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Abstract. We review a number of recent experiments which are probing
ground state and excitations of few-electron systems in self-assembled InAs
quantum dots. Far-infrared spectroscopy, together with local as well as large-
scale capacitive probing allows for a detailed investigation of the different
contributions to the many-particle spectrum in the dots. The influence of
electron–electron interactions on the ground state and the excitations is dis-
cussed.

1. Introduction

With the development of the Stranski-Krastanow growth mode in recent years[1, 2, 3,
4, 5, 6], a powerful technique has emerged for the fabrication and experimental study
of nm-size semiconductor systems. In these systems, the charge carriers are strongly
confined in all three dimensions, so that they exhibit true ”zero-dimensional” or ”atomic”
behavior. Contrary to real atoms, however, they are confined to a nearly parabolic
potential with a characteristic length that is comparable to the magnetic length for
magnetic fields accessible in the laboratory. Self-assembled Stranski-Krastanow quantum
dots thus provide for a model system in which the interplay between compositional
confinement, Coulomb interaction, and magnetic confinement can be studied in detail.
Furthermore, through design, external bias or excitation strength, the number of carriers
per dot can finely and in situ be tuned. A number of experimental studies have been
carried out [3, 4, 5, 7] to investigate the electronic properties of self-assembled dots by
interband and intraband spectroscopy as well as DC transport.

Here we summarize recent experiments on both large and small scale dot arrays
which probe the dots’ many particle ground state and excitations by capacitance and
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Figure 1. (a) Capacitance–voltage trace of a large-area sample (A = 3.5 mm2) at B = 12
T. (b)–(d) Normalized transmission at B = 12 T, for n = 2, 4, 6, in the energy range of
the ω+ resonance. Note the qualitative change in the spectra as the p-state is filling.

far-infrared spectroscopy[8, 9, 10]. From the combined results of these complimentary
techniques we derive a detailed picture of the contributions of compositional confinement,
electron–electron interaction, and magnetic confinement to the many particle ground
states and excitations.

2. Experimental

The samples are grown by molecular beam epitaxy. The InAs dots are embedded in a
field-effect-transistor (FET) structure, which allows for an in situ tuning of the number of
electrons per dot by application of a suitable gate voltage[4, 11]. Details of the procedure
used for the formation of the InAs dots and the resulting structural properties can be
found e.g. in Refs. [2, 11]. We estimate the dots’ diameter and height to be 20 nm and
7 nm, respectively, and the dot density to be ≈ 1010cm−2.

All experiments are carried out at liquid He temperatures with magnetic fields up
to B = 15 T applied perpendicular as well as parallel to the sample surface. The far-
infrared response of the dots is measured in the energy range between 5 and 100 meV
using a rapid-scan Fourier transform spectrometer. Large scale capacitance spectroscopy
is carried out using standard lock-in technology. For small-scale capacitance probing a
bridge technique, as described, e.g. in Refs. [12] is employed.

3. Results and discussion

Figure 1(a) displays typical capacitance data of a large-area sample at high magnetic
fields, here B⊥ = 12 T. At very low gate bias, Vg ≤ −1 V, the signal is given by the
geometric capacitance between top gate and the doped GaAs back contact. At Vg ≈ −0.9
V a sharp increase of the capacitance indicates the charging of the lowest electron state
in the dots. Even though this state is doubly degenerate, the second electron is only
loaded at a slightly higher gate voltage of ≈ −0.7 V, because the 2-electron ground state
is affected by the repulsive electron–electron interaction (here, we neglect spin-splitting,
which is only a minute correction to the electronic states, see below).
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Figure 2. Capacitance–voltage traces of a small-scale sample (area A = 89 µm2). The
magnetic field was changed between B = 0 and 13 T in steps of ∆B = 1 T. Curves
are offset for clarity. Lines are indicating the dispersion of the p-states and the lowest
d-state.

To model the electronic charging of our dots we use the following expression for
the total energy of a dot, charged with n electrons, embedded in a capacitor structure.

Wn =
Q2

2C
+ En −

1

4πεε0

(ne)2

4tb
− neσn

εε0

tb (1)

The first term accounts for the energy of the charged capacitor (charge Q, capaci-
tance C, surface charge density σ), the second for the n-electron ground state energy of
the dot. The third and fourth term describe the influence of the dot’s image charge and
of the electric field inside the capacitor, respectively.

It is easy to show from Eq. 1 that the electron–electron interaction energy that
leads to the double peak structure in the capacitance around −0.8 V is given by

E1,2 = e
tb
ttot

∆Vg +
e2

8πεε0tb
(2)

Here, ∆Vg is the difference in gate voltage between charging of the first and the
second electron, tb is the distance between the back contact and the dots and ttot is the
distance between the back contact and the gate. Because ttot � tb, we have neglected the
image charge of the top gate. For the present sample with tb = 25 nm and tb/ttot = 1/7,
we find E1,2 = 23.3 meV.

In the present dots, which are oblate and nearly circular, the next higher (empty)
state is expected to be fourfold degenerate at B = 0. Because of its symmetry properties
it is often called ”p-state” (the lowest state accordingly being labeled s-state). In large-
area samples, a lateral variation of the growth rate leads to a broadening which makes
it impossible to distinguish individual peaks of the p-state. Reducing the probed area
to below 100 µm2, however, allows us to identify the individual p-state charging peaks
and even the lowest d-state (Fig. 2)[10]. In such small-scale samples we also observe a
rich substructure of smaller peaks which seem to be replicas of the main peaks indicated
by broken lines in Fig. 2. The origin of these replicas is not completely understood;
monolayer fluctuations or dot–dot interactions are possible explanations [10].
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Figure 3. Far-infrared resonance positions for dots filled with two (a) and three (b)
electrons. The partly filled p-state in (b) gives rise to additional ω+ transitions. Insets
display possible resonances in a simple, single-particle picture.

Figure 2 shows the characteristic splitting of the p-levels when a strong magnetic
field is applied perpendicular to the plane of the dots. This splitting is roughly linear in
B and we can extract an effective mass of m∗ = 0.063 me. This value is considerably
higher than the conduction band edge mass of InAs and can be attributed in part to the
high non-parabolicity of this material and in part to the fact that a large fraction of the
electron wave function leaks into the GaAs barrier layers [13].

Figure 3 gives an overview of the measured far-infrared resonance positions as
a function of magnetic field for different gate voltages. On large scale samples the
far-infrared transmission and the capacitance can be recorded simultaneously, and we
can through capacitance spectroscopy directly translate the bias voltages into electron
occupation numbers, as shown in Fig. 1. For ne ≈ 2 (Fig. 3(a)) the characteristic
two-mode spectrum of a parabolically confined electron system in a magnetic field is
observed (cf. solid lines) [14]. No significant difference is found between ne = 1 and
ne = 2, which further supports the assumption of an almost parabolic confinement, so
that the generalized Kohn theorem applies [15]. This situation changes drastically, when
the p-state becomes occupied and transitions between higher-lying states are possible.
As seen in Figs. 3(b) and 1(c), then the upper mode, ω+, splits up into three resonances.
This complex behavior of ω+ can be observed for ne = 3, 4 and 5. For ne = 6, the highest
electron number that we can controllably load into the present dots, we again observe
just two modes, however with a magnetic field dispersion that strongly deviates from
that of a parabolic dot[9]. A simple explanation for the occurrence of new resonances
is given in the insets in Fig. 3: Due to a flattening out of the confining potential at
higher energies, transitions with a smaller energy become possible when the p-state is
partially occupied. Indeed, only these resonances remain observable when the p-state is
completely filled and s → p transitions are no longer possible[8]. The validity of such a
single-particle explanation, however, is limited and cannot explain, e.g. the occurrence
of a third ω+-mode. A theoretical model by Wojs and Hawrylak [16], which takes into
account many particle effects correctly predicts up to three ω+-modes when the p-state
becomes partially filled.

From the solid lines in Fig. 3(a) we derive an effective mass of m∗ = 0.08 me,
significantly higher than that obtained by capacitance spectroscopy, above. A possible

4



Figure 4. (a) Relative splitting between the s-state charging peaks as a function of
magnetic field, applied perpendicular (full symbols) and parallel (open symbols) to the
plane of the dots. (b) Experimental and theoretical increase of the s-state splitting
caused by a magnetic field-induced compression of the wave function.

explanation for this is a magnetic field-dependent Coulomb contribution to the capaci-
tance data (see below).

As seen in Fig. 2, the splitting between the s-state charging peaks is almost in-
dependent of magnetic field. Careful evaluation of the peak structure, however, shows
that the energy E1,2 increases by ≈ 2% when a magnetic field of 12 T is applied per-
pendicular to the plane of the dots (solid data points in Fig. 4(a)). This shift can be
attributed in part to an increase of the Coulomb energy caused by a magnetic field-
induced compression of the wave function. For parabolic confinement, the characteristic

length of the ground state wave function ` =
√
h̄/(m∗ω) is magnetic field dependent

through ω =
√
ω0 + ω2

c/4, where ω0 = ω(B = 0) and the cyclotron frequency ωc are
obtained from far-infrared spectroscopy. Similar to the classical Coulomb blockade, the
energetic difference between the 1- and 2-electron ground state is inversely proportional
to `, Ee−e

1,2 = e2/(4πεε0`) [17], which leads to an increased Coulomb blockade in high
magnetic fields.

Additionally, spin splitting will slightly increase E1,2. The different contributions
can be distinguished by their dependence on the direction of B: Because of the large
confinement in the growth direction, only the spin splitting contributes to E1,2 for parallel

magnetic fields and the associated shift E
‖
1,2 (open symbols in Fig. 4(a)) is only about

half of that for perpendicular fields, E⊥1,2. From E
‖
1,2 we can deduce an effective g-factor of

0.43±0.05, which, as the effective mass, is in much better agreement with the surrounding
GaAs than with the InAs of the dots.

The difference between E
‖
1,2 and E⊥1,2 is shown in Fig. 4(b). We attribute this

difference to the magnetic field-induced compression of the ground state wave function,
calculated using the above formula (solid line in Fig. 4(b)). The agreement between
` = 4.4 nm obtained from far-infrared spectroscopy and ` = 4.9 nm from capacitance,
together with the agreement found in Fig. 4(b)) nicely demonstrates the compatibility
of the different measurement techniques and the applicability of the models used.
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Fig. 1,  A. Lorke et al. 

(a)

(b) (c) (d)
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