the eigenstates of the dot seem
be excited randomly at the circleAm21n25kFL/p, see Fig.
3, lower panel. However, averaging over the appropriate
ergy interval shows that it is primarily eigenstates w
m'n ~i.e., km'kn'kF /A2), which mediate transport in th
square dot, see Fig. 4~a!. It is the injection properties of the
leads which define these selection rules.Indeed, for a single
QPC, a state withk' inside the QPC is mostly coupled to a
outgoing state with the same transverse wave vector.14 Al-
though, strictly speaking, this is no longer correct for t
double QPC’s in series~i.e., the dot! when interference ef-
fects destroy this coupling, it is justified when an avera
over a finite energy window is performed, so that the d
nominally plays the role of a reservoir.15 In the present ge-
ometry with electrons injected from a corner, the beam
strongly collimated due to a classical horn collimation effe
and is directed along the diagonal of the box, Fig. 4~a!. This
means thatk''0 andki'kF . Extending those results fo
our geometry of the injecting leads, we get^km&'^kn&
'kF /A2 which explains the above selection rules display
in Fig. 4~a!; (^•••& stands for energy averaging!. Note, that
ot
ee
FIG. 4. ~a! Coefficientŝ cmn& averaged in the inter-
val 1.1,kF,1.15 @20 patterns ofC(x,y) have been
analyzed#. ~b! Eigenenergy states of the square d
which are excited as the Fermi energy is varied; s
text.
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the selection rule would be different for a different geome
of injecting leads.

Let us now discuss the observed periodicity of the c
ductance fluctuations. As we have found that the fluctuati
are directly related to the excitation of resonant-energy lev
of the dot, one can expect that the observed periodicity
kF is related to the transitions between different eigensta
Suppose, at a givenkF , that an eigenstate$m,n% is excited in
the dot; see Fig. 4~b!. In the case under consideration mos
states withkm'kn'kF /A2 are excited in the dot. For thes
states, changingkF by DkF

15Dk/A2 results in the excitation
of the states which one of the quantum number differs
unity, $m11,n% or $m,n11%; Dk5p/L being the distance
between neighboring levels of the square. This, as one
expect, would lead to an appearance of the next conduc
peak, withDkF

1L5p/A252.22 defining the period of the
oscillations. IncreasingkF byDkF

252DkF
1 corresponds to the

excitation of the state$m11,n11% where both quantum
numbers are changed by one. The calculated period
DkF

numL52.22, as extracted from the Fourier transform
Fig. 2, equalsDkF

1L exactly. The observed periodicity
DkF

exptL54.42, however, rather well corresponds
DkF

2L5A2p54.44.
Currently, we do not fully understand the origin of th

factor of two disagreement between the theory and the
periment. We speculate, however, that this can be du
inelastic scattering which may play an important role in o
relatively large dot, but has not been accounted for in
numerical simulations. Indeed, in the framework of the se
classical theory,16 the contribution to the oscillating part o
the density of states of the dot comes from the electr
bouncing in all stable primitive periodic orbits. In real sy
tem, however, phase breaking events and temperature sm
ing strongly suppress contributions from long orbits. In pra
tice, neglecting periodic orbits or trajectories longer than
inelastic scattering length,l i , seems to be a good approx
mation.4,17–19The selection rules found above correspond
the excitation of the family of orbits with winding numbe
~1,1! ~Ref. 17! of length l52A2L, where the wave vector
~velocities! parallel to the sides of the square are equ
km5kn . Note that in the dot under investigation, the leng
y
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of the longer primitive periodic orbits exceedl i . WhenkF is
changed byDkF

1 , only km ~or kn) is changed and the fina
wave vectors are not equal. Then the electron no longer s
in the periodic orbit and eventually loses its phase mem
after multiple bounces inside the dot, and does not contrib
to phase-coherent interference. However, whenkF is
changed byDkF

2 , both quantum numbers are changed su
thatkm115kn11. As a result, the electron does not leave t
periodic orbit and retains its phase coherence. We conc
this discussion with a question mark, in a hope that furt
experiments on much smaller dots, where electrons can
form tens or even hundreds of bounces before losing t
phase coherence,20 would help to clarify this issue.

Despite the discrepancy~factor of 2! between the experi-
ment and the theory, it is still remarkable that they bo
demonstrateperiodic conductance oscillations. This is i
contrast to theaperiodic fluctuations seen in chaotic dots
The latter are well described by the random matrix theory16

based on the assumption that the leads are coupled to a
which is described by the transfer matrix constructed fr
the appropriate random statistical ensemble. In contras
the square dot only a set of selected eigenstates excited
cording to the specific selection rules effectively media
transport through the structure. The fact that conducta
oscillations in the dot are related to the excitation of t
corresponding regular eigenstates of the square suggests
a soft potential due to remote donors would not affect
regular character of the electron dynamics significantly.

To conclude, at low magnetic fields the magnetoresista
is dominated by phenomena that depend on classical tra
tories traversing a ballistic square cavity. Conductance fl
tuations observed at millikelvin temperature are directly
lated to the excitation of a particular set of eigenstates of
square selected according to injection properties of lea
The above selection rule sets a specific frequency for
oscillations seen in the experiment.
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