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Ludwig-Maximilians-Universität, Fakultät für Physik and CeNS,
Geschwister-Scholl-Platz 1, D-80539 München, Germany

Atac Imamoglu

Institute of Quantum Electronics, ETH-Zurich, CH-8093, Zurich, Switzerland

(published 9 January 2013)

The mesoscopic spin system formed by the 104–106 nuclear spins in a semiconductor quantum dot

offers a unique setting for the study of many-body spin physics in the condensed matter. The

dynamics of this system and its coupling to electron spins is fundamentally different from its bulk

counterpart or the case of individual atoms due to increased fluctuations that result from reduced

dimensions. In recent years, the interest in studying quantum-dot nuclear spin systems and their

coupling to confined electron spins has been further fueled by its importance for possible quantum

information processing applications. The fascinating nonlinear (quantum) dynamics of the coupled

electron-nuclear spin system is universal in quantum dot optics and transport. In this article,

experimental work performed over the last decade in studying this mesoscopic, coupled electron-

nuclear spin system is reviewed. Here a special focus is on how optical addressing of electron spins

can be exploited to manipulate and read out the quantum-dot nuclei. Particularly exciting recent

developments in applying optical techniques to efficiently establish nonzero mean nuclear spin

polarizations and using them to reduce intrinsic nuclear spin fluctuations are discussed. Both results

critically influence the preservation of electron-spin coherence in quantum dots. This overall

recently gained understanding of the quantum-dot nuclear spin system could enable exciting new

research avenues such as experimental observations of spontaneous spin ordering or nonclassical

behavior of the nuclear spin bath.
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I. INTRODUCTION

Electronic spins in most semiconductors are relatively well
decoupled from orbital or charge degrees of freedom. As a
consequence, electronic spin coherence is not hindered by the
prevalent charge decoherence, rendering spins good candi-
dates for the realization of novel devices whose functionalities
rely on quantum coherence. The isolation of spins from
adverse effects of fluctuating charge environments is particu-
larly effective in quantum dots (QDs) where electronic motion
is quantum confined in all directions to length scales on the
order of 10 nanometers. In such atomlike structures, hyperfine
coupling is the dominant interaction for both the spin of the
electron confined to the QD and the nuclear spins, making this
system a nearly ideal realization of the central spin model.

In this article we review recent work shedding light on this
unique coupled spin system. The basic principle of optical
manipulation and measurement of QD spins we describe
has its roots in the use of strong spin-orbit interaction of
valence-band states which allow for correlating the optically
excited electron spin with the polarization of the excitation

laser. This is in fact the same physics used in optical pumping

experiments carried out in atomic vapors: Brossel, Kastler,

and Winter (1952) investigated mercury atoms in a weak

magnetic field which splits the electron states into Zeeman

sublevels. By irradiation of the atoms with circularly polar-

ized light they could selectively populate one of the electron

Zeeman levels. Subsequent optical pumping experiments on

atoms with nonzero nuclear spin resulted in direct preparation

of correlated electron-nuclear spin states in atoms.
In pioneering work in the solid state, Knight (1949) ob-

served that polarized electrons lead to a shift in nuclear

magnetic resonance frequency. Overhauser (1953) proposed

to polarize nuclear spins by transferring spin polarization

from electrons to the nuclear spin system. In this original

proposal, a net electron-spin polarization was created simply

by allowing thermalization in an applied longitudinal field.

Soon afterward the ideas of Overhauser and Brossel et al.

were combined in the first work on optical preparation of

electron spins and the resulting interaction of these spin-

polarized electrons with the nuclear spin system in a semi-

conductor (Lampel, 1968). In this experiment performed with

silicon the initial pumping of spin oriented conduction elec-

trons induced by polarized light leads to a polarization of the

nuclear spins of the atoms of the silicon lattice via the

hyperfine interaction (Overhauser effect). This is based on

the angular momentum transfer between photons and elec-

trons and subsequently between electrons and nuclei. The

nuclear polarization was detected by Lampel through the

enhancement of the nuclear magnetic resonance signal.

A detailed review of the nuclear spin effects in bulk semi-

conductor optics can be found in Meier and Zakharchenya

(1984), where the key ingredients for strong hyperfine effects

in solids were clearly identified: localization of the carrier

wave function around a finite number of nuclei and temporal

fluctuations in the electron-spin system, i.e., a short correla-

tion time of the hyperfine interaction. As a result strong

nuclear effects imprinted on the polarization of the emitted

photons were observed in n-doped bulk semiconductors

which show strong localization of carriers around donors

(Dzhioev et al., 2002).
Because of the strong localization of the carrier wave

function in a QD, the role of hyperfine interactions in spin

dynamics is drastically enhanced; this is a direct consequence

of enhanced fluctuations in the effectivemagnetic field seen by

the electron spin (Overhauser field) due to its interactions with

randomly oriented QD nuclei. Similarly, the effective mag-

netic field seen by each nucleus (Knight field) is more suscep-

tible to fluctuations in the electron spin (see Fig. 1). Soon after

the first observation of emission from single QDs (Marzin

et al., 1994) it became clear that studies of the electron-spin

system cannot be done without taking nuclear effects into

account. Conversely, ultranarrow QD optical transition line-

widths allow for a direct measurement of the nuclear field,

greatly enhancing the possibilities for investigating nuclear

spin dynamics using optical spectroscopy. This is shown in

pioneering work on optically detected nuclear magnetic reso-

nance (ODNMR) in GaAs dots in AlGaAs (Gammon et al.,

1997; Brown, Kennedy, and Gammon, 1998).
Initialization of an individual electron or hole spin with a

laser pulse is possible due to angular momentum transfer
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between photons and electrons, enabled by spin-orbit inter-

action and ensuing optical selection rules. Once initialized,

the prospects for controlled, coherent manipulations of

spins in QDs are very good as the main spin-relaxation

mechanisms known from experiments in bulk or 2D semi-

conductors do not apply to localized carriers in dots (Pines,

Bardeen, and Slichter, 1957; Khaetskii and Nazarov, 2000;

Paillard et al., 2001; Kroutvar et al., 2004). However, it

was pointed out early (Dyakonov and Perel, 1973, 1974;

Burkard, Loss, and DiVincenzo, 1999; Merkulov, Efros, and

Rosen, 2002) that interactions with fluctuating, arbitrarily

aligned nuclear spins of the atoms that form the QD might

severely limit the electron-spin coherence time. This pre-

diction was indeed confirmed independently for electrons in

transport measurements and in optical spectroscopy (Braun

et al., 2005; Petta et al., 2005). Extending the carrier-spin

coherence time for controlled quantum state (qubit) ma-

nipulation was one of the strong motivations that led to

increased interest in nuclear spin physics in QDs (Bluhm

et al., 2011). Many fascinating experiments have been

reported confirming the strong, reciprocal interaction be-

tween the spin systems. For example, the magnitude and

direction of the Overhauser field created via optical pump-

ing can be tuned by adjusting laser power and polarization

(Bracker et al., 2005; Eble et al., 2006; Tartakovskii

et al., 2007; Maletinsky, Kroner, and Imamoglu, 2009).

The nuclear spin system can be stable up to several hours

under certain conditions, which is interesting for informa-

tion storage schemes (Taylor, Marcus, and Lukin, 2003).

The hyperfine interaction allows for tuning the exact energy

of the electronic states and for controlling the polarization

of the emitted light. This is particularly true for experi-

ments in the absence of magnetic fields (Lai et al., 2006;

Belhadj et al., 2009; Larsson, Moskalenko, and Holtz,

2011) and could become important for applications in

photonics. For example, knowing the exact polarization

basis is crucial when evaluating the degree of entanglement

of a source of photon pairs based on optical transitions

from the conduction to valence state in a single quantum

dot (Akopian et al., 2006; Dousse et al., 2010; Stevenson

et al., 2011).
Hyperfine effects in QDs can have other spectacular con-

sequences, such as locking of a QD transition to a resonant

pump laser (Latta et al., 2009; Xu et al., 2009; Chekhovich,

Makhonin, Kavokin et al., 2010), bistability of the nuclear

spin system (Braun et al., 2006b; Maletinsky et al., 2007;

Tartakovskii et al., 2007; Kaji et al., 2008) depending not

only on the experimental parameters at the time the measure-
ment was performed but also on the history of the experiment
(non-Markovian behavior). The mesoscopic nuclear spin
system may enable observation of physical phenomena
such as Lévy flights (Issler et al., 2010), spin-squeezed states
(Rudner et al., 2011), and dissipative quantum phase tran-
sitions (Kessler et al., 2010, 2012). Studies of hyperfine
effects in dots are also relevant for other systems with local-
ized carriers, such as nitrogen vacancy centers in diamond
(Childress et al., 2006; Balasubramanian et al., 2009).

II. BASICS OF SEMICONDUCTOR QUANTUM DOTS

Semiconductor QDs are nanometer sized objects that con-
tain typically several thousand atoms of a semiconducting
compound resulting in a quantum confinement of the
carriers in the three spatial directions. As a consequence,
the energy levels in semiconductor QDs are discrete.
Microphotoluminescence (PL) experiments (Marzin et al.,
1994), photon correlation measurements (Michler et al.,
2000), and resonant laser scattering (Högele et al., 2004)
have established the atomlike character of the interband
transitions. This motivated many research groups to probe
and manipulate charge and spin states of individual carriers.
These experiments test the possibility of using these
QD states as qubits for quantum information processing
(Henneberger and Benson, 2008).

A. Growth and sample structures

Semiconductor QDs can be synthesized by a large variety
of methods based on colloidal chemistry, molecular beam
epitaxy, or metalorganic chemical vapor deposition. QDs can
be formed at interface steps of thin quantum wells (Gammon
et al., 1996, 1997; Besombes, Kheng, and Martrou, 2000;
Hours et al., 2005) or by self-assembly in the Stransky-
Krastanov growth mode during molecular beam epitaxy
(Goldstein et al., 1985; Leonard, Pond, and Petroff, 1994).
The latter process is driven by the strain resulting from the
smaller lattice parameter of the matrix (barrier) compared to
that of the dots, for example, 7% for InAs dots in GaAs. The
QDs obtained in this well-studied system are typically 20 nm
in diameter and 5 nm in height [see Fig. 2(a)] and are formed
on a thin InAs quantum well called wetting layer, as can
be seen in STM measurements (Offermans et al., 2005).
Samples used for optical spectroscopy are then covered again
by the barrier material. In realistic samples InAs dots contain
a significant fraction x of Ga, leading to the formation of
In1�xGaxAs dots. The Stransky-Krastanov growth mode is
applied to a large variety of III-V and II-VI compounds.
An interesting alternative for fabricating GaAs or InAs QDs
is provided by a technique which is not strain driven,
called molecular droplet epitaxy (Koguchi, Takahashi, and
Chikyow, 1991); see Fig. 2(b) for a cross-sectional scanning-
tunneling microscopy image of a GaAs dot in AlGaAs
(Keizer et al., 2010). The recently achieved high optical
quality of GaAs droplet dots allowed first investigations
of carrier and nuclear spin dynamics (Belhadj et al., 2008;
Sallen et al., 2011). Because of carrier confinement
potentials between tens and hundreds of meV, the samples

nuclear
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FIG. 1. Reciprocal interaction between electron and nuclear spins.

The electron-spin state is initialized through optical pumping.
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elaborated with the above techniques are suitable for optical

spin manipulation often carried out at a temperature of 4 K,

with the possibility for detailed spectroscopy up to a few tens

of Kelvin.
This review concentrates on the optical manipulation of

spin states. A very high degree of control over carrier-spin

states and the mesoscopic nuclear spin system is also

achieved in QDs defined by electrostatic potentials as sum-

marized by Hanson et al. (2007). The electron (not hole) spin

physics probed in these transport measurements at very low

temperature (100 mK) provide a powerful, complementary

approach (Petta et al., 2005; Bluhm et al., 2011; Takahashi

et al., 2011) to optical spectroscopy.

B. Addressing individual charge states

Controlling the charge state of QDs relies on the remark-

able possibility of doping semiconductor materials with

n-type or p-type impurities. In some cases the nonintentional

residual doping is sufficient to obtain singly charged QDs

(Akimov et al., 2002; Belhadj et al., 2009), see Fig. 3(c), but

usually a delta-doped layer is grown a few nanometers below

the QD layer with a density adjusted to reach the desired

average QD charge (Cortez et al., 2002; Greilich et al.,

2006b; Laurent et al., 2006). This modulation doping tech-

nique can be significantly improved by controlling the chemi-

cal potential of the QD electrons with an electric voltage

applied between the doped layer and a semitransparent top

contact (Drexler et al., 1994). In these charge-tunable struc-

tures a given QD is coupled to a reservoir of free carriers

(a heavily doped layer) through a tunnel barrier as in Fig. 3(a).

The energy levels of the QD can be adjusted with respect to

the Fermi level in the highly doped barrier, to vary determin-

istically the charge state with the precision of a single

elementary charge due to Coulomb blockade. This effect is

observed in micro-PL spectra by abrupt jumps of the

(charged) exciton emission energy when the gate voltage is

varied [see Fig. 3(b)] as a result of changes of the strong few

particle direct Coulomb terms (Warburton et al., 2000).

FIG. 2 (color online). (a) 1 �m� 1 �m atomic force microscopy

image of InAs dots on GaAs. (b) 40 nm� 34 nm cross-sectional

scanning-tunneling microscopy image of a GaAs dot in AlGaAs.

From Keizer et al., 2010. (c) Schematic energy level diagram for an

InAs QD in GaAs, where the growth axis is along the Oz direction.

FIG. 3 (color online). Sample A: (a) Scheme of InAs QDs em-

bedded into a charge-tunable device as in Warburton et al. (2000),

where for a voltage Vg1 applied to the top gate the electronic level of

the dot is above the Fermi energy of the highly n-doped back

contact. The QD contains no conduction electron. For a gate voltage

Vg2 the electronic level of the dot is now below the Fermi sea and an

electron can tunnel into the dot. (b) The charging of a single InAs

QD with electrons is accompanied by discrete jumps in the emission

energy when going from the neutral exciton X0 (one electron, one

hole) to the charged exciton X� (two electrons, one hole), etc. until

the wetting layer (WL) is charged. Sample B: (c) Left: Charge

fluctuations (a doping hole or electron tunnel into and out of the dot)

in nonintentionally doped dots allow the observation of neutral

excitons X0, charged excitons Xþ, and biexcitons 2X0 in photo-

luminescence (PL) spectra that are integrated over seconds, i.e.,

over times much longer than the charge fluctuation times (Belhadj

et al., 2009) Right: In addition to the fine structure, the emission

intensity of each transition as a function of optical excitation power

allows one to distinguish between different exciton complexes

containing two, three, or four optically generated charge carriers.
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C. Electronic states, optical selection rules, and carrier Coulomb

exchange interactions

The electronic structure of QDs can be analyzed by tech-

niques such as capacitance-voltage measurements, scanning-
tunneling mircoscopy (Girard et al., 2009), electron-spin

resonance, photocurrent spectroscopy, and a large variety of
optical spectroscopy experiments. The latter allow a detailed

study of the optically active electronic states and their sym-
metry by analyzing the energy and polarization of absorbed

or emitted photons. These experiments probe the interplay
between carrier confinement, direct and exchange Coulomb

terms, and the hyperfine interaction. The orders of magnitude
of the different effects that determine the optical and spin

properties are given in Table I for the model system of InAs
dots in GaAs.

QDs can be populated by valence holes and conduction

electrons through optical excitation and/or through controlled
tunneling in charge-tunable structures (Warburton et al.,

1998). For a simplified calculation of optical transition
energies between conduction-band electron states and

valence-band hole states the single particle energies are
determined by treating the electron-hole confinement poten-

tial within the harmonic approximation. For self-assembled
as well as interface fluctuation dots the vertical confinement

energies (along the growth axis z) are almost an order of
magnitude larger than the lateral confinement energies in the

x-y plane. The quantization energies of both electrons and
holes are larger than the Coulomb energies. The Coulomb

effects can therefore be treated as perturbations to the single

particle structure (Warburton et al., 2000). At zero magnetic

field the lowest lying conduction (valence) level Sc ðSvÞ is
twofold degenerate and the adjacent Pc ðPvÞ level is fourfold
degenerate in the case of axial symmetry, as in an ideal two-

dimensional harmonic potential (Warburton et al., 1998); see

Fig. 2 for the energy level diagram. Here S and P refer to the

symmetry of the envelope part of the Bloch function of the

carrier state. For brevity, a Coulomb correlated electron-hole

pair trapped inside a dot by the confinement potential is called

an exciton in the following.
The electric-dipole interaction of an electromagnetic wave

with carriers in a semiconductor is governed by strict optical

selection rules (Meier and Zakharchenya, 1984). Energy and

angular momentum are conserved for transitions between the

valence and conduction band of a typical zincblende semi-

conductor such as GaAs. The periodic part of the Bloch

function of the conduction states is s like, so the electron

angular momentum is simply ms ¼ �1=2 in units of ℏ
( " or # ). The p-like valence states are determined by spin-

orbit coupling and we consider here only the states with total

angular momentum of J ¼ 3=2 as the split-off states J ¼ 1=2
are very far in energy (hundreds of meV in GaAs based

samples) and can usually be neglected.
The quantization axis z is chosen perpendicular to the QD

plane and in most experiments z is also parallel to the

excitation light propagation direction. Following absorption

of a photon of suitable energy, an electron is promoted from

a valence state to a conduction state. The absorption of a

photon can increase the electron angular momentum by 1 for

a �þ polarized photon or lower it by 1 for a �� polarized

photon; see Fig. 4 for all possible transitions between valence

and conduction states in a simple picture. The selection

rules for photon absorption and emission are identical. The

unoccupied valence state left behind due to the promotion of

the electron to the conduction state is called a hole. The states

TABLE I. Typical transition and interaction energies for a stan-
dard InAs QD in GaAs grown along the [001] axis, measured at a
temperature of 4 K; see, for example, Warburton et al. (1998),
Bayer et al. (2002), and Urbaszek et al. (2003). It is important to
note that all properties which are linked to the QD size and shape
and hence the exact confinement potential can vary considerably
from dot to dot. This table merely indicates typical values for
confinement energies, Coulomb interactions, and Zeeman energies
to establish the relative strength of the different interactions.

Interaction Energy (eV)

GaAs barrier 1.519
Electron to heavy-hole transition in
wetting layer

1.44

InAs dot electron to heavy-hole
transition

1.3

Electron confinement energy 50� 10�3
Heavy-hole confinement energy 25� 10�3
Direct Coulomb interaction
between two S electrons

20� 10�3

Exchange Coulomb interaction
between an S and a P electron

5� 10�3

Fine structure splitting between
J ¼ 2 and J ¼ 1 X0 due to
isotropic e-h
Coulomb exchange interaction �0

100 � � � 500� 10�6

Fine structure splitting of J ¼ 1 X0

due to anisotropic e-h
Coulomb exchange interaction j�1j

0 � � � 150� 10�6

Electron Zeeman splitting ℏ!e
Z at

Bz ¼ 1 T
30� 10�6

Nuclear Zeeman splitting ℏ!n
Z at

Bz ¼ 1 T
30� 10�9

FIG. 4 (color online). Optical selection rules for interband tran-

sitions involving valence-band electrons with angular momentum

Jve ¼ 3=2 in units of ℏ, the corresponding photon polarization �þ

or �� is indicated. Valence states with Jve ¼ 1=2 are well separated
in energy and are not shown here. Absorption of a �þ polarized

photon by a Jvez ¼ �3=2 valence electron results in the promotion

of this electron to the conduction state ms ¼ �1=2 and a heavy hole
Jz ¼ þ3=2 is left behind in the valence band. The energy separation
between valence heavy- and light-hole states �HL is typically

several tens of meV in InAs dots in GaAs.
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with a projection of Jz ¼ �3=2 ( * or + ) are called heavy
holes, Jz ¼ �1=2 are called light holes.

The heavy- and light-hole valence states are separated
by an energy �HL of typically several tens of meV due
to quantum confinement and/or strain. For most of the
experiments the light-hole states can safely be ignored

and optical exciton spin-state preparation is straightforward.
In practice, however, strain, interface rotational symmetry
breaking (Grundmann, Stier, and Bimberg, 1995; Krebs
and Voisin, 1996; Bester and Zunger, 2005), and shape

anisotropy introduce heavy- to light-hole coupling which
makes all the transitions between the states indicated in
Fig. 4 possible, yet with very different probabilities (Bayer

et al., 2002; Koudinov et al., 2004; Léger et al., 2007;
Belhadj et al., 2010).

Optical excitation of an empty dot with a suitable energy
results in a transition from a valence to a conduction state and
in the formation of a neutral exciton X0, which allows one to
study carrier-spin dynamics during the radiative lifetime of

typically hundreds of picoseconds (Paillard et al., 2000). For
studies on longer time scales the spin information can be
transferred to resident carriers in doped dots. In this review

we focus on the three most relevant configurations: a con-
duction electron-valence hole pair X0 with two optically
active bright states (*# or +") and two dark states (*" or +#),
the negatively charged exciton (trion) X� (*"# or +"#), and
the positively charged exciton Xþ (*+" or *+#). Here " (#) and
* (+) represent the conduction electron spin and hole pseu-

dospins, and, for example, +"# stands for ð1= ffiffiffi
2
p Þð"# � #"Þ� + ,

where the antisymmetrization of the conduction states is
more explicit. Because of strong localization of the carrier

wave function, direct and exchange Coulomb as well as
correlation effects are very strong in dots. For the trions the
direct and exchange Coulomb interactions lead to a renor-
malization of the transition energies in the meV range but no

fine structure splitting due to Kramers degeneracy (Bayer
et al., 2002; Högele et al., 2004; Belhadj et al., 2008).

For neutral excitons (in zero magnetic field and in the
absence of strong nuclear polarization) selection rules are
affected by the electron-hole Coulomb exchange interaction.

This interaction includes an anisotropic contribution (Bayer
et al., 2002; Tong and Wu, 2011) due to deviation of the real
QD shape from a perfectly circular shape (see microscopy
images in Fig. 2), and/or due to the dot-semiconductor matrix

interface anisotropy. Because of anisotropic exchange, X0

recombination results in a doublet of linearly polarized tran-
sitions, separated by an energy �1 that varies from a few to a

few tens of �eV from dot to dot in InAs/GaAs samples;
see Table I.

D. Optical spectroscopy techniques

To investigate the spin dynamics of carriers and nuclei a
large variety of optical spectroscopy techniques have been

developed, each adapted to the time scales relevant to the
experiment. The typical radiative lifetime of a neutral or
charged exciton is hundreds of picoseconds (Paillard et al.,
2000, 2001), and electron-spin coherence times can be pro-

longed up to 200 �s (Greilich et al., 2006b; Bluhm et al.,
2011). Efficient collection of single dot photoluminescence

following nonresonant excitation (Maletinsky, Badolato, and

Imamoglu, 2007) and resonant fluorescence (Lu et al., 2010)
results in signal integration times well below the millisecond

range, which provides the time resolution necessary to mea-
sure, for example, the nuclear polarization buildup time.

The discreteness of the QD energy states was demonstrated

in optical spectroscopy experiments as early as 1994 (Marzin
et al., 1994). Reducing the detection spot size in optical

experiments to an area that contains only one nano-object
permits one to directly study the optical properties of an

individual dot. A simple and powerful tool is nonresonant
PL, where carriers are optically excited in the surrounding

semiconductor matrix by a laser tuned above the QD reso-

nance energy, i.e., into either the wetting layer or barrier
states. The carriers are subsequently trapped by the QD

confinement potential and, following energy relaxation,
recombine radiatively at the ground state energy; see the Sc
to Sv transition in Fig. 2(c). More recently resonant fluores-
cence experiments where the excitation laser is resonant with

the energy necessary for absorption from the highest lying
valence level to the lowest lying conduction level (Muller

et al., 2007) have shown beautiful analogies to atomic physics

(Vamivakas et al., 2009). Two closely related, powerful
techniques developed in charge-tunable structures are differ-

ential transmission and reflectivity, which also allow resonant
probing of QD states (Högele et al., 2004; Alen et al., 2006).

These experiments are carried out with pulsed or continuous
wave (cw) excitation. The challenge is to detect a very weak

optical signal stemming from only one photon per recombi-
nation process. In practice efficient cw detection with

Si-based CCD cameras and avalanche diodes are adapted to

single dot measurements. For time-resolved measurements
and also to observe the spin physics in several thousand dots

simultaneously experiments on QD ensembles are useful,
that allowed important discoveries in the field, in resonant

PL (Paillard et al., 2001), Kerr and Faraday rotation probing
the real part of the refractive index (Greilich et al., 2006b),

and photoinduced circular dichroism (PCD) (Eble et al.,
2009) probing the imaginary part of the refractive index.

An interesting alternative to conventional pump-probe tech-

niques is to passively detect the spectrum of intrinsic random
spin fluctuations of carriers in thermal equilibrium (i.e.,

without optical pumping or initialization). This technique
labeled spin noise spectroscopy was successfully applied to

electron (Crooker et al., 2010) and hole spins (Dahbashi
et al., 2012; Li et al., 2012), respectively, interacting with

nuclear spins.

E. Electron-spin orientation mechanisms

The aim of this section is to explain how carrier-spin states

in QDs can be initialized in optical experiments. Two very
different scenarios have to be distinguished: nonresonant

and resonant optical excitation. The technical advantage of
nonresonant optical excitation is the possibility to avoid

blinding of the detector by the excitation laser light, thanks
to spectral filtering. Also, contrary to atomic physics,

nonresonant excitation is very efficient due to the high ab-
sorption probability of the thick barrier layer or 2D wetting

layer. In the case of nonresonant excitation, the carriers have
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to relax in energy toward the quantum-dot ground state Sv for
holes and Sc for electrons. The average carrier spin hSzi that
can be initialized in the QD ground state is the result of the
(i) spin initialization upon photon absorption in the barrier or
in the wetting layer according to the optical selection rules,
(ii) spin relaxation of the carrier during its presence in the
barrier or wetting layer, and (iii) spin and energy relaxation
during capture into the QD. In spite of the expected phonon
bottleneck,1 it is observed that the carriers in the majority
of samples relax on a picosecond time scale toward the dot
ground state (Verzelen, Bastard, and Ferreira, 2002). As a
general rule, hole-spin relaxation is efficient in bulk
semiconductors and quantum wells (Damen et al., 1991;
Dyakonov, 2008), i.e., during relaxation, whereas the electron
keeps its spin orientation for longer and can to a high degree
preserve its spin state during capture (Kalevich et al., 2001;
Braun et al., 2005).

Excitation in the GaAs barrier for InAs dots (or the
AlGaAs barrier for GaAs dots) involves both light- and
heavy-hole transitions. As a result, a circularly polarized
excitation creates both up and down electron spins (see
Fig. 4 for selection rules). The heavy-hole transition has
a roughly 3 times larger oscillator strength than the light-
hole transition. As a result, under �� excitation for three spin
" electrons only one spin # electron is created in a conduction
state. This corresponds to an optical spin initialization of

n" � n#
n" þ n#

¼ 3� 1

3þ 1
¼ 50%:

To increase the optically generated average spin, excitation
into the bidimensional wetting layer (if present in the sample)
allows in principle injection of 100% spin-polarized electrons
when driving heavy-hole transitions, which are separated in
energy from the light-hole transitions in the wetting layer due
to confinement and/or strain.

The neutral exciton X0.—For an empty QD, the ground
state electron and hole form an X0. Because of the strong
overlap of the carrier wave functions, Coulomb correlations
are important and the anisotropic part of the exchange inter-
action results in two linearly polarized exciton eigenstates
that are separated in energy by �1 (Gammon et al., 1996).
Assume that the QD is excited with a pulsed laser (temporal
pulse length �L) that is �

þ polarized and for which ℏ=�L >
�1 holds. Because of anisotropic exchange, the created ex-
citon is not in an X0 eigenstate, but in a superposition of the
linearly polarized eigenstates, so during the radiative X0

lifetime �r quantum beats in the �þ=� basis are observed;
for a detailed discussion see Sénès et al. (2005). If the beat
period � ℏ=�1 � �r, then the time averaged circular polar-
ization degree ðI�þ � I�þÞ=ðI�þ þ I�þÞ, where I�þ (I�� ) are
the �þ (��) polarized emission intensities, will tend to zero.

In general, ℏ=�1 and �r can be of similar magnitude, which

leads in cw experiments to a decrease of exciton pseudospin

polarization from initially �0
c down to �c during the radiative

lifetime as �c ¼ �0
cð1þ!2�2rÞ�1 with ℏ! ¼ �1.

The positively charged exciton Xþ.—In the case of the

Xþ exciton, a doping hole is present before the optically

generated electron and hole are captured. The incoming

hole spin is random, so the resident hole (which has a given

spin orientation) and the optically generated hole can form a

hole pseudospin singlet. As a result, the subsequent evolution

of the spin orientated electron can be monitored during the

Xþ lifetime (Laurent et al., 2005; Krebs et al., 2008) in the

absence of Coulomb exchange effects. Recording the Xþ
emission from an InAs dot, initialization of electron-spin

polarization as high as 80% (hSzi ¼ 0:4) has been achieved

through nonresonant excitation into the wetting layer, about

100 meV above the dot ground state (Urbaszek et al., 2007).
The negatively charged exciton X�.—Nonresonant excita-

tion with a circularly polarized laser of a dot doped with a

resident electron is in principle not expected to yield polar-

ized emission, as the incoming electron will form a spin

singlet with the resident electron (total spin S ¼ 0). The

hole spin, completely randomized, will determine the polar-

ization of the emitted photon after X� recombination. But

surprisingly, this prediction has not been confirmed in experi-

ments; instead, nonresonant circularly polarized excitation of

a QD results in a partially polarized ground state emission

with an helicity opposite to that of the excitation (Dzhioev,

Zakharchenya, Korenev et al., 1998; Cortez et al., 2002;

Laurent et al., 2006; Oulton et al., 2007; Shabaev et al.,

2009). The origin of this negative polarization has been

ascribed to exchange related electron-hole-spin flip-flop pro-

cesses during carrier energy relaxation (Ware et al., 2005;

Laurent et al., 2006). Another possible scenario involving the

accumulation of dark excitons in the barriers that are sub-

sequently captured by the dots resulting in negative polariza-

tion is likely to be applicable to GaAs interface fluctuation

dots (Bracker et al., 2005). Independent of its origin, changes

in the negative polarization degree observed for X� initiali-

zation and subsequent recombination can be used as a sensi-

tive probe for nuclear spin effects (Auer et al., 2009).
Strictly resonant and quasiresonant optical excitation.—

Although experimentally simple, nonresonant excitation has

several disadvantages: (i) Initialization of the QD in a well-

defined coherent superposition of polarization states is not

possible, as coherence is lost during relaxation. (ii) As car-

riers with well-defined spin orientation have been injected

into the barrier and/or wetting layer material, the electron can

interact with the nuclear spins during its presence in these

layers. If the QD emission shows that nuclear spins in the dot

are polarized, in the case of nonresonant excitation one

cannot be 100% sure that this polarization originates from

nuclear spins in the QD only, or, if the QD is simply a

nanoscopic probe of a macroscopic nuclear spin polarization

created inside the sample through spin diffusion (Paget,

1982). The first step to circumvent these problems is to use

what is termed a quasiresonant excitation, for example, one

longitudinal optical (LO) phonon energy above the Sv-Sc
transition or directly the Pv-Pc transition. Reaching the

ground state via emission of a single LO phonon partially

1At first sight energy relaxation from the continuous barrier states

to the quantum-dot ground states via discrete states separated in

energy by tens of meV seems unlikely if the relevant energy level

spacing does not exactly match the energy of lattice phonons. The

anticipated slowing down of the relaxation via phonon emission is

termed phonon bottleneck, but is rarely observed as, for example,

the involvement of polarons assures energy conservation during

relaxation (Verzelen, Bastard, and Ferreira, 2002).
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preserves coherence (Flissikowski et al., 2001; Scheibner
et al., 2003; Sénès et al., 2005). In addition, as in these
experiments the photon is absorbed directly by the QD states,

one can be sure that the nuclear spins in the QD are the direct
source of the detected nuclear spin polarization. This is
demonstrated, for example, by illuminating the dot with a
fixed laser polarization and changing the sign of the nuclear

polarization by varying the gate voltage applied to a charge-
tunable structure, i.e., by going from the Xþ to the X�
emission (Eble et al., 2006; Lai et al., 2006). Resonant
experiments allow precise control over the created spin state
or superposition of states (Greilich et al., 2006a). Whereas in

nonresonant experiments the hyperfine interaction will have
negligible influence on the photon absorption probability, in
resonant experiments under certain conditions the hyperfine
interaction determines the polarization and energy of the

preferentially absorbed photons (Gerardot et al., 2008;
Latta et al., 2009; Chekhovich, Makhonin, Kavokin et al.,
2010; Klotz et al., 2010; Kloeffel et al., 2011), as discussed
in Sec. V.C. Once carrier-spin initialization has been
achieved, the spin will interact with its nuclear spin environ-

ment during its lifetime.
Electron cotunneling in charge-tunable structures.—Our

main focus in this review is on the interaction with nuclear
spins, but before going into detail an important spin interac-
tion present in charge-tunable structures has to be mentioned.
An electron in a dot embedded in a charge-tunable structure is

coupled to the continuum of delocalized electron states in the
n-doped layer (Fermi sea) via the tunnel barrier. The physical
problem itself of a single spin coupled coherently to the
Fermi sea has parallels to the Kondo effect (Smith et al.,
2005; Dreiser et al., 2008; Latta et al., 2011). Essentially,

each charge state corresponds to the ground state for a given
gate voltage range �V ¼ Vstart � Vend over typically several
tens of mV. Close to Vstart and Vend the exchange coupling
to the electron reservoir is strong; in between it is weak

(charging plateau) [see Fig. 5(e)]. When the coupling is
strong the electron spin can flip via an intermediate virtual

transition to either an empty or doubly occupied QD state, as
shown in Figs. 5(a)–5(d) (Dreiser et al., 2008). The net result
of exchanging an electron with the reservoir is a spin flip of
the electron inside the dot characterized by a spin-flip cotun-
neling rate. So for experiments where stable carrier spins are
required, the structures must be operated at a gate voltage
close to the center of the charging plateau where the cotun-
neling rate is low and hence the spin state of the resident
electron is long lived.

III. ELEMENTARY INTERACTIONS WITH NUCLEI IN

QUANTUM DOTS

Nuclear spin effects are important for experiments in QDs
that investigate optical carrier-spin manipulation. Three strik-
ing examples are shown in Fig. 6: Figures 6(a) and 6(b) show
that the Zeeman splitting of an exciton in a longitudinal
magnetic field Bz depends in a strongly nonlinear fashion
on the laser excitation power as nuclear spins start to get
polarized (Tartakovskii et al., 2007); see Sec. V. These
measurements show that hyperfine effects in III-V dots are
of the same order as the fine structure of bright excitons; see
also Fig. 6(e) and Table I. Figure 6(c) shows absorption of the
charged exciton X� line at 0 T, with a textbook Lorentzian
line shape. Figure 6(d) represents a highly unusual absorption
spectrum at Bz ¼ 4:5 T that is strongly broadened, asymmet-
ric, and changes with the laser scan direction (Latta et al.,
2009). In this experiment nuclear spin polarization allows the
QD transitions to be locked to the driving laser field as it
changes frequency; see Sec. V.C.3. As such nuclear spin
effects have to be taken into account even in a simple
measurement of the transition energy of the X� in an applied
magnetic field. A direct proof that this type of behavior is
related to nuclear spins comes from original ODNMR mea-
surements by Gammon et al. (1997), as detailed in Sec. VI.E.
The electron Zeeman splitting in a longitudinal field of
Bz ¼ 1 T for single GaAs/AlGaAs dots changes, as nuclear
spins are depolarized by a chirped radio-frequency source (rf
on) scanning the nuclear spin resonances for Ga and As; see
Fig. 6(e). The measurements show that the dynamic nuclear
polarization created through optical pumping has an effect on
the electrons that is comparable to the applied magnetic field;
see Sec. V.

Next we highlight the basics of the magnetic and electro-
static coupling between electrons and nuclei that will allow us
to interpret quantitatively the nuclear spin effects observed in
optical spectroscopy experiments in quantum dots for a wide
range of experimental conditions.

A. Magnetic coupling of electrons to nuclei:

Hyperfine interaction

The strength of the hyperfine interaction in QDs is en-
hanced compared to semiconductor bulk or quantum well
structures due to the strong localization of the electron wave
function over typically only 105 lattice sites. This number is
too small for efficient cancellation of the total nuclear spin by
averaging (Burkard, Loss, and DiVincenzo, 1999; Merkulov,
Efros, and Rosen, 2002), yet too large to address each nuclear
spin state individually. In III-V QDs such as GaAs, InP, and

FIG. 5 (color online). (a)–(d) A QD exchanges an electron with

the reservoir via a virtual two electron state, and (e) calculation of

the cotunneling rate as a function of gate voltage after Dreiser et al.

(2008) for tunneling rates 0:1 ns�1 (solid curve) and 0:02 ns�1

(dashed curve).
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InAs, 100% of the lattice sites have a nonzero nuclear

spin and these materials are taken here as model systems.

Even for solids with very few isotopes carrying a nuclear

spin such as diamond (Childress et al., 2006), ZnO (Liu

et al., 2007), or CdSe (Feng, Akimov, and Henneberger,
2007) hyperfine effects still play a key role in the carrier-
spin state evolution.

There are two main contributions to the hyperfine interac-
tion (Abragam, 1961): (i) The Fermi-contact interaction is
efficient when there is a physical overlap of the carrier wave
function with the lattice site. This type of interaction is
dominant for s-type wave functions (periodic part of the
Bloch function) of conduction electrons. (ii) The dipole-
dipole interaction is effective for p-type (nonzero orbital
angular momentum) wave functions. This term is therefore
dominant for valence-band states (holes). It is about 1 order
of magnitude weaker than the Fermi-contact interaction for
conduction electrons (Fischer et al., 2008; Eble et al., 2009;
Desfonds et al., 2010; Fallahi, Yilmaz, and Imamoğlu, 2010;
Chekhovich et al., 2011a). In Secs. IV, V, and VI we
concentrate on the interaction of a conduction electron with
nuclear spins; the interaction between valence holes and
nuclear spins will be discussed separately in Sec. VII.

To introduce the orders of magnitude of the energy shifts
due to the hyperfine interaction between electron and nuclear
spins, a comparison with the Zeeman splitting of the spin
levels in an external magnetic field B ¼ ð0; 0; BzÞ is helpful
(Abragam, 1961; Dyakonov, 2008): The Zeeman energy of an

electron spin with Ŝez ¼ 1
2 �̂

e is

ĤZe ¼ �BgeBzŜ
e
z ¼ ℏ!e

ZŜ
e
z; (1)

where ge is the longitudinal electron g factor and �B ¼
9:27� 10�24 J=T ¼ 58 �eV=T. The Zeeman energy of a
system of nuclear spins Ij is given by

ĤZN ¼ ��N

X
j

gNjBzÎ
j
z (2)

summing over all nuclei j in the system. Here gN is the
nuclear g factor and �N ’ �B=2000 is the nuclear magneton.
For an order of magnitude calculation, we take the example
of indium and an electron g factor of 0.6, and find
ge�B=gN�N ’ 1000. The energy separation between the
nuclear spin states is therefore negligible compared to that
of the electron spins.

The Fermi-contact (fc) hyperfine interaction in a QD
between an electron spin and the N nuclei of the atoms
forming the dot is (Abragam, 1961; Gammon et al., 2001)

Ĥfc
hf ¼

�0

2

X
j

Ajjc ðrjÞj2ð2ÎjzŜez þ ½ÎjþŜe� þ Îj�Ŝeþ�Þ; (3)

where �0 is the two atom cell volume, rj is the position of the

nuclei j with spin Îj, and c ðrjÞ is the normalized electron

envelope function. The nuclear spin is 3
2 for Ga and As, 52 for

Al, and 9
2 for In in units of ℏ. Aj is the constant of the

hyperfine interaction with the electron in the order or
50�eV for In, Ga, and As; see Table II.

As an electron interacts simultaneously with about 105

lattice sites, one can consider in the mean-field approach
that the electron spin is affected by a mean nuclear spin

polarization hÎji acting similar to an effective magnetic field
Bn (Overhauser field):
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FIG. 6 (color online). (a) Gray-scale plot showing exciton PL
spectra recorded for an individual InGaAs dot. The spectra are
recorded at Bz ¼ 2:5 T using unpolarized detection. (b) Power
dependences of the Zeeman splitting measured at Bz ¼ 2 T for
�þ and �� excitation polarizations. From Tartakovskii et al., 2007.
(c) Trion X� absorption at zero magnetic field with Lorentzian fit of
linewidth 2 �eV, and (d) strong deviation from Lorentzian line
shape at Bz ¼ 4:5 T. From Latta et al.,2009. (e) Zeeman splitting
for a single GaAs interface fluctuation QD. Because of dynamic
nuclear polarization the Zeeman splitting for �þ and �� polarized
excitations are different. Randomizing the nuclear spin orientation
with a radio-frequency field (rf on) results in the same Zeeman
spliting for both laser polarizations. From Gammon et al., 1997.
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Bn ¼
�0

P
j A

jjc ðrjÞj2hÎji
ge�B

: (4)

For uniform nuclear polarization, the field Bn is independent
of the electron localization volume and is on the order of
Bmax
n ’ 5 T for fully polarized nuclei in GaAs (Paget et al.,

1977), as the maximum Overhauser shift is simply
ge�BB

max
n ¼ IGaAGa þ IAsAAs ¼ 135 �eV.

The hyperfine interaction is reciprocal (see Fig. 1), and as a
result the nuclei are also effected by the average electron-spin
polarization acting similar to an effective magnetic field BK

(Knight field). The time averaged Knight field acting on one
specific nucleus j is given by

BKj ¼ fe
�0A

j

gN�N

jc ðrjÞj2hŜei; (5)

where fe is the filling factor 2 ½0; 1� characterizing
the occupation of the dot by electrons, underlining the
fact that the Knight field is zero in the absence of elec-
trons. The maximum Knight field can be estimated as Bmax

K ’
ðBmax

n =NÞge�B=gN�N , which for N ’ 105 results in Bmax
K in

the tens of mT range. The amplitude of the Knight field for a
nucleus situated in the center of the dot (where electron
occupation probability is strongest) will be higher than for a
nucleus in the dot periphery. The Knight field experienced by
the nuclei leads to frequency shifts in ODNMR spectra of
individual QDs (Brown, Kennedy, and Gammon, 1998).

Introducing ~A as the average of the hyperfine constants Aj

and assuming a strongly simplified, uniform electron wave

function c ðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=N�0

p
over the involved nuclei, Eq. (3)

simplifies to

Ĥfc
hf ¼

2 ~A

N

�
ÎzŜ

e
z þ ÎþŜe� þ Î�Ŝeþ

2

�
; (6)

where Î ¼ P
N
j¼1 Î

j.

The energy level splittings between the different nuclear-
and electron-spin states are determined by the hyperfine
interaction in combination with the applied magnetic
field Bz. The term ℏ!OS ¼ 2 ~AhÎzi=N ¼ �BgeBn relates the
Overhauser shift ℏ!OS to the average nuclear polarization.
We can therefore access the average nuclear polarization by
measuring ℏ!OS in single dot spectroscopy, as in Fig. 6(e).
For example, when the nuclear spins are polarized (i.e., the rf
source is off) the total electron Zeeman splitting ℏ!e in

Fig. 6(e) is given by ℏ!e ¼ ℏð!e
Z þ!e

OSÞ. When the rf

source is on, the nuclei are depolarized, the Overhauser field

Bn is vanishingly small, and ℏ!e ¼ ℏ!e
Z. The difference

between the two cases allows one to measure the

Overhauser shift ℏ!e
OS.

The hyperfine interaction is time dependent since the elec-

tron lifetime is finite and its spin may also relax during its

lifetime. The time dependence of the second term inEq. (6) can

be explicitly written as Ĥ1ðtÞ ¼ ð ~A=NÞðÎþŜe� þ Î�ŜeþÞh1ðtÞ.
This term allows for spin transfer via simultaneous spin flips

(flip-flop) of a carrier and nuclear spin. As the nuclear Zeeman

splitting is negligible, the electron Zeeman splitting plays a

crucial role in determining the probability of these spin flip-

flops, as pointed out by Overhauser (1953). It should be

emphasized that while the term / ÎzŜ
e
zh1ðtÞ also fluctuates in

time, it does not directly induce any spin flips. Depending on

the exact experimental conditions, the electron-nuclear spin

flip-flop term can lead to electron-spin dephasing (Braun et al.,

2005), dynamic nuclear polarization (Gammon et al., 1997),

or nuclear spin dephasing (Abragam, 1961; Merkulov, Efros,

and Rosen, 2002).
Ĥ1ðtÞ can be visualized as a random perturbation between

states split in energy by ℏ!e. The function h1ðtÞ is charac-
terized by its mean value h1ðtÞ ¼ fe and a simple, auto-

correlation function h1ðtÞh	1ðtþ �Þ ¼ expð�j�j=�ecÞ with a

correlation time �ec. The fraction of time the quantum dot

contains an electron fe takes values between 0 and 1. The rate
of nuclear polarization will depend on the splitting ℏ!e and

the level broadening ℏ=�ec (Eble et al., 2006; Urbaszek et al.,

2007), as discussed in Sec. V.
For commonly achieved nuclear spin polarization values

well below 100%, the nuclear field fluctuates around a mean

value hBni. The fluctuations (root mean square deviation) can

be written as an effective field �Bn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihB2

ni � hBni2
p

. Several

theoretical studies predicted that the dominant mechanism of

electron spin relaxation in QDs at low temperature and zero

external magnetic field is due to the hyperfine interaction with

these nuclear field fluctuations �Bn (Burkard, Loss, and

DiVincenzo, 1999; Khaetskii, Loss, and Glazman, 2002;

Merkulov, Efros, and Rosen, 2002; Semenov and Kim,

2003). The reason for the non-negligible �Bn lies in the finite

number of nuclei within the dot: The mesoscopic nuclear spin

system of a QD is described by the nuclear spin operators Îx,
Îy, and Îz. These operators do not commute, and it is therefore

impossible to determine the x, y, and z components of the

nuclear spin system with equal precision, i.e., they cannot all

be exactly zero. In the absence of dynamic nuclear polariza-

tion (DNP) repeated measurements of the expectation value

of Bn at time intervals longer than the nuclear spin correlation

time of the order of 10�4 s give an average of hBni ¼ 0. But,
employing a useful qualitative physical picture,2 an electron

spin will interact during its lifetime (about 1 ns in InAs QDs)

with a field of typical magnitude �Bn and random orientation

during about 10�4 s; this is referred to as the frozen fluctua-

tion model (Merkulov, Efros, and Rosen, 2002) and is de-

tailed in Sec. IV.

TABLE II. Hyperfine constants in GaAs, InAs, InP, and CdTe for
a cell containing two atoms; see Testelin et al. (2009) and
references therein. Please note that an average is quoted for Ga
and In for which two stable isotopes exist.

Isotope
Nuclear
spin I

Abundance
(%)

Hyperfine constant
A (�eV)

In 9=2 100 56

Ga 3=2 100 42

As 3=2 100 46

P 1=2 100 44

Cd 1=2 25 �30
Te 1=2 8 �45

2The electron really interacts with a quantum field of indetermi-

nate magnitude and direction at any time scale for B ¼ 0.
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An important interaction between nuclear spins is the
dipole-dipole interaction that allows, for example, nuclear
spin diffusion in bulk GaAs samples (Paget, 1982) with
spatially inhomogeneous nuclear polarization. The dipole-
dipole interaction of a nucleus n with the other nuclei n0
separated by the translation vector rnn0 can be written as
(Abragam, 1961)

Ĥdd ¼ �2
N

2

X
n�n0

gngn0

r3nn0

�
ÎnÎn

0 � 3
ðÎnrnn0 ÞðÎn0rnn0 Þ

r2nn0

�
: (7)

As a result of the dipole-dipole interaction each nucleus
experiences a fluctuating local effective magnetic field �BL,
where �BL ’ 0:15 mT in GaAs, created by the other nuclei.
Via the nonsecular (nonspin conserving) part of the dipole-
dipole interaction nuclear spin is transferred to the crystal as a
whole and is not conserved, see Abragam (1961) where
secular and nonsecular parts of the dipole-dipole interaction
are detailed. The precession of the nuclear spins around BL is
one of the reasons why dynamic nuclear polarization in GaAs
bulk in the absence of any applied magnetic field is not
possible (Meier and Zakharchenya, 1984). In QDs two inter-
actions, namely, the Knight field BK and the nuclear quadru-
pole interaction, can in principle dominate BL already at zero
field, as discussed in Secs. III.B and V.B.5.

B. Electrostatic coupling: Nuclear quadrupole effects

Because of lattice strain and atomic interdiffusion, electric
quadrupolar effects are strong for nuclei in QDs compared to
the influence of alloy disorder in unstrained bulk samples and
hence play a central role in nuclear spin dynamics in QDs
(Dzhioev and Korenev, 2007); see Bulutay (2012) for a de-
tailed discussion. Quadrupolar effects are at the heart of many
of the surprising effects that go beyond the nuclear spin
physics known from bulk and quantum well systems, such
as, for example, zero field DNP (Lai et al., 2006; Oulton
et al., 2007) (see Sec. V.B.5), strongly suppressed spin dif-
fusion (Maletinsky, Kroner, and Imamoglu, 2009) (see
Sec. VI.F), the anomalous Hanle effect (Krebs et al., 2010)
(see Sec. VI.D), and the locking of quantum-dot resonances
to an incident laser (Latta et al., 2009; Högele et al., 2012)
(see Sec. V.C.3).

Nuclei have no electric-dipole moment and are thus in-
sensitive to homogeneous electric fields (Abragam, 1961).
But the nonspherical (prolate) charge distribution of atomic
nuclei with spin I > 1=2 presents an electric quadrupolar
moment, as shown in Fig. 7(c), which can couple to inhomo-
geneous electric fields produced by electron clouds, ex-
pressed as an electric field gradient @2V=@x�@x�, where V

is the electrical potential due to local charge distribution. If
the nuclear environment has cubic symmetry, the electric
field gradient vanishes and so does the quadrupolar coupling
(Abragam, 1961; Slichter, 1990). This situation prevails in
bulk GaAs, but the cubic symmetry breaks down in self-
assembled QDs such as InAs/GaAs because of large biaxial
strain associated with the 
7% lattice mismatch between
InAs and GaAs. Also, interdiffusion of In and Ga atoms
during QD growth results in a substantial fraction of As atoms
for which all first neighbors are no longer identical. The local

tetrahedral symmetry is then lost and an electric field gradient
arises along one of the crystallographic directions h111i or
h100i (Meier and Zakharchenya, 1984).

This electrostatic coupling of the electronic system with
the nuclear spin system can manifest itself in principle in the
analysis of either system. For the conduction electrons most
relevant for the physics described here the quadrupolar inter-
action vanishes (for s electrons, i.e., l ¼ 0) (Abragam, 1961)
and in what follows we consider only the effect of the electric
field gradients on the nuclear spin system. For simplicity we
assume that the electric field gradients in the dot have cylin-
drical (axial) symmetry, i.e., the strength of the interaction
does not depend on the angle 	 in the x-y plane, defined in
Fig. 7(b) with respect to the growth axis z. The influence of
the electric field gradients oriented along an axis z0 on a
nucleus of spin I can then be described by (Abragam, 1961)

FIG. 7 (color online). (a) Sketch of the strain distribution in an

InAs/GaAs QD and splitting of energy levels in zero field due

to axially symmetric quadrupolar interaction for a nuclear spin I ¼
9=2. (b) Reduction factor of nuclear polarization along z due to the

inclination 
 of the quadrupolar main axis. In the approximation

of high spin temperature, it is given by hIzi=hI0z i ¼ ðI þ 3=4Þ�
ðI � 1=2Þcos2
=½IðI þ 1Þ� þ 3ðI þ 1=2Þ=½4IðI þ 1Þ�. (c) A nucleus

with nonspherical, prolate charge distribution is equivalent to a

spherically symmetric charge distribution plus some positive charge

shared between the two polar regions and a band of equal negative

charge added around the equator. This addition has no dipole

moment but does have electric quadrupole moment. From

Williams, 1991.
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ĤQ ¼
ℏ!Q

2

�
Î2z0 �

IðI þ 1Þ
3

�
; (8)

where ℏ!Q is the quadrupolar splitting proportional to the

nuclear quadrupolar moment and to the electric field gradient,
and Îz0 is the angular momentum projection on the principal
axis z0 of the electric field gradient. Without loss of generality
one can assume Îz0 ¼ Îz cos
þ Îx sin
 to analyze the effect
of the Eq. (8) on the nuclear polarization:

ĤQ ¼
ℏ!Q

2

�
Î2zcos

2
� IðI þ 1Þ
3

þ ðÎzÎx þ ÎxÎzÞ sin
 cos
þ Î2xsin
2


�
: (9)

In zero magnetic field, the 2I þ 1 spin levels are split
according to the square of their angular momentum projec-
tion mz0 onto z

0. For a half-integer spin I, this leads to pairs of
levels mz0 ¼ �1=2;�3=2; . . . ;�I, which are separated from
each other by 1; 2; . . . ; ðI � 1=2Þ � ℏ!Q; see Fig. 7(a).

Although the quadrupolar interaction is qualitatively dif-
ferent from a magnetic field, for the purpose of quantitative
comparison it is useful to express ℏ!Q as an effective field

BQ, where gN�NBQ � ℏ!Q. In self-assembled InAs QDs

estimated values of BQ fall in the 100 mT range (Dzhioev

and Korenev, 2007; Krebs et al., 2008; Maletinsky, Kroner,
and Imamoglu, 2009). As a result, the dipolar coupling
between nuclear states of angular momentum difference
j�mz0 j ¼ 1 or j�mz0 j ¼ 2 is strongly inhibited. Only the
states mz0 ¼ �1=2 still experience the local small fluctuating
field due to surrounding nuclear spins on the order of �BL �
0:15 mT in GaAs. The polarization relaxation induced by the
nonsecular part of the dipolar interaction is then essentially
suppressed for the levels jmz0 j> 1=2 in agreement with the
substantial Overhauser shift observed in QDs for zero exter-
nal field, as discussed in Sec. V.B.5. The quadrupolar shifts
also lead to an energy mismatch between nuclear spin levels
of atoms inside the dot compared to atoms in the surrounding
barrier material which leads to a strong suppression of nu-
clear spin diffusion from the dot toward the barrier. As a
result the mesoscopic spin system of� 105 nuclear spins in a
highly strained QD such as InAs in GaAs is well isolated
from its surroundings. The inclination 
 of the quadrupolar
axis induces oscillations of the nuclear polarization compo-
nent perpendicular to z0, while keeping constant the longitu-
dinal projection along z0. Under cw optical excitations this
transverse part vanishes and the nuclear polarization created
in a quantum dot along the external field direction z is
reduced by 
cos2
, as shown in Fig. 7(b) for nuclear spins
I ¼ 3=2 and 9=2. This effect which has to be averaged over
the angle dispersion of z0 may contribute to the enhancement
of the effective nuclear spin relaxation observed experimen-
tally in low magnetic fields; see Sec. V.B.3.

IV. DYNAMICS OF ELECTRON SPINS COUPLED TO A

FLUCTUATING NUCLEAR FIELD

In bulk semiconductor or quantum well structures, the
electron-spin dephasing induced by the interaction with nu-
clear spins is usually much weaker than the well-known

mechanisms originating from spin-orbit interactions, well
documented by Meier and Zakharchenya (1984) and
Dyakonov (2008). Because of the absence of translational
carrier motion in semiconductor QDs, the discrete energy
levels due to carrier localization and the corresponding lack
of energy dispersion lead to a strong suppression of these
well-known electron spin-relaxation processes (Burkard,
Loss, and DiVincenzo, 1999; Khaetskii and Nazarov, 2000;
Paillard et al., 2001). The spin-relaxation time due to hyper-
fine interaction with lattice nuclei was first derived by
Dyakonov and Perel for donor-bound electrons (Dyakonov
and Perel, 1973, 1974; Paget et al., 1977; Dzhioev et al.,
2002) and subsequently for electrons confined to QDs
(Burkard, Loss, and DiVincenzo, 1999; Khaetskii, Loss,
and Glazman, 2002; Merkulov, Efros, and Rosen, 2002;
Semenov and Kim, 2003). In this section we review the
experimental and theoretical work on this topic. Throughout
this section the mean nuclear spin polarization hBni is taken to
be zero, i.e., no DNP is created; see Secs. V and VI for a
detailed discussion about buildup, manipulation, and decay of
nuclear spin polarization.

A. The Merkulov-Efros-Rosen model

Three distinct time scales are relevant for describing the
electron-nuclei spin system evolution in a QD according to
the Merkulov-Efros-Rosen (MER) model (Merkulov, Efros,
and Rosen, 2002).

(1) The first time corresponds to the electron-spin preces-
sion around the frozen nuclear field fluctuations given
by �Bn (Burkard, Loss, and DiVincenzo, 1999;
Khaetskii, Loss, and Glazman, 2002; Semenov and
Kim, 2003): the typical dephasing time is of the order
of T� � ℏ=g�B�Bn 
 1 ns for InAs QDs containing
105 nuclei (see Fig. 8).

(2) The second time is controlled by nuclear spin preces-
sion in the inhomogeneous hyperfine field of the
localized electron (Knight field BK): the typical time
is given by TK� ’

ffiffiffiffi
N
p

T� which results for N ¼ 105 in
TK� 
 1 �s.

(3) The third time is given by the nuclear spin relaxation
due to dipole-dipole interaction with nuclei in the
vicinity of the QDs: its order of magnitude is given

<
S

(t
)>

/S
0

Time (s)

TK
1/3

1/9

FIG. 8. Electron spin relaxation induced by nuclei in a QD. The

calculation is done for N ¼ 105 nuclei per dot. From Dyakonov,

2008.

90 Bernhard Urbaszek et al.: Nuclear spin physics in quantum dots . . .

Rev. Mod. Phys., Vol. 85, No. 1, January–March 2013



by the average precession time of a nuclear spin in the
local field fluctuation �BL, occurring on a typical time
scale Tdipole 
 100 �s.

During the first two stages, the total angular magnetic
moment of an electron and the nuclei interacting with this
particular electron is conserved. Thus the global coherence of
the electron-nuclear spin system is preserved, while during
the last stage it is not, since the dipolar interaction does not
conserve the total angular magnetic moment [see Abragam
(1961)].

We focus first on the shortest decay time corresponding to
the electron-spin precession around the frozen nuclear field
fluctuations. An electron spin in a QD interacts with a large
but finite number of nuclei, for instance, N 
 105 in an InAs
QD. In the frozen fluctuation model, the sum over the inter-
acting nuclear spins gives rise to an average local effective
hyperfine field Bn with a fluctuation characterized by �Bn.
The dispersion of the nuclear hyperfine field Bn in the
absence of dynamic nuclear polarization can be described
by a Gaussian distribution WðBnÞ / expð�3B2

n=2�B
2
nÞ.

WðBnÞ has a spherical symmetry indicating that Bn has no
preferred spatial orientation. To estimate the magnitude of
�Bn, consider a QD made of N identical nuclear spins I. The
average amplitude of the fluctuating hyperfine field reads

�Bn ¼ 1

ge�B

2 ~Affiffiffiffi
N
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IðI þ 1Þ
p

:

The maximum Overhauser field corresponding to a 100%
nuclear spin polarization is Bmax

n ¼ ð1=ge�BÞ2 ~AI in the order
of several Tesla in InAs and GaAs. As a result �Bn 

Bmax
n =

ffiffiffiffi
N
p

which corresponds to an effective field in InAs
dots of typically 30 mT which arbitrarily changes orientation
on a time scale of 10�4 s (Merkulov, Efros, and Rosen, 2002).
The exact value of �Bn extracted from measurements in
InAs/GaAs QDs varies typically from 20 to 40 mT. This
variation has two main origins:

(i) The exact value of the hyperfine constant ~A and the
relevant nuclear spin I depends on the exact chemical
composition of the dot influenced, for example, by
gallium interdiffusion into nominally pure InAs dots,
resulting in In1�xGaxAs dot formation.

(ii) The exact QD dimensions and hence the number of
nuclei N interacting with the electron spin vary from
dot to dot even within the same sample wafer.

Although an electron spin precesses coherently around �Bn

in a given dot, the amplitude and the direction of this effective
nuclear field vary strongly from dot to dot. The average
electron spin hSðtÞi in an ensemble of dots will thus decay
during this first stage as a consequence of the random distri-
bution of the local nuclear effective field (Khaetskii, Loss,
and Glazman, 2002; Merkulov, Efros, and Rosen, 2002;
Braun et al., 2005):

hSðtÞi ¼ S0
3

�
1þ 2

�
1� 2

�
t

2T�

�
2
�
exp

�
�
�

t

2T�

�
2
��
;

(10)

where S0 is the initial spin and

T� ¼ ℏ
�

3N

2n
P

n
j¼1 IjðIj þ 1ÞðAjÞ2

�
1=2

(11)

is the dephasing time due to the random electron precession
frequencies in the randomly distributed frozen fluctuation of
the nuclear hyperfine field; here n is the number of atoms per
unit cell of the lattice and the index j runs over the nuclei of a
unit cell. The fluctuating field �Bn is assumed to be isotropic
for electron-spin dynamics. If the electron spin is initially
orientated along the z axis, only the components of �Bn in the
x and y directions will contribute to spin dephasing [see
Fig. 9(b)]. Hence only two-thirds of the initial electron-spin
polarization is lost. Figure 8 shows that the calculated average
electron spin hSðtÞi drops down to about one-third of its initial
value on a characteristic time T� 
 1 ns.

The second stage of spin relaxation, occurring on a
characteristic time TK�, is due to the Larmor precession of
the nuclear spins in the inhomogeneous Knight field due to
the electron spin [see Eq. (5)]. This precession results in a
new configuration of the random nuclear field. During this
second stage,

hSðtÞi ¼ S0
3
hBnðtÞ � Bnð0ÞiN=hB2

nð0ÞiN; (12)

(a) 

No external field

: fluctuating hyperfine field

(b) 

External field

BZ||S0

Btot=BZ+

Electron spin 

FIG. 9 (color online). (a) Circular polarization dynamics of the

positively charged exciton Xþ luminescence for B ¼ 0 for an

ensemble of InAs dots. Xþ is formed by a photocreated electron-

hole pair and a resident hole. Since unpolarized holes form a zero

spin singlet, the spin-polarized electron is not coupled to the holes

by the exchange interaction, which can dominate the hyperfine

interaction (Braun et al., 2005; Dyakonov, 2008). The inset displays

the Iþ and I� luminescence dynamics. (b) Schematics of the

electron-spin precession around (left) the effective nuclear field

�Bn and (right) the total field Btot ¼ Bz þ �Bn if an external

magnetic field Bz is applied.
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where the time origin is set here at a delay of the order of T�.
For T� � t < Tdipole one finds hBnðtÞ�Bnð0ÞiN=hB2

nð0ÞiN

1=3, since only the components hÎxi and hÎyi of the nuclear

field precess about hSezi ~ez. The average electron spin evolves
similar to the nuclear field correlation function (Merkulov,
Efros, and Rosen, 2002). The time TK� is much longer than
T� because the interaction of an electron spin with a given
nucleus is

ffiffiffiffi
N
p

times weaker compared to the interaction with
the effective magnetic field of the nuclear fluctuations TK� 

T�

ffiffiffiffi
N
p 
 1 �s. During this second stage the electron spin

feels a slow variation of the effective nuclear field yielding
again a decrease of the average electron spin down to
one-ninth of its initial value hSðtÞi ¼ S0=9, as indicated
in Fig. 8.

Finally the third stage of electron spin relaxation, labeled
Tdipole 
 100 �s, is due to the dipole-dipole interaction of

nuclear spins. In contrast to the first two stages, this dipole-
dipole interaction does not conserve the total nuclear spin and
is thus the upper limit for the electron-spin coherence T2.
Whereas the electron-spin dephasing time in the fluctuating
nuclear field (T�) has been measured by different groups (see
Sec. IV.B), the two other stages occurring on much longer
time scales are still under discussion (Fras et al., 2011).
Using a terminology associated with quantum coherence, the
T� time is sometimes referred to as an inhomogeneous
electron-spin dephasing time.

It is important to note that the nuclear spin dynamics
predicted during the second and third stages of the
Merkulov model will be strongly influenced by inhomoge-
neous quadrupolar coupling of the nuclear spins with local
electric field gradients, present in InAs QDs due to local
anisotropic strain, as introduced earlier in Sec. III.B. In
practice, the strong quadrupolar effects in InAs quantum
dots (Maletinsky, Kroner, and Imamoglu, 2009; Flisinski
et al., 2010) will prevent nuclei from precessing around the
Knight field and also suppress dipolar relaxation for Bz < BQ.

As a result, for QD systems with strong nuclear quadrupolar
coupling the description by the Merkulov model of the first
stage of the electron spin relaxation in the frozen average
nuclear field fluctuations on a time scale T� is by far the most
relevant of the three.

B. Experimental studies of electron-spin dephasing

in zero external magnetic field

In optical experiments performed on undoped QDs the
photogenerated electron feels a strong effective magnetic
field due to the exchange interaction with the photogenerated
hole in the neutral exciton X0 (Bayer et al., 2002; Sénès
et al., 2005). This exchange field (with a characteristic energy
�0 of typically hundreds of �eV) is much stronger than the
effective field due to the fluctuating nuclear field �Bn, which
thus plays a negligible role for the spin dynamics of the
electron in X0 (Erlingsson, Nazarov, and Fal’ko, 2001) in
most experiments [see Stevenson et al. (2011) for experi-
ments investigating electron dephasing due to �Bn in neutral
QDs]. The positively charged exciton Xþ, consisting of one
electron and two holes forming a spin singlet, is the ideal
configuration to probe the electron spin relaxation mediated
by nuclei in QDs with optical experiments. Because of

Kramer’s theorem the anisotropic contribution to the ex-
change interaction between the electron and the two holes
does not lead to any fine structure splitting of the Xþ ground
state. Thus the analysis of the circular polarization �c of the
Xþ luminescence in p-doped QDs following a circularly
polarized laser excitation probes directly the spin polarization
of the electron as hSezi ¼ ��c=2.

Figure 9(a) displays the circular polarization dynamics of
the Xþ photoluminescence from an ensemble of InAs/GaAs
QDs (Braun et al., 2005). The inset shows the time evolution
of the polarized luminescence intensity components. The
circular polarization dynamics in Fig. 9(a) presents two
regimes: The polarization decays within the first 800 ps
down to about one-third of its initial value; then it remains
stable with no measurable decay on the radiative lifetime
scale. The observed electron spin relaxation is due to the
hyperfine interaction with the nuclei (Merkulov, Efros, and
Rosen, 2002): from Eq. (11), we calculate T� 
 0:5 ns, in
agreement with the observed decay time in Fig. 9(a). This
corresponds to a dispersion of the nuclear hyperfine field
distribution �Bn 
 45 mT. The subsequent electron-spin
dephasing TK�, which is the result of the variations of the
random nuclear field direction, occurs on a time scale typi-
cally 100 times longer than T�. Thus it cannot be observed
on the Xþ radiative lifetime scale (
 1 ns) accessible in
PL measurements.

C. Electron-spin dephasing in a longitudinal magnetic field:

Faraday geometry

An external magnetic field applied along the z growth axis
(Faraday configuration) which adds to the nuclear field fluc-
tuations �Bn can stabilize the electron spin, which will then
precess about the resulting total field Btot ¼ Bz þ �Bn. This
effect is sometimes referred to as the screening of �Bn by an
external field. Bz must be larger than �Bn, to ensure that the
Zeeman interaction of the electron spin with the magnetic
field is stronger than the interaction with the nuclei
(Merkulov, Efros, and Rosen, 2002). Figure 10 displays the
circular polarization dynamics of the Xþ luminescence with a
magnetic field Bz ¼ 100 mT; the dynamics for Bz ¼ 0 is also
presented for comparison (Braun et al., 2005). Note that the

FIG. 10. Circular polarization dynamics of the Xþ luminescence

in an ensemble of InAs dots for Bz ¼ 0 and Bz ¼ 100 mT. The inset
displays the calculated time dependence of the average electron spin

hSðtÞi=S0. From Merkulov, Efros, and Rosen, 2002 and Braun et al.,

2005.
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Zeeman splitting energy of the electron in this weak magnetic
field is about 100 times smaller than kBT. By applying a field
of Bz ¼ 100 mT, the initial decay is suppressed since the
total field affecting the electron spin becomes almost parallel
to the initial spin direction as in Fig. 9(b) (right). We empha-
size that this does not mean the nuclear field fluctuations
disappeared: they still strongly affect the Sx and Sy electron-

spin components which is a key obstacle for use of electron-
spin states in quantum information schemes, as shown in
Sec. IV.D. This pronounced effect of the small external
magnetic field observed in Fig. 10 agrees well with the
predicted influence of the external magnetic field on the
electron spin relaxation by nuclei in InAs QDs (see the inset
of Fig. 10) (Merkulov, Efros, and Rosen, 2002; Semenov and
Kim, 2003) or in InP QDs (Pal et al., 2007). The effect
observed here is similar to the suppression of the nuclear
hyperfine interaction effects measured for localized electrons
in lightly doped bulk n-GaAs (Dzhioev et al., 2002; Colton
et al., 2004). For larger external magnetic fields the relaxation
of the z component of the electron spin is no longer governed
by hyperfine interaction effects but by spin-orbit mechanisms
mediated by phonon coupling (Khaetskii and Nazarov, 2000).
Electron spin-relaxation times of from milliseconds to sec-
onds can then be measured for magnetic fields of the order of
a few Tesla (Elzerman et al., 2004; Kroutvar et al., 2004;
Amasha et al., 2008).

For repeated measurements on a single QD the hyperfine
interaction has the same effect as for an ensemble of dots: Bn

will change orientation from one measurement to another
since the signal integration times are commonly much longer
than Tdipole 
 100 �s so that the average is taken over a large

number of uncorrelated nuclear spin configurations, as dem-
onstrated by Dou et al. (2011). Figure 11 presents the
measurements of circular polarization on the Xþ lumines-
cence in a single InAs dot following a right circularly
polarized excitation light (Braun et al., 2006a). Here the
time-integrated circular polarization appears to be limited to
about 35% for Bz ¼ 0 as a result of the electron-spin dephas-
ing induced by the fluctuating nuclear field. At Bz ¼ 240 mT
the circular polarization increases significantly up to 
60%.
In Fig. 11(b) the experimental data show good agreement

with the theoretical field dependence according to the MER
model (Merkulov, Efros, and Rosen, 2002) which has been
calculated here with T� ¼ 470 ps and an initial photogener-
ated electron-spin polarization of the Xþ state of 62%. Note
that the excitation polarization in this experiment is modu-
lated at 50 kHz between �þ and �� to prevent the dynamic
polarization of nuclear spins. In the presence of DNP, the
resulting mean nuclear field hBni screens its own fluctuations
allowing for a strong Xþ circular polarization even for
very weak (or even zero) external magnetic fields (Krebs
et al., 2008).

A spin dephasing time T� 
 16 ns for a resident electron
in a single GaAs QD defined by monolayer fluctuations in a
GaAs/AlGaAs quantum well has also been deduced from cw
photominescence Hanle experiments (Bracker et al., 2005);
this corresponds to N 
 5� 106 interacting nuclei, which is
consistent with the larger size of these GaAs dots (diameter

170 nm) compared to the InAs QDs (diameter 
20 nm).

The electron-spin dephasing induced by nuclei was also
intensively investigated in transport experiments in gate-
defined GaAs double QDs (Hanson et al., 2007) at very
low temperature (
 100 mK). Rapid electrical control of the
exchange interaction in gate-defined double-QD devices
allow the measurement of the single-electron spin dynamics
with an average value that decays on a characteristic time T�.
The measurements show that the separated electron spins in
the two QDs lose coherence in T� 
 10 ns (see Fig. 12). The
increase of the long-time saturation value of the average
electron spin in a weak external magnetic field (
 100 mT)
is also clearly observed (Petta et al., 2005).

The electron-spin dephasing induced by the nuclear field
fluctuations has also been clearly evidenced in materials
where only a fraction of the nuclei has nonzero nuclear spins
(in InAs or GaAs, all the nuclei have a nonzero spin) such as
ZnO (Liu et al., 2007; Whitaker et al., 2010), diamond
(Childress et al., 2006; Balasubramanian et al., 2009), and
CdSe (Akimov, Feng, and Henneberger, 2006). The electron
spin-relaxation dynamics in colloidal n-type ZnO QDs has
been studied using electron paramagnetic resonance spectros-
copy. In ZnO, only the isotope 67Zn has a nonzero nuclear
spin (I ¼ 5=2) with a natural abundance of 4.1%. The nuclear

FIG. 11 (color online). Single InAs dot measurement.

(a) Polarization-resolved spectra of Xþ luminescence for two differ-

ent magnetic fields. (b) Circular polarization of Xþ line vs external

magnetic field Bz. The excitation polarization is provided by a

50 kHz photoelastic modulator to avoid the buildup of a nuclear

polarization through optical pumping. From Braun et al., 2006a.

FIG. 12 (color online). Time dependence of the singlet (two-

electron-spin) return probability in an electrically defined GaAs

double QD. The data are fitted using a semiclassical model

(Schulten and Wolynes, 1978) which is similar to the Merkulov-

Efros-Rosen approach. The fits correspond to �Bn ¼ 2:3 mT and a

corresponding T	2 ¼ 10 ns. From Petta et al., 2005.
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spin contents in the ZnO QDs can be controlled chemically
by preparing nanocrystals from precursors containing differ-
ent concentrations of 67Zn [see Fig. 13(a)]. As expected, the
electron-spin dephasing time decreases as the 67Zn concen-
tration increases. Note that this dependence was observed at
room temperature.

As T� is governed by inhomogeneous contributions of the
fluctuating nuclear field, spin-echo measurements should
yield much longer spin coherence times. Indeed single-pulse
Hahn-echo techniques were successfully applied to transport
measurements in a gate-defined GaAs QD molecule with a
measured coherence time on the order of 30 �s (Bluhm
et al., 2011) and also in optical studies of single InAs QDs
(Press et al., 2010). However this time does not correspond to
a true T2 time, since the slow time evolution of the nuclear
field (TK�, see Sec. IV.A) leads to an incomplete recurrence.
One origin of the inhomogeneity comes from the different
precession period of the nuclear spins due to the different
nuclear species in the GaAs dot (69Ga, 71Ga, and 75As). By
implementing a multiple-pulse echo sequence and taking into
account these different precession periods, a record coher-
ence time of 200 �s has been measured (Bluhm et al., 2011);
see also an interesting theoretical discussion in this context
(Cywinski, Witzel, and Das Sarma, 2009). In ZnO, pulsed
electron paramagnetic resonance measurements also yield a
longer spin coherence time (spin-echo decay time 
80 ns
for 67Zn ¼ 4% compared to T	2 
 20 ns) as displayed in

Fig. 13(b). In practice, long spin coherence times reaching
T2 ¼ 3:0 �s for individual dots in an ensemble of InAs

dots were also demonstrated for resident electrons using an
original mode-locking technique (Greilich et al., 2006b)
which can be described in the framework of narrowed state

dynamics; see Yao, Liu, and Sham (2006) for discussion.

D. Electron-spin dephasing in a transverse magnetic field:

Voigt geometry

When an external magnetic field Bx is applied perpendicu-
lar to the initial electron-spin orientation which corresponds
to the excitation light propagation z axis (Voigt geometry),
the electron spin will precess coherently around the external

magnetic field axis. The damping of these oscillations di-
rectly reflects the spin dephasing time (Dutt et al., 2005). As
shown in Sec. IV.B, the time- and polarization-resolved Xþ
photoluminescence signal following a circularly polarized
pulsed excitation in an ensemble of p-doped InAs QDs can

directly probe the electron-spin dynamics during the charged
exciton Xþ radiative lifetime. Figure 14 shows the damping
of the PL circular polarization oscillations in a transverse
magnetic field Bx ¼ 750 mT. The observed damping of the

oscillations due to electron-spin dephasing has two origins.
The first one is due to the �Bn induced spin dephasing, with a
characteristic dephasing time T� 
 500 ps (Lombez et al.,
2007a). This is the same value obtained in the absence of an

external magnetic field and confirms that prolonging the
macroscopic coherence time cannot simply be achieved
through application of a magnetic field. A true narrowing of
the nuclear spin distribution, i.e., lowering of �Bn is neces-

sary, for example, via dynamic nuclear polarization, dis-
cussed in detail in Sec. V. Yet, the characteristic spin
dephasing time T� 
 500 ps is not enough to explain all
experimental observations; see Fig. 14 (top curve). At the
origin of the second contribution lies the dispersion of the

transverse electron Lande g factor, due to the inherent in-
homogeneity of the system. This magnetic-field-dependent
damping arises simply from the variations of the
electron g factor over the QD ensemble (Dutt et al., 2005;

FIG. 13 (color online). (a) Electron-spin dephasing time T	2 ¼ T�

in colloidal n-type ZnO nanocrystals as a function 67Zn: (circle)

4.1% natural abundance, (diamond) 6.8%, and (square) 9.6% 67Zn
(Liu et al., 2007). (b) Spin-echo decay curve measured by electron

paramagnetic resonance spectroscopy of ZnO nanocrystals

(d
 4:0 nm, 67Zn ¼ 4:1%) at 5 K. From Whitaker et al., 2010.

FIG. 14. Comparison of experimental (dotted line) and theoretical

curves of time-resolved photoluminescence circular polarization of

Xþ for a transverse magnetic field Bx ¼ 750 mT. The damping

reflects the electron-spin dephasing in the ensemble of InAs dots.

The theoretical curves (gray line) are given with �g=g ¼ 0:07 or

without �g=g ¼ 0 electron g-factor fluctuations. From Lombez

et al., 2007a.
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Greilich et al., 2006a), resulting in a spreading of the Larmor
frequencies with increasing Bx (Yugova et al., 2007). A
typical fluctuation of �g=g ¼ 0:07 explains the observed
damping of the electron-spin oscillations (see Fig. 14, bottom
curve) which follows the simple law

T	2 ¼ T�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

�
�g

g

B

�Bn

�
2

s
; (13)

where �Bn ¼ ℏ=g�BT�.
The ensemble spin dephasing observed in Fig. 14 does not

lead to a destruction of the individual spin coherence, but
masks it due to phase differences among different spins in the
different dots. An elegant technique, called mode locking of
electron spins, can be used to measure the single electron
coherence time with the measurements performed in an
ensemble of dots (Greilich et al., 2006b). The principle is
to excite an ensemble of n-doped QDs (containing a single
resident electron) with a periodic train of polarized pico-
second laser pulses resonant with the X� state and then probe
the spin dynamics by the Faraday rotation technique. This
excitation will spin polarize the resident electrons which will
precess around the transverse magnetic field Bx. The key
point is that the pulse train will yield a synchronization of
the electron-spin precession. If the pulse period TR is equal
to an integer number n times the electron-spin precession
period, the action of such pulses leads to almost complete
electron-spin alignment along z at each pulse arrival time
[see Fig. 15(a)].

In the ensemble of excited QDs, the electrons do not
precess with the same frequency because of the fluctuations
of the electron g factors. In this ensemble, some QDs will
have a precession frequency which fulfils this synchroniza-
tion relation with the laser, termed the phase synchronization
condition (PSC). When a given pump pulse excites the
sample the spin coherence generated by the previous pulse
has the same orientation as the one which the subsequent
pulse induces for these dots. In other words, the contributions
of all pulses in the train are constructive. In contrast, in the
non-PSC dots the contributions have arbitrary orientations
[see the right panel of Fig. 15(a)] and for these dots the degree
of spin synchronization will vanish. The fraction of dots in
the ensemble that fulfills the PSC will increase when nuclear
spin induced frequency focusing starts to be efficient, as
discussed by Greilich et al. (2007); see Sec. V.C.4 and
references therein. In the experiment a PSC dot makes a
stronger contribution to the Faraday rotation signal than a
non-PSC dot. These latter dots do not contribute to the
average electron-spin polarization SzðtÞ at times t� T	2 ,
due to dephasing. The sum of oscillating terms from all
synchronized subsets leads to a constructive interference of
their contributions to the Faraday rotation signal around the
times of pump pulse arrival. By measuring the Faraday signal
at such delays, the synchronized spin dynamics which move
on a background of dephased electrons can be measured.
When the pump pulse period becomes comparable with the
electron-spin coherence time, the amplitude of the signal
decreases; see Fig. 15(b).

This yields the measurement of a spin coherence time of
the order of a few �s, whereas the ensemble spin dephasing
time T� ¼ 0:4 ns at Bx ¼ 6 T. This measured value of T	2

with respect to T� is, however, not limited by the spin-

relaxation time within one particular dot. The nuclear field

fluctuations may help to achieve the phase synchronization

condition, by using ð1=ℏÞ½ge�BðBn þ �BnÞTR� ¼ 2�n.
However, this condition cannot hold at times longer than

the correlation time of the nuclear field fluctuations. As a

consequence, the nuclear field fluctuations contribute toward

limiting the spin coherence time T	2 .

E. Influence of the fluctuating nuclear field on electron

and hole spin-pumping processes

The interaction of the localized electron spin in a quantum

dot with the surrounding fluctuating nuclear spins plays an

important role for the QD spin-state preparation, a key issue

from the perspective of quantum information processing

(Imamoglu et al., 1999). High-fidelity preparation of a QD

spin state via laser cooling, also referred to as optical spin

pumping, has been convincingly demonstrated for electrons

(Atature et al., 2006) and holes (Gerardot et al., 2008). This is

at first sight surprising, given the strong influence of fluctuat-

ing nuclear fields on electron-spin dephasing. But, as shown

below, the presence of a fluctuating nuclear field can be

exploited to enable efficient carrier-spin pumping processes.

FIG. 15. (a) Schematics of the mode locking of electron spins in

an ensemble of spins precessing around a transverse magnetic field

at different frequencies due to the g-factor fluctuations from dot to

dot (see text). (b) Faraday rotation amplitude at negative delay in an

ensemble of n-doped InAs QDs as a function of the time interval

between subsequent pump pulses measured at Bx ¼ 6 T and T ¼
6 K. From Greilich et al., 2006b and Dyakonov, 2008.
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Electron-spin pumping.—In the experiment of Atature
et al. (2006) optical coupling of electronic spin states was
achieved using resonant excitation of the negatively charged
exciton (trion) transition X�. A singly charged QD is de-
scribed as a four-state system consisting of twofold degener-
ate ground and excited states, coupled by two vertical optical
transitions, as illustrated in Fig. 16 (left). The ground state
j "iðj #iÞ is coupled to the trion state consisting of two elec-
trons in a singlet and a heavy hole * ð+Þ according to the
optical selection rules for �þð��Þ optical transition.
The diagonal transition between the trion state j "#+i and
the electron j "i is forbidden for a heavy hole with pure
�3=2 angular momentum. In reality the diagonal transition
characterized by a rate � is permitted and the efficiency of
electron-spin pumping depends on the relative magnitude of
� and �hf . There are three physically distinct contributions
that determine the strength of �: (i) valence-band mixing due
to the reduced symmetry of the QD (elongation, strain an-
isotropy, interfaces), leading to a small light-hole admixture
of the heavy-hole state (Calarco et al., 2003; Krizhanovskii
et al., 2005; Belhadj et al., 2010); (ii) the (unintentional)
application of a transverse magnetic field (Xu et al., 2007),
arising from a slight tilt in the sample holder; and (iii) in-
plane component of the fluctuating Overhauser field.

In a small applied longitudinal field Bz 
 �Bn no efficient
electron-spin state preparation can be achieved using resonant
excitation since the strong hyperfine interaction of the resid-
ent electron spin with the QD nuclear spin ensemble leads to
random spin-flip events at rate �hf (Merkulov, Efros, and
Rosen, 2002); see Sec. IV.B.

As shown in Sec. IV.C, a longitudinal magnetic field
exceeding �Bn suppresses the effect of this interaction. As
a consequence, the j "i state can be prepared and an absorp-
tion drop in differential transmission experiments is clearly
observed in Fig. 16 when an external magnetic field is

applied. With increasing Bz, the QD becomes transparent
which is a signature of optical electron-spin pumping into
the spin j "i state due to the weak recombination path (�) that
dominates over the hyperfine-induced bidirectional spin-flip
process with a rate �hfðBzÞ which is decreasing as a function
of the applied magnetic field (see Fig. 16). For Bz ¼ 200 mT,
it has been shown that the electron spin can be prepared with
an average polarization as high as 98.5% (Dreiser et al.,
2008). In summary, the hyperfine interaction of the resident
electron with the fluctuating nuclear spins prevents the
realization of spin-state preparation with high fidelity in
negatively charged QDs. The application of an external
magnetic field is essential to achieve this spin-state
preparation.

Hole-spin pumping.—In a positively charged QD (i.e., a
QD containing a resident hole), the situation is reversed as
compared to the X� case: the interaction between the electron
in the positively charged exciton Xþ with the nuclear spins
allows coherent coupling between the two electron spin
states, i.e., between j *+; #i and j *+; "i yielding an efficient
hole-spin cooling (Gerardot et al., 2008; Eble et al., 2009),
as shown in Fig. 17(a). The hole-spin cooling is efficient since
the rate �hf is faster than the spontaneous radiative recombi-
nation rate �0. If a longitudinal magnetic field larger than �Bn

is applied, the coherent coupling between the two electron
spin states within the trion is diminished and as a conse-
quence the hole-spin preparation fidelity decreases (Gerardot
et al., 2008). Although hole-spin pumping is very efficient for
Bz ¼ 0, it need not be absent for Bz > 0. When an exciting
laser strictly resonant with the Xþ transition in a single QD
has circular polarization, either �þ [see Fig. 17(a)] or ��, no
absorption is observed, demonstrating the efficient hole-spin
cooling. However, by pumping with two lasers with identical
wavelength and with the same total power, one with �þ
and one with �� polarization, a clear absorption appears
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FIG. 16 (color online). Electron-spin pumping in a single dot.

(Left) Four-level system describing the singly charged QD. The

fluctuations of the hyperfine field lead to a slowly varying coherent

coupling of the spin ground states with a rate �hf and the heavy-

hole–light-hole mixing yields a diagonal transition with a rate �.
(Right) Absorption of the single dot as a function of the magnetic

field Bz. The absorption decreases with increasing Bz due to optical

spin pumping which becomes more efficient since the efficiency of

the hyperfine field coupling of the ground state decreases. The inset

shows the corresponding raw laser scans from 0 T (top) to 300 mT

(bottom). From Atature et al., 2006.

FIG. 17 (color online). Hole-spin pumping in a single dot. (a) A

laser with �þ polarization drives the j +i $ j *+; #i transition. No
transmission dip is observed demonstrating that the hole population

is shelved into state j *i. (b) Simultaneous excitation with both �þ

and �� at the same frequency. A large transmission dip is observed,

as the additional �� excitation leads to a repumping of the electron

spin and thereby suppresses electron-spin pumping. From Gerardot

et al., 2008.
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[Fig. 17(b)]. This arises because spin pumping with �þ
polarization is frustrated by the �� excitation, and vice versa.

A comparison of hole- and electron-spin pumping is shown

in Desfonds et al. (2010) which highlights the fact that at

zero applied magnetic field hole-spin pumping is possible,

whereas electron-spin pumping is not. Both the hyperfine

mediated electron- and hole-spin flips as well as heavy-hole–

light-hole mixing are limiting processes for electron-spin

pumping, as discussed in the context of a quantum-dot-spin

single-photon interface in Lu et al. (2010) and Yilmaz,

Fallahi, and Imamoglu (2010).

F. Beyond the nuclear mean-field approach

In order to go beyond the nuclear mean-field approach

developed here, powerful quantum models have been devel-

oped (Khaetskii, Loss, and Glazman, 2003; Zhang et al.,

2006). Kozlov (2007) proposed a full quantum model for

describing the time evolution of a single-electron spin S ¼
1=2 interacting with an even number of nuclei 2N ðN � 103Þ
in a single QD. The main assumptions of this model are (i) the

electron envelope function is considered as constant within

the dot, and (ii) the nuclear spins interacting with the electron

are identical and possess an angular momentum Ij ¼ 1=2.
The first assumption allows the use of the total angular

momentum of the QD nuclei to classify their spin states. At

zero external magnetic field, the solution of the coupled

system evolution problem is analytical, and the time depen-

dence of the electron average spin hŜzðtÞi is then identical to

the one obtained in the Merkulov model; see Eq. (12). It thus

reproduces quantitatively the fast relaxation of the electron

spin observed experimentally just after the pulsed-laser exci-

tation of an individual dot (Dou et al., 2011). This is in

contrast to measurements on ensembles, where this initial dip

is usually masked due to variations of this particular electron

spin-relaxation time from dot to dot. Some fundamental

differences exist between the quantum and the effective field

model (Petrov et al., 2009). In the mean-field approach,

coherences between the electron-spin states arise if one con-

siders a single dot excited with a single pulse, i.e., an electron

spin precesses coherently around �Bn. These coherences will

disappear in the averaging process of repeated laser pulses,

when a sufficiently high number of different nuclear field

configurations have been probed within the measurement

process. On the other hand, in the microscopic model, coher-

ences arise only within the coupled electron-nuclear spin

system, which becomes fully entangled as time increases.

As a consequence, it can be shown that no spin coherences

can develop in the electron subsystem (Petrov et al., 2009).

The spin populations are then evaluated through repeated

measurements.

V. OPTICAL PUMPING OF NUCLEAR SPINS

Starting in Sec. II.E we described experiments that allow

the preparation of an electron-spin state with a suitable laser

pulse. In this section we explore under which conditions the

electron-spin polarization can be transferred to the nuclear

spin ensemble in the QD.

As discussed in Sec. IV.A the hyperfine interaction
leads to electron-spin dephasing within a characteristic time
T� 
 1 ns due to the statistical distribution of nuclear
Overhauser field Bn in a QD ensemble (Merkulov, Efros,
and Rosen, 2002). This effect is directly evidenced in the time
domain for an ensemble of positively charged QDs by moni-
toring the PL polarization decay of Xþ trions shown in Fig. 9
(Braun et al., 2005). Since the correlation time T2 of Bn

amounts to� 10�4 s, this spin dephasing also manifests itself
when repeatedly recording the emission stemming from a
single QD for a signal integration time �i � T2. Under such
conditions, the time-integrated circular polarization of a
single Xþ line excited by circularly polarized light reads

�c ¼ 2�
Z
hSzðtÞi expð��tÞdt; (14)

where hSzðtÞi is the electron-spin evolution averaged over the
distribution of random nuclear fields and � ¼ 1=�r is the X

þ
recombination rate. Using Eq. (12) from Sec. IV.A for hSzðtÞi
with a nuclear field fluctuation of �Bn � 30 mT, the maxi-
mum degree of polarization for an initially photocreated spin
Szð0Þ ¼ 1=2 is estimated to be �max

c 
 50%. However, this
limit is commonly exceeded in experiments measuring the PL
polarization of a single Xþ line under cw excitation for signal
integration times �i 
 1 s (Ebbens et al., 2005; Eble et al.,
2006; Lai et al., 2006). This is illustrated in Figs. 18(a) and
18(b) showing that the circular polarization of a single Xþ
line reaches more than 80% under quasiresonant excitation.
This apparent discrepancy turns out to be the manifestation of
efficient DNP acting back on the electron-spin dynamics. The
power dependence of the circular polarization shown in
Fig. 18(b) supports this interpretation: at very low excitation
density the Xþ circular polarization reduces to � 50% be-
cause the average nuclear spin polarization vanishes. The
experimental approach is often as follows: The electron
spin is initialized via optical pumping that induces DNP.
The backaction of the nuclear spin system on the electron

FIG. 18 (color online). (a) PL spectra of a single Xþ line in zero

magnetic field measured under copolarized (�þ=�þ) and cross-

polarized (�þ=��) excitation and detection configuration.

(b) Evolution of the corresponding circular polarization as a func-

tion of the total PL intensity for an incident laser excitation varied

from 150 nW to 250 �W.
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is then monitored by recording the resulting changes in
electron-spin orientation and transitions energy, revealing
the surprising bistability, memory, and line dragging effects
detailed next.

A. Dynamic nuclear polarization: General features

The dynamic nuclear polarization in semiconductor quan-

tum dots results from the scalar form Ŝe � Î of the hyperfine
interaction which conserves the total spin. When an electron
spin relaxes its initial orientation via this interaction, its spin
angular momentum is transferred to the nuclear spins. This
corresponds to the electron-nuclei flip-flop term in Eq. (6).
To achieve a significant nuclear polarization via the
Overhauser effect (Overhauser, 1953) it is required to main-
tain the spin polarization of unpaired electrons far from their
equilibrium value hSezi0 which is usually determined by the
lattice temperature T and the external magnetic field Bz. The
trend of electrons to return to their thermal equilibrium
populations leads to an increase of the nuclear spin polar-
ization via the spin-flip channel provided by the hyperfine
interaction. Since the nuclei are themselves much less
coupled to the lattice, their polarization relaxes on a much
longer time scale than electron polarization and a large DNP
degree can be reached. The relation between the DNP
buildup time and its relaxation time will be discussed in
the following sections.

In many experiments the out-of-equilibrium electron-spin
polarization is achieved by saturating the electron-spin
resonance by an rf field to achieve equal populations of
spin " and # in a nonzero magnetic field. Yet, in semiconduc-
tors and more specifically in QDs, a large electron-spin
polarization can be created optically, even in zero magnetic
field, due to the selection rules permitting excitation of
specific spin states with the light polarization as discussed
in Sec. II.E. The efficient optical orientation of electrons in
p-type InAs QDs is therefore well suited for the generation of
a large DNP via the Overhauser effect. Interestingly, the
polarization-resolved PL spectroscopy of such individual
QDs provides an access to both the electron-spin component
hSezi via the circular polarization and the average nuclear field
Bn;z via the energy splitting of the �

þ and �� components. In

Fig. 18(a) for Bz ¼ 0, the �þ PL line is clearly blueshifted
from the �� line by ℏ!e

OS ¼ 7 �eV. This corresponds to an

average nuclear field Bn;z ¼ ℏ!e
OS=ge�B ¼ �200 mTwhich

is notably larger than its own fluctuations �Bn. In this ex-
periment, a stationary regime is thus established, where the
relaxation by the hyperfine interaction is efficiently quenched
due to the nuclear field it has itself established during some
initial DNP transient.

The spin flip-flops permitted by the hyperfine interaction
are, however, not energy conserving in a finite external
magnetic field. Electron and nuclear spins have very different
Landé factors yielding a ratio of their Larmor frequencies
!n

Z=!
e
Z 
 10�3, so that the electron Zeeman energy ℏ!e

Z has

to be exchanged with some other degrees of freedom. This is
the reason why the coupling of the electron to a reservoir is in
general important for the generation of a sizable Overhauser
field: it provides a finite width (given by a finite correlation
time �ec) for the electronic levels necessary to account for the

energy cost of flip-flops; see Baugh et al. (2007) for a related
discussion.3 In QDs, this issue of energy conservation is
essential for explaining the emergence of strong nonlineari-
ties of the electron-nuclei system that will be discussed next.

A different mechanism for DNP called the ‘‘solid-state
effect’’ was first observed in crystals with paramagnetic
impurities (Abragam, 1961). Here the energy necessary for
a spin flip-flop is provided by an external rf source. In close
analogy with optical pumping experiments the energy neces-
sary for a spin flip-flop can be provided by a driving laser,
in experiments similar to the solid-state effect carried out
by Chekhovich, Makhonin, Kavokin et al. (2010), where a
resonant laser drives an optical transition that is only weakly
allowed due to hyperfine coupling; see Sec. V.C.

In general, the specific conditions of QD optical excitation
(e.g., strictly or quasiresonant, with or without applied mag-
netic fields) determine the DNP mechanism that dominates
and hence controls the magnitude and sign of the nuclear field
experienced by electrons in the QD volume. If the electron-
spin coherence time resulting from optical excitation is

short, then the flip-flop term / ðÎjþŜe� þ Îj�ŜeþÞ of Eq. (6)
introduced in Sec. III.A will be the dominant nuclear spin-
pumping mechanism; this is typically the case for quasireso-
nant or nonresonant excitation. In strong magnetic fields and
under resonant excitation of the fundamental exciton or trion
resonances, on the other hand, the electron-spin flip is too
costly in energy and nuclear spin flips can be induced by two
additional forms of electron-nuclear spin coupling that do not
require a simultaneous electron-spin flip.

(i) The nuclear spin dynamics in strained QDs will also be
influenced by strong nuclear quadrupole effects, intro-
duced in Sec. III.B, giving rise to a noncollinear cou-
pling term, which we use in the following simplified
form (Huang and Hu, 2010):

Ĥnc
hf ¼

X
i

Ai
ncÎ

i
xŜ

e
z (15)

with a noncollinear hyperfine interaction constant Anc

that is typically Anc � 0:01A. The physical origins of
this coupling are detailed in Sec. V.C.3. Ĥnc

hf can induce
under certain conditions nuclear spin relaxation, as
detailed in Sec. V.B.2. Interestingly, this term is also
at the origin of bidirectional DNP and explains the
experimentally observed locking of a QD transition to
a resonant driving laser (‘‘dragging’’) (Yang and Sham,
2010; Högele et al., 2012) described in Sec. V.C.3.

(ii) Even as direct electron-nuclear spin-flip processes are
forbidden by energy conservation at high magnetic
fields, elimination of the flip-flop terms of Eq. (6)

3There are several physical mechanisms that will influence the

correlation time, for example, any physical process that limits the

electron-spin lifetime. Following quasiresonant or nonresonant op-

tical excitation, the spin flip-flop with a nucleus can take place while

the electron is in an excited state in the QD, leading to �ec in the tens
of ps range, or for an electron in the QD ground state, so �ec is

limited by the radiative lifetime �r ’ 1 ns. The electron-spin life-

time could also be limited by cotunneling events in charge-tunable

structures. In addition, the hyperfine-induced flip-flop events them-

selves will limit the correlation time.
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using a Schrieffer-Wolff transformation (Schrieffer
and Wolff, 1966) shows that the QD electron can still
strongly influence the nuclear dynamics: in addition to
the nuclear dipole-dipole interaction given by Eq. (7),
nuclear spins can also be coupled to each other by an
indirect interaction mediated by the electron in the dot
which has the form (Abragam, 1961; Klauser, Coish,
and Loss, 2006)

Ĥind ¼
X
i;j

AiAj

!e
Z

ŜzÎ
iþÎj�: (16)

This Hamiltonian ensures the conservation of the total
nuclear spin polarization but leads to nuclear spin
diffusion (Latta, Srivastava, and Imamoğlu, 2011b),
as discussed in Sec. VI.C. Indirect coupling of nuclear
spins causing spin relaxation is also induced in charge-
tunable structures (Warburton et al., 2000) through
electron cotunneling (Smith et al., 2005; Dreiser
et al., 2008) introduced in Sec. II.E.

It is the intricate balance between these different nuclear
spin-pumping and depolarization mechanisms that gives rise
to the intriguing experimental findings detailednext.

B. Dynamic nuclear polarization in single quantum-dot optics

1. Nonlinearity of the dynamic nuclear polarization

The first observations of nuclear polarization in InAs
quantum dots (Braun et al., 2006b; Eble et al., 2006;
Maletinsky et al., 2007; Tartakovskii et al., 2007) revealed
a striking asymmetry of the magnitude of the generated
Overhauser field Bn as a function of the light helicity �þ
or �� used for excitation when a magnetic field B of only a
few 100 mT is applied parallel to the optical axis (Faraday
configuration).4 The general expression for Bn due to the
Overhauser effect in bulk semiconductors is, however, essen-
tially symmetrical with respect to the electron-spin direction
(Meier and Zakharchenya, 1984):

Bn ¼ bn
BðB � SeÞ
B2 þ 
B2

L

: (17)

Here bn is a proportionality constant and BL 
 0:15 mT is the
small local effective magnetic field experienced by the nuclei
due to their mutual dipole-dipole interaction and 
 is a
coefficient close to unity. Note that Eq. (17) assumes that a
nuclear spin temperature exists.5 Equation (17) is valid for
moderate fields where the equilibrium spin polarization
hSezi0 ¼ 1

2 tanhðge�BBz=kBTÞ can be neglected. For magnetic

fields below
10 mT, the Knight field BK / hSei should also
be added to B in Eq. (17). This introduces an asymmetry
which, however, vanishes for fields above 100 mT. Also the
strong nuclear quadrupole effects in strained QDs introduced
in Sec. III.B need to be included when analyzing the magni-
tude and orientation of Bn.

To establish an expression similar to Eq. (17) valid in the
case of QDs where large nuclear fields are generated, the
dependence of the electron-nuclei flip-flop rate (hidden in bn)
on the total magnetic field BþBn has to be taken into
account explicitly. This will account for the non-energy-
conserving character of the hyperfine interaction. Assuming

a uniform electron wave function c ðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=N�0

p
spanning

over N nuclei in the QD of volume �0N=2, one can first
derive the electron-induced relaxation rate T�11e of nuclear

spins due to the temporal fluctuations of the flip-flop term /
ðŜe�Îþ þ ŜeþÎ�Þh1ðtÞ of the hyperfine coupling (Abragam,
1961; Meier and Zakharchenya, 1984; Eble et al., 2006):

T�11e ¼
� ~A

Nℏ

�
2 2fe�

e
c

1þ ð!e�ecÞ2
; (18)

where ℏ!e ¼ ge�BðBz þ BnÞ is the electron spin splitting in
the total field, �ec is the correlation time of the hyperfine
perturbation Ĥ1ðtÞ, and fe is the fraction of time that the
QD contains an unpaired electron. The average constant ~A of
the hyperfine interaction in the QD is used to obtain an
expression for T�11e independent of the nuclear species.

Recall that the Aj’s vary indeed only slightly for different
nuclear spins Ij in InAs/GaAs QDs; see Table II. In this limit
of homogeneous coupling, the approximation of the existence
of a high nuclear spin temperature is valid (Abragam, 1961)
and allows one to derive a simple differential equation for the
dynamic polarization of the average nuclear spin z compo-

nent per nucleus h~Izi ¼ N�1
P

jhÎjzi in an external magnetic

field along z (Dyakonov and Perel., 1974):

dh~Izi
dt
¼ � 1

T1e

½h~Izi � ~QðhŜezi � hŜezi0Þ� � h
~Izi
Td

: (19)

The first term on the right-hand side of Eq. (19) is the DNP
source driven by the departure of the electron spin from its

thermal equilibrium (hŜezi � hŜezi0). It is strictly zero when the
electron-nuclear spin system is in thermal equilibrium. Note
that the equilibrium value of nuclear spin hIzi0 is assumed
to be zero in the usual experimental conditions.6 The factor
~Q ¼ P

jIjðIj þ 1Þ=½NSðSþ 1Þ� is a numerical constant

which amounts to 
15 for realistic In1�xGaxAs QDs con-
taining a fraction x
 0:5 of gallium.

The second term in Eq. (19) accounts for the return to
equilibrium of the average nuclear spin following an expo-
nential decay with the time constant Td. This term is neces-
sary because the stationary solution of Eq. (19) without
nuclear spin relaxation would lead to nuclear polarization
much higher than what has been observed experimentally.
Different mechanisms may contribute to this relaxation:
(i) the dipolar interaction between nuclei responsible for
fast depolarization in a very weak field and for a slower
field-independent spin diffusion. (ii) Because of local aniso-
tropic strain, the quadrupolar coupling with local electric field
gradients introduced in Sec. III.B could also produce an
important reduction of the nuclear polarization z component
in magnetic fields, depending on the exact angle 
 defined in

4This asymmetry was not observed in the well characterized

GaAs interface fluctuation dots (Gammon et al., 2001).
5The validity of the spin temperature concept in InAs/GaAs QDs

in the presence of nuclear quadrupole effects is investigated in

Sec. VI.F.

6hIzi0 on the order of 10�5 to 10�4 at several Tesla is negligible

compared to hIzi on the order of up to about 50% achieved via

optical pumping (Urbaszek et al., 2007).
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Fig. 7(b) of the principal axis given by the electric field
gradients with respect to the quantization axis z (Huang and
Hu, 2010). This effect will be discussed in Sec. V.B.2. For
InAs QDs, the experimental evidence suggests that the
quadrupolar fields not only render point (ii) important in
many experiments, but also suppress the contribution of
argument (i) to nuclear spin relaxation. It is worth noting
that in a nonzero magnetic field, say above a few 10 mT, the
nuclear polarization can survive for minutes or even hours as
long as the QD is neither excited (i.e., does not contain any
charge carrier) nor coupled to a Fermi sea (Maletinsky,
Kroner, and Imamoglu, 2009; Chekhovich, Makhonin,
Skiba-Szymanska et al., 2010). The decay of nuclear polar-
ization must therefore contain a term associated with the
presence of the electron in the QD and proportional to fe.
The associated relaxation mechanism originates most likely

from the temporal fluctuations of the Knight field h1ðtÞ�
ð ~A=NÞðŜezðtÞ � hŜeziÞÎz coupled to quasistatic nondiagonal
perturbations experienced by the nuclei such as the dipole-
dipole (Gammon et al., 2001) or quadrupolar interactions
(Huang and Hu, 2010) as detailed in Sec. V.B.2. The time-
dependent quadrupolar interaction associated with the fluctu-
ations of electrical gradients induced by the creation or
annihilation of an exciton could also directly contribute to
the relaxation as estimated for donors in GaAs (Paget,
Amand, and Korb, 2008).

Because of the dependence of T�11e on the generated

nuclear field Bn;z � 2 ~A
P

jhÎjzi=ge�B, Eq. (19) acquires a

nonlinear character. Its steady state solution, that would be
equivalent to Eq. (17) in the case of a constant T�11e and

Td / B2
z , gives rise to an implicit equation for Bn;z reading

(Eble et al., 2006)

Bn;z¼ 2 ~A ~Q

ge�B

hŜezi�hŜezi0
1þ&f1þ½ge�BðBzþBn;zÞ�ec=ℏ�2g

; (20)

where & ¼ ðNℏ= ~AÞ2=2�ecfeTd is a constant corresponding
to the ratio T1e=Td when the total magnetic field vanishes
(i.e., jBz þ Bn;zj � ℏ=ge�B�

e
c). It determines the minimal

value ð1þ &Þ�1 of the leakage factor limiting the magnitude
of the nuclear polarization. Equation (20) shows that the
effect of & is amplified by 1þ ½ge�BðBz þ Bn;zÞ�ec=ℏ�2 which
represents the influence of the electron spin splitting on the
flip-flop rate. Clearly, this introduces a dependence on the
relative signs of Bn;z and Bz. The buildup of Bn;z is favored

when both fields point in opposite directions (i.e., partially
compensate each other), whereas DNP tends to be inhibited
when the fields are parallel, as confirmed experimentally
(Eble et al., 2006). Moreover, this simple formalism predicts
possible regimes of nuclear field bistability since Eq. (20) is
actually a third order polynomial equation that may accept
three real solutions (two stable, one unstable) determined by
its coefficients, i.e., the experimental conditions (Braun
et al., 2006b; Maletinsky et al., 2007).

2. Dynamic nuclear polarization in the presence of nuclear

quadrupole effects

A quantitative description of DNP achievable in optical
pumping experiments in QDs has to take into account the
nuclear quadrupole interaction introduced in Sec. III.B

induced by strain and alloy disorder (Bulutay, 2012). In
addition to zero order effects, the quadrupolar interaction is
also responsible for a specific mechanism of nuclear spin
relaxation which arises even for small 
 and which is induced

by the longitudinal part / Ŝez Îz of the hyperfine interaction
fluctuations. If the quadrupolar axis is tilted by an angle 
, the
momentum operator Îz couples the nuclear eigenstates of
angular momentum difference j�mz0 j ¼ 1 (except the pair
of levels mz0 ¼ �1=2) which tends to equalize the popula-
tions of these states and therefore cancel their respective
polarization. In the interaction representation and for
small 
, the time-dependent coupling is proportional to
½h1ðtÞA=N�
!Q=�!n where the relevant energy detuning is

the sum of external field and contributions from the nuclear
quadrupole effects �!n¼�nBzþn!Q, where n¼mz0 þ1=2

corresponds to the energy splitting between the states jmz0 i
and jmz0 þ 1i. Remarkably, in contrast to the flip-flop relaxa-
tion induced by the transverse part of the hyperfine interac-
tion, no electron spin flip is required if we take into account
the noncollinear hyperfine coupling Ĥnc

hf given by Eq. (15).
This makes the associated relaxation independent of the
electron spin splitting. Besides, since the nuclear splitting
�!n 
 10 neV is small in usual experimental conditions
compared to the inverse correlation time ð�ecÞ�1 
 10 �eV
determined in Sec. V.B.3, the issue of energy conservation
does not require special consideration and the spectral density
of h1ðtÞ reads simply 2�ec=½1þ ð�!n�

e
cÞ2� � 2�ec. Because of

the nonharmonicity produced by the quadrupolar splitting
(�!n depends on n) it is not possible to derive a single
relaxation time for the nuclear polarization, as done for the
flip-flop term in Sec. V.B.3. However, the transition rate
between the specific levels jn� 1=2i where n 2
f�I þ 1=2; . . . ; I � 1=2g can still be calculated perturbatively
according to Redfield’s theory (Abragam, 1961; Slichter,
1990) or from Fermi’s golden rule assuming a Lorentzian
broadening ℏ=�ec of the level spectral density (Huang and Hu,
2010). To first order in 
 we obtain7

1

TI;n
e�Q
¼

�
AI

2ℏN

�
2 fe�

e
c

1þ ð�!n=cI;n
!QÞ2
; (21)

where cI;n ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðI þ 1=2Þ2 � n2

p
. For each pair of levels the

relaxation rate is maximum at the magnetic field Bz ¼ �nBQ

corresponding to a minimum of �!n and follows a
Lorentzian dependence with a typical width given by
2cI;n
!Q. Figure 19(b) shows the relative evolution of the

different rates for a spin I ¼ 9=2 (case of indium) and
assuming a small angle 
 ¼ 0:05. This magnetic-field-
dependent nuclear spin-relaxation mechanism will be consid-
ered in the next section that details the evolution of DNP in
measurements at variable magnetic fields.

3. Nuclear field bistability in magnetic field sweeps

For a given set of experimental parameters there exist
several stable nuclear spin configurations; see Eq. (20). The
experimentally achieved nuclear spin polarization degree will

7Please note that as a consequence of keeping only first order

terms in 
 for small angles we can neglect transitions with �Iz ¼ 2.
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in addition depend on the history of the experiment (non-

Markovian behavior). Different bistability regimes of DNP

were observed in single QD optics by varying continuously

different parameters in the experiment such as the polariza-

tion of the optical excitation (Braun et al., 2006b), the laser

excitation power (Tartakovskii et al., 2007; Belhadj et al.,

2008; Kaji et al., 2008; Skiba-Szymanska et al., 2008), or

more commonly the external magnetic field (Braun et al.,

2006b; Maletinsky et al., 2007; Kaji et al., 2008; Krebs

et al., 2008). Figure 20(a) shows the typical evolution of the

PL from an Xþ trion as a function of the applied longitudinal

magnetic field when the QD is excited with a quasiresonant,

�� polarized laser. The Zeeman splitting measured between

the �þ and �� components increases steadily up to a critical

field Bc � 4:5 T where it undergoes an abrupt increase. This

provides direct evidence that, up to Bc, a nuclear field Bn is

created in the quantum dot in the direction opposite to Bz.

When the magnetic field is swept back, a similar abrupt

reduction of the Zeeman splitting takes place but at a lower

critical field B0c � 1 T.
The Overhauser shift ℏ!e

OS � jge�BBn;zj due to the nu-

clear field can be extracted as shown in Fig. 20(b) by sub-

tracting the Zeeman splitting of the trion ðgh � geÞ�BBz

exclusively due to the external field, where gh ’ 2:4 is the

g factor of the heavy-hole pseudospin 1
2 for this particular QD

and ge ’ �0:6. Note that the Zeeman splitting used for

reference is precisely determined from a measurement where

Bn ¼ 0: under linearly polarized excitation in moderate

external fields (below 
3 T) since in this case hŜezi ¼ 0 due

to optical pumping, and hŜezi0 � 0 due to thermalization
result in zero nuclear polarization. The asymmetrical depen-
dence of Bn on Bz and the bistability regimes of DNP are
clearly evidenced in Fig. 20(b). Remarkably, the Overhauser
shift grows almost linearly with the positive Bz (for ��
excitation) in order to remain above the dashed line which
represents the electron Zeeman splitting. As long as this
condition is fulfilled, the nuclear field Bn fully compensates
the applied field (even slightly overcompensates) so that the
amplification of & in Eq. (20) remains moderate of the order
of unity. When Bz approaches the critical field Bc, the elec-
tron spin splitting ℏ!e vanishes, indicating that the nuclear
field has reached its maximum under the conditions of the
experiment. Beyond this point a further increase of Bz yields
a reduction of Bn;z. This provides a negative feedback [& in

Eq. (20) is amplified] and the Overhauser shift suddenly
drops as the applied field is slightly increased. The maximum
Overhauser shift of 137 �eV achieved here amounts to an
average nuclear polarization of 43% for a pure InAs QD, but
it is certainly closer to 60% for a more realistic In0:5Ga0:5As
intermixed QD, using the values for 100% nuclear polariza-
tion in Table III as references. By adjusting the parameters of
the model it is possible to reproduce the experimental mag-
netic field dependence of ℏ!e

OS reasonably well using the

numerical solution of Eq. (19). In practice only �ec, ge, and the
product feTd have to be varied for the fit, whereas other
parameters can be fixed to the values expected for usual
InAs QDs (N ¼ 5� 104, ~Q ¼ 13, and T ¼ 1:7 K).

To improve the agreement around zero field where the
experimental slope (@!e

OS=@Bz) presents a kind of disconti-

nuity, it is necessary to include a field-dependent nuclear
relaxation rate T�1d . One plausible approach is to include

the gradual inhibition of nuclear spin relaxation due to the
quadrupolar coupling as the longitudinal magnetic field in-
creases (Abragam, 1961; Meier and Zakharchenya, 1984;
Huang and Hu, 2010). In realistic QDs we have to average
over the distribution of quadrupolar interactions in both
magnitude and direction, and hence the relaxation resonances
in Eq. (21) are drastically broadened compared to the esti-
mations shown in Fig. 19. Also, the applied longitudinal field
will restore the eigenaxis along z. This justifies including a
simplified magnetic field dependence as we assume in addi-
tion to a constant term a Lorentzian part describing qualita-
tively the slowdown of relaxation at high fields:

T�1d ¼ T�1d1 þ
T�1d0

1þ ðBz=BQ0 Þ2
: (22)

A manual fit of the model to the experimental points is plotted
in Fig. 20(b) (solid line) with �ec ¼ 75 ps, ge ¼ �0:6 for
the electron g factor,8 feTd0 ¼ 65 �s, feTd1 ¼ 5 ms, and

FIG. 19 (color online). (a), (b) Energy levels and relaxation rates

according to Eq. (21) for a spin I ¼ 9=2 and 
 ¼ 0:05. The

anticrossings are marked by circles of different colors in (a),

and the corresponding relaxation rates are shown in (b) in the

same color.

8It was assumed that the hyperfine interaction with the hole

reduces the theoretical Overhauser shift j2 ~AhIzij by about 10%;

see Sec. VII.B. This enables us to use the nominal value expected

for the electron g factor instead of the reduced effective factor g?e ¼
0:9ge determined from the maximum Overhauser shift ℏ!e

OS at Bc

and corresponding to the dashed line in Fig. 20(b). This is not a

critical assumption since it improves only slightly the agreement

with the experimental data in weak fields.
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BQ0 ¼ 0:4 T, where BQ0 is a measure of the strength of the

nuclear quadrupole effects, typically on the order of 100 mT.
The inclusion of this magnetic-field-dependent nuclear spin-
relaxation rate improves the fit considerably for Bz < 1 T
(Krebs et al., 2008).

In the present simple model the fraction of time of QD
occupation fe and the relaxation time Td cannot be distin-
guished since only their product appears in &. Furthermore,
when the laser excitation power (proportional to fe below the
saturation power Psat) is reduced from Psat=2 to Psat=40, the
generation of the nuclear field is almost not affected as shown
in Fig. 20(b): despite a smaller initial value in zero field, the
Overhauser shift still follows the increase of Bz up to about
the same critical field Bc around 4.5 T, reaching the same
maximum Overhauser shift ’ 135 �eV with Psat=40 as
achieved with Psat=2. This is a clear indication that while
the power decreases the relaxation time Td increases. To
reach the same Bc in the simulations an almost constant
product feTd is required. It can therefore be inferred that
Td / f�1e in qualitative agreement with the very slow nuclear
relaxation observed when the sample is left in the dark, i.e.,
does not contain any charge carriers (see Sec. VI.F). This
observation points toward a depolarization mechanism due to
Knight-field fluctuations coupled to the quasistatic local
dipolar field (Gammon et al., 2001) or to the quadrupolar
interaction (Huang and Hu, 2010) as the dominant cause of
nuclear spin relaxation in optically excited QDs.

The Xþ is created through quasiresonant optical excitation.
The electron-nuclear spin flip-flop can occur either during the
trion lifetime �r 
 1 ns or, alternatively, during the shorter
stage of energy relaxation from the initial excited level since
the correlation time extracted from the fits �ec � �r. A re-
duction of hSezi ¼ ��c=2 due to this spin flip-flop is expected
and we shall consider if this decrease is observable in realistic
experiments: From Eq. (19) one can infer the spin-flip time
T1n experienced by the electron due to the nuclei to be T1n ¼
T1efe=N ~Q. From the fitting parameters used above, it typi-
cally amounts to 
10 ns in the magnetic field range where a
nonzero Overhauser shift is created. The probability of an
electron spin flip during its lifetime is therefore not com-
pletely negligible (�r=T1n � 0:1) and the polarization
of the photons emitted by Xþ recombination should be
affected by the preceding electron-nuclear spin flip-flop pro-
cess. Also, when the electron splitting ℏ!e becomes of the

FIG. 20 (color online). (a) Density plots of Xþ PL intensity from a single QD at T ¼ 1:7 K as a function of an increasing or decreasing

magnetic field Bz, detected over a 1 meV energy range around E0 ¼ 1:3143 eV. The quasiresonant �� polarized excitation is 
60 meV

above the trion line in zero field. (b) Absolute Overhauser shift of the Zeeman splitting for two excitation powers, and (c) circular polarization

as a function of Bz. The measurement at 0:025Psat has been shifted and slightly reduced in size for clarity. Adapted from Krebs et al., 2008.

TABLE III. Electron Overhauser splitting in �eV for 100% nu-
clear polarization ℏ!e

OS ¼ IGaAGa þ IAsAAs for GaAs and InAs
quantum dots, using the nuclear spin and hyperfine constant values
from Table II.

InAs 315
In0:5Ga0:5As 230
GaAs 135
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order of ~Að ~Q=NÞ1=2 
 1 �eV,9 the first order effect of spin
precession in the nuclear field fluctuations (as discussed in
Sec. IV.A) becomes predominant and should appreciably
enhance the electron spin relaxation because T�=T1n 

~A�ec=ℏð ~Q=NÞ1=2 
 0:1 (Krebs et al., 2008). This is confirmed
experimentally as a clear correlation between the measured
Xþ polarization and the achieved Overhauser shift is found;
see Fig. 20(c). The polarization is reduced by
5% under the
conditions where DNP is built up efficiently, i.e., when T1n is
short. More specifically the Xþ polarization exhibits a pro-
nounced dip down to 76% when approaching the critical field
Bc, immediately followed by an abrupt increase to a roughly
constant level of 91%. For a qualitative comparison the
theoretical reduction of the polarization �c of the Xþ emis-
sion is plotted in Fig. 20(c) using �c ¼ �max

c =ð1þ �r=T1nÞ,
with �max

c ¼ 0:91 and �r ¼ 0:7 ns. This formula is approxi-
mate only because it assumes that electron-nuclei flip-flops
take place for the whole radiative lifetime of Xþ although the
correlation time used in the model is much shorter, but, on the
other hand, it neglects the faster spin-relaxation rate 
T�1�

near Bc. The general idea is captured: the smaller the splitting

in energy jℏ!ej between electron spin-up and spin-down
states, the shorter the spin lifetime and consequently the
smaller the measured polarization, irrespective of the actual
spin-flip mechanism. The dip observed at Bc is clearly related
to the vanishing jℏ!ej. It is remarkable that the Zeeman
splitting of the electron is zero in an applied field Bz of
more than 4 T, and an electron depolarization due to the
Merkulov effect is observed, in analogy with the observed
decrease in electron polarization around zero magnetic field
(Merkulov, Efros, and Rosen, 2002; Braun et al., 2005).

Figure 21 shows for comparison similar measurements for the
same QD but in the negative charge state giving rise to the PL
emission of anX� line located about 10meV below theXþ line.
This charge state is achieved by increasing the gate voltage
applied to the n-type Schottky device by þ0:8 V, in a regime
where the QD is actually charged by two electrons. The quasire-
sonant optical excitation creates a hole confined in the QD
valence ground state and an electron in an excited state which
escapes from the dot in a few picoseconds. This leads to X�
formation in a polarization state determined by the hole spin
(Laurent et al., 2005). Nonlinear DNP is again observed when a
longitudinal magnetic field is applied [see Figs. 21(a) and 21(b)],
with some notable differences compared to the Xþ case:

(i) The Overhauser shift develops when the �þ branch of
the trion (i.e., the Zeeman line which blueshifts with

FIG. 21 (color online). (a) Density plots of X� PL intensity from the same QD of Fig. 20 at T ¼ 1:7 K as a function of an increasing or

decreasing magnetic field Bz, detected around E0 ¼ 1:305 eV. The quasiresonant �þ or � polarized excitation is 
40 meV above the trion

line in zero field. (b) Overhauser shifts of the Zeeman splitting for both excitation polarizations with superimposed fits of the model using the

same parameters (solid lines). The measurements under � polarization, performed in positive fields, have been duplicated antisymmetrically

in negative fields. (c) Circular polarization under �þ excitation as a function of Bz showing no correlation to the Overhauser shift in contrast

to Xþ. The inset illustrates schematically X� emission, followed by the capture of a second resident electron defining the correlation time

�ec 
 20 ps in the model. Adapted from Krebs et al., 2008.

9The secular approximation used to derive the expression of T1n

to the second order in perturbation is no longer valid.
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the applied magnetic field) is predominantly pumped
by the �þ excitation. This inversion of the required
polarization with respect to the Xþ case results from
the symmetry between Xþ and X� (Eble et al., 2006):
As shown in Fig. 21(c) inset, a �þ polarized X� does
not itself polarize the nuclei because the conduction
electrons are in a singlet state, but after recombination
with the * hole, it yields an unpaired electron with
" spin exactly as for a �� photocreated Xþ trion. The
same regime of DNP can therefore take place in a
positive magnetic field which is still opposite to the
generated nuclear field Bn.

(ii) In contrast to Xþ, the measured PL polarization in
Fig. 21(c) shows no correlation with the measured
Overhauser shift, because it is determined by the
optically created hole-spin polarization.

(iii) The effective electronic splitting jℏ!ej ’ 25 �eV
is significantly larger, the critical magnetic fields
Bc ’ 3:3 T and B0c ’ 2:8 T associated with the abrupt
decrease and recovery of nuclear polarization are,
respectively, reduced and enhanced, which results in
a narrower domain of bistability, and eventually there
is only a partial decrease of jℏ!e

OSj in negative fields

leading to a residual shift of
15 �eV at Bz ¼ �5 T.

All these changes can still be reproduced by the above
model as shown by the simulation plotted in Fig. 21(b) (solid
line) assuming �ec ¼ 18 ps, ge ¼ �0:62, feTd0 ¼ 1 ms,

feTd1 ¼ 8:7 ms, and BQ0 ¼ 0:7 T. The reduction of the non-

linearity quantified by ðBc � B0cÞ=ðBc þ B0cÞ results essen-
tially from the shortening of �ec which leads to a smoothing
of the Lorentzian factor on the right-hand side of Eq. (20) and
makes the condition ℏ!e � 0 less critical. This explains also
why in negative fields, as well as for Bz > Bc, a finite
Overhauser shift can still be generated. There is, however, a
clear asymmetry between the measured degree of DNP at
Bz ¼ þ5 and �5 T indicating a favored DNP in large nega-
tive fields. In this situation the electron splitting ℏ!e is
dominated by the Zeeman part so that the flip-flop rate T�11e

should be essentially symmetrical. The reason for the asym-
metry now comes from the increase of the equilibrium spin
polarization 2hSezi0 which amounts to �53% at T ¼ 1:7 K
and Bz ¼ �5 T. The departure from equilibrium in Eq. (20)
is therefore drastically altered according to the field direction.
The role played by this equilibrium spin hSezi0 is confirmed in
measurements with a linearly polarized (�) excitation which
does not directly create any spin polarization (hSezi ¼ 0),
but still show a finite Overhauser shift in high fields; see
Fig. 21(b).

4. Nonlinearity of the nuclear polarization as a function of

excitation laser polarization

The case of single X� trions is particularly interesting
because the circular polarization of the corresponding PL
line allows for a direct determination of the unpaired electron
spin left in the QD just after the optical recombination and
responsible for the subsequent DNP. The validity of Eq. (20)
which relates the Overhauser shift / hÎzi to the average
electron spin hSezi can thus be tested in a fixed magnetic field
without the need of Eq. (22) (Eble et al., 2006). Figure 22

shows a series of such measurements where the polarization

of the excitation light is changed stepwise by rotating the

quarter-wave plate through which the linearly polarized laser

passes, essentially allowing one to plot hÎzi as a function

of hSezi. Along a � rotation the incident polarization covers

the cycle �! �þ ! �! �� ! �, as a result, the recorded
circular polarization degree of the PL varies between �0:8
and þ0:8. For each excitation polarization the X� PL emis-

sion is measured in �þ and �� polarization separately,

typically for a 1 s integration time which is long enough to

reach the steady state regime described by Eq. (20). Figure 22

shows that the DNP achieved via optical pumping depends in

a highly nonlinear fashion on the average injected electron

spin hSezi for magnetic fields below the critical field Bc which

amounts to ’ 2:2 T for the X� of this QD. This nonlinearity

manifests itself as an asymmetry of the Overhauser shift as

hSezi changes from positive to negative, in perfect agreement

with the asymmetry observed when the magnetic field

changes sign, as discussed earlier for Fig. 21.
In zero applied field the Overhauser shift shown in Fig. 22

is as expected exactly antisymmetrical with respect to a

change in sign of hSezi. Interestingly, it still exhibits a non-

linear dependence on hSezi indicating that the nuclear field

which develops is strong enough to restrain the DNP rate

T�11e : a negative feedback develops as any further spin flip-

flop will increase ℏ!e ¼ ℏ!e
OS and hence make the next spin

flip-flop less likely than the previous one. At higher positive

fields, this drastic feedback shifts the nonlinear response of

the nuclear system toward positive values of hSezi and enhan-

ces its magnitude to the point that a bistability region shows

up, as evidenced by the measurements at 2 T in Fig. 22 (Braun

et al., 2006b; Maletinsky et al., 2007). When the external

field exceeds Bc, the level of high nuclear polarization can no

FIG. 22 (color online). Overhauser shift / hÎzi in a single InAs/

GaAs QD as a function of the measured circular polarization from

the X� PL line (essentially / hSezi of the electron left behind)

around E0 ¼ 1:265 eV at different longitudinal magnetic fields.

The polarization of the quasiresonant excitation is varied by step-

wise rotating a quarter-wave plate over a total angle of �, which
achieves the complete polarization cycle �!�þ!�!��!�.

Solid lines represent fits of Eq. (20) with �ec ¼ 31� 2 ps, g?e ¼
0:54, and the product feTd adjusted for each field as indicated. The

curves and experimental points at different magnetic fields have

been translated for clarity.
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longer be reached by increasing the electron-spin polariza-
tion. The system remains in the low nuclear polarization state
which now depends almost linearly on hSezi because the role
of Bn;z in T�11e is negligibly small (jBn;zj � jBzj). Note that

there is yet a residual Overhauser shift of a few �eV at
hSezi¼0 due to the finite equilibrium spin hSezi0 in Eq. (20).
As shown in Fig. 22, the agreement with the model is very
good. From Eq. (20) one can express hSezi as a function of the
nuclear field Bn;z and therefore determine �ec, feTd, and ge
from a least-square fit to the experimental points. All the
theoretical curves in Fig. 22 are obtained with the same
set of parameters except for �ec and feTd. The estimated
values of the correlation time which presumably should not
depend on the magnetic field vary indeed very moderately
(�ec ¼ 31� 2 ps), while in contrast the product feTd in-
creases appreciably with the field in qualitative agreement
with the Lorentzian dependence assumed in Eq. (22).

Figure 23 shows the analogous evolution of the Overhauser
shift for an Xþ trion when the excitation polarization varies
from �þ to �� and back. The global behavior is very similar,
with a bistability region in magnetic fields below Bc. The
main difference, besides the symmetry change between Xþ
and X� case already discussed, is that the Overhauser shift
can no longer be satisfactorily correlated to the measured PL
circular polarization according to Eq. (20).

The difference between the laser polarization (/ hSezit¼0)
and the Xþ PL polarization (/ hSezit¼�r ) is a measure of the

impact of the electron-nuclei spin flip-flops on the average
electron polarization hSezi. As expected, the difference be-
tween excitation polarization and emitted polarization in
Fig. 23 is largest when nuclear polarization is strongest, in
close analogy to the dip at Bc in Fig. 20(c). Good agreement
with Eq. (20) can still be obtained by assuming hSezi propor-
tional to the nominal laser polarization; see fits to the data
in Fig. 23.

Investigating the nonlinearity of DNP as a function of the
electron or laser circular polarization gives access to the key
parameters �ec and feTd without causing their simultaneous
variation, as is the case when varying the magnetic field or
excitation power. As seen in Fig. 22 this can be used to
evidence and possibly measure the evolution of the relaxation
time Td in the magnetic field. Urbaszek et al. (2007) em-
ployed this method to study the effect of temperature on the
magnitude of the optically generated nuclear polarization.
Figure 24(a) shows that the Overhauser shift in a magnetic
field Bz ¼ 2 T appreciably increases with the temperature
in the range 30–55 K, for both �þ and �� excitation
polarizations. This general trend could seem rather counter-
intuitive because both the electron and nuclear spin lifetimes
decrease at higher temperatures when they are measured
independently (Sénès et al., 2004; Lu et al., 2006).
However, the sensitivity of the DNP on the energy cost of
electron-nuclei flip-flops can lead to a specific dependence.
Indeed, when the temperature is increased one may naturally
expect a shortening of the correlation time �ec. As depicted in
Fig. 24(b), the competition between the broadening ℏ=�ec
of the levels involved in the flip-flop and the energy cost
ℏ!e reaches a new equilibrium corresponding roughly to
j!e�ecj 
 1 obtained for a larger nuclear field.

This qualitative interpretation is confirmed by the deter-
mination of �ec at different temperatures from the fitting of the
model to the nonlinearity of the Overhauser shift �n ¼ ℏ!e

OS

as a function of hSezi; see Fig. 24(c). �ec has to be reduced from
60 ps at 5 K to only 10 ps at 45 K to neatly reproduce the
experimental data, but interestingly this also requires one to
increase the relaxation time of the nuclei Td [note that, in
Fig. 24(c), fe is taken as an independent constant]. Strikingly,
the relative increase of Td is approximately the same as the
relative reduction of �ec. This behavior is expected if the
nuclear relaxation is dominated by the Knight-field fluctua-
tions produced by the electron in the QD. In this case it can be
shown (Huang and Hu, 2010) that T�1d / fe�

e
c=½1þ ð ~!n�ecÞ2�

where ~!n, the typical nuclear spin splitting due to external
field and quadrupolar interaction, is a small correction that
can be neglected since j ~!n�ecj � 1 for �ec 
 50 ps. As a
result, the effect of the temperature in the range 2–55 K is
essentially governed by the reduction of the correlation time
�ec. On the one hand, it produces an increase of both relaxa-
tion times T1e and Td, equivalent to the phenomenon of
motional narrowing. However, these changes compensate
each other and therefore do not affect the magnitude of
nuclear polarization. Note that the parameter & in Eq. (20)
is indeed a constant independent of �ec when T

�1
d / �ec. On the

other hand, the flip-flop probability is directly favored by the
level broadening, which finally gives rise to higher DNP.
The reduction of hSezi with the temperature due to concurrent
relaxation mechanisms (Sénès et al., 2004) still limits the
effective DNP magnitude that can be reached in this way.

5. Overhauser effect in zero magnetic field:

Role of the Knight field

A remarkable observation in InAs QDs is the occurrence of
substantial nuclear spin polarization in zero external mag-
netic field (Lai et al., 2006). In contrast, in n-type bulk
semiconductor samples this requires a small external field

FIG. 23 (color online). Overhauser shift in a single InAs/GaAs

QD as a function of the laser or PL circular polarization for an Xþ

PL line around E0 ¼ 1:348 eV at two longitudinal magnetic fields.

The polarization of the quasiresonant excitation is changed by

stepwise rotating a quarter-wave plate as in Fig. 22. Solid lines

represent fits of Eq. (20) with �ec ¼ 31� 2 ps, jgej ¼ 0:5, jg?e j ¼
0:45, and the product feTd as indicated. The curves and experi-

mental points for both magnetic fields have been translated for

clarity.
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of a few millitesla to suppress the nuclear spin relaxation
induced by the dipolar interaction (Meier and Zakharchenya,
1984). For each nucleus this spin-spin interaction indeed

amounts to a randomly oriented local effective magnetic field
BL 
 0:15 mT with an associated spin precession period of
T2 
 100 �s determining the time scale of both the nuclear
spin relaxation and the reorientation of BL. In comparison,

the intrinsic nuclear spin decay time Td is in the 1–100 ms
range, from an analysis of the nonlinearity (assuming, e.g.,
fe ¼ 0:1) or from direct measurements (see Sec. VI). The
fact that Td � T2 is definitely a remarkable feature of InAs
QDs. Lai et al. (2006) proposed that the electron spin hSezi
could produce a Knight field B K / hSei [see Eq. (5) in
Sec. III.A], strong enough compared to BL to stabilize the
nuclear polarization along z in zero external field. As shown

in Fig. 25(a) for a QD charged by a single electron, the
Overhauser shift is almost constant over the �6 mT range
around the zero field, with still a reduction at 
� 0:6 mT
for �� circular polarization of excitation. These dips result
from the compensation of the Knight field by the external

field, which in turn yields a faster decay of nuclear spin
polarization and a reduction of the Overhauser shift. They
are also observed on the circular polarization of X� PL [see
Fig. 25(b)], although in this case the polarization should
solely reflect the hole-spin polarization. This can be inter-

preted as (i) the partial inhibition by the nuclear field of the
hole-spin relaxation due to anisotropic electron-hole ex-
change during X� formation, or alternatively (ii) the hole
spin itself becoming more sensitive to the nuclear field

fluctuations, as discussed in Sec. VII.A. To discuss the

FIG. 24 (color online). (a) Spin splitting in a single InAs/GaAs

QD for an Xþ PL line as a function of temperature. The squares

(circles) are measured following �þ (��) polarized laser excitation

and the triangles following linear laser excitation, for which DNP is

absent. (b) Schematics of the electron-nuclei level splitting and the

change of broadening due to temperature raising. (c) Evolution of

the Overhauser shift as a function of hSezi deduced from the PL

circular polarization (hSezi ¼ ��c=2) for different temperatures.

Solid lines are a fit of the model to the experimental data with

the corresponding correlation time �ec and relaxation time Td as

indicated. From Urbaszek et al., 2007.

FIG. 25 (color online). (a) Overhauser shift and (b) circular po-

larization of a single X� PL line from an InAs/GaAs QD as a

function of a small longitudinal magnetic field for �þ and ��

circularly polarized excitation. From Lai et al., 2006.
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Knight-field hypothesis more quantitatively, one can use
Eq. (17) where the field B experienced by the nuclei is the
sum B ¼ Bext þ B K, since the nonlinearity due to the field
dependence of Eq. (18) is negligible in this very narrow field
range. Accordingly, the Overhauser shift should indeed be
reduced to Bext ¼ �B K. Furthermore, the nonuniform na-
ture of the Knight field allows one to explain satisfactorily
both the partial reduction of the Overhauser shift, whereas
Eq. (17) predicts complete cancellation, and the enhancement
of the corresponding magnetic width compared to BL.

However, the exact role played by the Knight field in
stabilizing the nuclear field needs to be clarified in light of
the recently discovered importance of the nuclear quadrupole
interaction introduced in Sec. III.B, revealed, for instance, in
experiments carried out in transverse magnetic fields (Krebs
et al., 2010): they show that an external field perpendicular to
z in the 10–100 mT range, i.e., a few orders of magnitude
larger than BL and B K, does not destroy the nuclear polar-
ization along z. Dzhioev and Korenev (2007) suggested
that the nuclear quadrupole interaction is more likely to be
responsible for allowing DNP at (near) zero applied magnetic
field, as depolarization of the nuclei via the dipole-dipole
interaction is quenched. This alternative explanation will be
reviewed in Sec. VI.D together with the striking observation
of the anomalous Hanle effect. Still, the assignment of the
dips observed in Fig. 25 to the Knight field compensation is
the most likely explanation. Since the polarization of the
�1=2 nuclear spin sublevels is not protected from BL by
the quadrupolar interaction, their sensitivity to any magnetic
field of the order of BL should still reflect the contribution of
the Knight field to the stabilization of the total nuclear field.

6. Nuclear field versus electron-hole exchange:

The case of neutral excitons

The nuclear field generated in QDs under quasiresonant
excitation with circularly polarized light is definitely a local
property: on the one hand, distinct dots illuminated under the
same laser spot of about 1 �m diameter exhibit distinctive
nuclear field effects; on the other hand, all excitonic states in
a given QD which involve the same conduction electron in its
ground or excited state experience the same nuclear field.
This property is clearly evidenced by the abrupt cancellation
of the nuclear field Bn in magnetic field sweeps which take
place accordingly at different or identical critical fields; see
Fig. 26. Note that the coexistence of different excitonic states
in the same QD in a PL spectrum results from the random
capture of excitons and individual charges under quasireso-
nant excitation conditions. In the measurement of Fig. 26 the
spin-polarized positive trions Xþ attract a photocreated elec-
tron during their lifetimes and transform into neutral biexci-
tons 2X0 with no polarization. For QDs inserted in a Schottky
structure such effect can be favored by tuning the gate voltage
near critical values separating different charge states.

One could expect the coexistence of biexcitons and trions
to affect the DNP magnitude. Biexcitons indeed recombine to
an exciton state with no specific circular polarization so that
the average electron spin driving the nuclear field in Eq. (20)
should be reduced. However, the electron-nucleus flip-flop
turns out to be largely inhibited for neutral excitons because it
couples bright ("+ or #*) to dark excitons ("* or #+) which are

separated by the electron-hole exchange energy �0. For InAs/
GaAs QDs where �0 ’ 0:2–0:5 meV (Urbaszek et al., 2003)
this corresponds to a magnetic field of about 15 T to be
compensated. The possible contribution of excitons to DNP
is therefore quite negligible compared to that of trions under
usual experimental conditions. However, in interfacial GaAs
QDs for which �0 
 100 �eV the observation of large
nuclear polarization in weak fields around 100 mT could
still be assigned to flip-flops between neutral exciton states
(Gammon et al., 2001). The low DNP rate T�11e / ��20

estimated to 2:5 s�1 was compensated in this case by a
vanishing nuclear spin relaxation assumed to be due only to
dipolar coupling. More recently, neutral excitons were pro-
posed to be at the origin of a strong Overhauser effect
measured for InP/InGaP QDs at low optical excitation power
in a strong magnetic field Bz ¼ 6 T (Chekhovich et al.,
2011b) near the dark-bright exciton crossing point.

Even though neutral excitons do not necessarily contribute
to DNP they still experience the nuclear field produced by
trions (Eble et al., 2006). To some extent this effect can be
used to control the intrinsic polarization of neutral excitons
in zero magnetic field (Belhadj et al., 2009; Moskalenko,
Larsson, and Holtz, 2009; Larsson, Moskalenko, and Holtz,
2011). The optical orientation of neutral excitons X0 in InAs/
GaAs QDs is usually not possible because of the anisotropic
electron-hole exchange �1 
 30 �eV which splits the levels
into linearly polarized states. An external field substantially
larger than �1=gX0�B 
 150 mT is required to restore circu-
larly polarized eigenstates. As shown in Fig. 27, this can be
partially achieved when Xþ trions are formed alternatively
with X0 excitons under circularly polarized nonresonant

FIG. 26 (color online). Density plot of PL spectra of three differ-

ent QDs ( labeled A, B, and C) around E0 ¼ 1:36 eV as a function

of a longitudinal magnetic field under �� excitation at about 1LO

phonon energy (37 meV) above E0. The specific critical fields at

which the nuclear polarization collapses vary from dot to dot and

allow one to recognize different excitonic lines originating from the

same QD.
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optical pumping, since the former can generate a nuclear field

Bn reaching several 100 mT. Note, however, that Bn is the

effective magnetic field experienced by the electron only and

deduced from its Overhauser shift according to ℏ!e
OS=ge�B.

The X0 eigenstates are actually determined by the ratio

� ¼ j�1=ℏ!e
OSj. When an exciton is created with an initial

circular polarization �0
c, it experiences quantum beats during

its lifetime �r which, if �r is long enough, results in an

average circular polarization �0
cð1þ �2Þ�1 and a linear

polarization �0
c�ð1þ �2Þ�1 of the emitted PL (Dzhioev,

Zakharchenya, Ivchenko et al., 1998). This effect is demon-

strated in Fig. 27(b), with notably a substantial conversion of

the initial circular polarization into a linear polarization when

the magnitude of the Overhauser shift increases with the

excitation power and becomes comparable to �1.

C. Nuclear spin polarization under resonant optical excitation

To investigate the coupled electron-nuclear spin dynam-

ics under resonant excitation sophisticated pump-probe

techniques (Greilich et al., 2007; Chekhovich, Makhonin,

Kavokin et al., 2010), photocurrent experiments (Klotz

et al., 2010) or schemes with spectator states (Kloeffel

et al., 2011) have been developed. These experiments have

uncovered original nuclear pumping cycles, not accessible

under nonresonant excitation conditions. In Sec. V.C.1 an

efficient electron-spin initialization scheme is presented that

results in DNP via the Overhauser effect. In Sec. V.C.2 we

describe how a resonant laser can drive an optically forbidden

transition, where photon absorption is accompanied by a

simultaneous spin flip of an electron and a nuclear spin.

The DNP achieved in these original schemes is based on

the flip-flop term / ðÎþŜe� þ Î�ŜeþÞ in Eq. (6). In Sec. V.C.3

resonant experiments are presented that involve nuclear

polarization buildup that does not require the simultaneous

spin flip of a carrier spin, i.e., that involves noncollinear terms

of the form / ÎxŜ
e
z , paving the way for novel nuclear spin

control schemes.

1. Overhauser effects under resonant optical excitation

An original cycle for efficient DNP generation through

resonant optical pumping was developed by Kloeffel et al.

(2011) in small applied longitudinal fields Bz ¼ 0:5 T. In this
scheme the driving laser polarization and more surprisingly its

frequency will define which electron-spin state (" or #) is

initialized, determining the direction of the nuclear spin po-

larization created via the Overhauser effect. Here an InAs QD

is placed in a charge-tunable structure with a highly n-doped
layer, separated from the dot by a 25 nm thick GaAs tunnel

barrier. In the experiment the bias voltage is set just between

the X0 and X� plateaus. The efficient cycle for electron-spin

initialization (see Fig. 28) starts with a dot that is unoccupied

before laser excitation, as the first electronic state is just above

the Fermi sea of electrons. In the experiment the laser polar-

ization is set to �þ. Absorption of a photon leads to the

formation of neutral exciton X0 state j *#i. The Coulomb

attraction of the hole lowers the electronic level just below

the Fermi sea, so that after a time �in of typically tens of

picoseconds an electron tunnels into the dot. Pauli exclusion

determines the incoming electron to be in the j "i state and the
charged exciton X� state j *#"i is formed. The X� does not

polarize the nuclei efficiently since the two electrons form a

singlet and the coupling of the unpaired hole to nuclear spins is

much weaker than for a single electron (see Sec. VII).10 This

charged exciton exists for its radiative lifetime �r � 1 ns,
leaving behind a single electron after photon emission. The

intensity of theX� emission is ameasure for theX0 absorption

(Simon et al., 2011). The unpaired electron j "i left behind
interacts with the nuclear spin system. But this interaction is

limited in time: in the absence of the hole the electron energy is

above the Fermi sea; therefore the electron will tunnel out of

the dot within �out of tens of picoseconds. This short tunneling
time (i.e., broadened Zeeman levels) limits the correlation

time for the electron-nuclear spin interaction, allowing flip-

flops between electron and nuclear spins without violating

energy conservation. Once the electron has tunneled out, the

dot is again unoccupied and another �þ photon resonant with

the X0 state can be absorbed. DNP builds up by going repeat-

edly around this cycle.
For a perfectly pure X0 state j *#i one would expect one

sharp resonance in absorption. But surprisingly there is a

second resonance in the absorption curve; see Fig. 28(b).

This resonance corresponds to the energy of the other X0

bright state j +"i, separated from the j *#i exciton, by an

energy of � 40 �eV. Both exciton states are coupled by

the anisotropic part of the Coulomb interaction, making the

j0i ! j +"i transition weakly allowed under �þ excitation.

FIG. 27 (color online). (a) PL spectra of X0 and Xþ from the same

InAs/GaAs QD in zero external magnetic field under the same

experimental conditions, yet measured in ð�x;�yÞ and ð�þ; ��Þ
basis, respectively. The same Overhauser shift �n � ℏ!e

OS gener-

ated under �þ circular polarization is evidenced for both X0 and

Xþ. (b) Evolution of circular (top) and linear (bottom) polarization

of X0 PL as a function of the measured Overhauser shift which

increases in absolute value when the power of the �� excitation

increases. Solid lines follow the simple theoretical analysis given by

Belhadj et al. (2009).

10It is experimentally confirmed that the Ising-like term / ÎzŜz is
1 order of magnitude weaker for heavy holes than for conduction

electrons. In addition, as discussed in Sec. VII, the interaction of

hole spins with nuclei can be strongly anisotropic; see Eq. (33) and

Fischer et al. (2008) and Testelin et al. (2009).
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Once j +"i is created, the dot will receive an additional

electron from the Fermi sea that has to be j #i due to Pauli

exclusion, and the X� state j +"#i is formed. Radiative recom-

bination leads to �� polarized emission, as shown in the top

part of Fig. 28(b), and most importantly the electron spin is

now j #i interacting with the nuclei, leading to nuclear spin

polarization that has the opposite direction as compared to the

previous case. Therefore, the sign of the electron polarization

and hence the nuclear polarization can be finely tuned by

varying the excitation laser energy (Kloeffel et al., 2011), as

shown in Fig. 28(b). The DNP generation as a function of

detuning shows strong nonlinearities as the transition ener-

gies themselves change with each nuclear spin flip, driving

the transitions toward or away from the laser energy as

described in the model developed by Kloeffel et al. (2011).

Because of this feedback, the QD transition can be ‘‘pushed’’

or ‘‘pulled’’ by changing the laser frequency, a phenomenon

even more pronounced in the experiments described in

Sec. V.C.3. The presented resonant excitation cycle is an

efficient way of creating a net electron-spin polarization

that is subsequently transferred to the nuclear spins via the

Overhauser effect. The fact that the carrier excitation is

resonant has no direct consequences for the DNP buildup

process itself (here based on the standard Overhauser effect),

in contrast to the experiments described next.

2. Pumping of nuclear spins by optical excitation

of spin-forbidden transitions

Experiments carried out on the Xþ transitions in InP dots

in a longitudinal magnetic field of 2.5 T (Chekhovich,

Makhonin, Kavokin et al., 2010) are shown in Fig. 29, where

the nuclear spin polarization is measured in nonresonant PL

(probe) as a narrow excitation laser is swept across the Xþ
transitions (pump). In these experiments photon absorption is

accompanied by an electron-nuclear spin flip-flop. There is an

important difference for the energy balance of the spin flip-

flop as compared to nonresonant excitation: the energy for the

electron-spin flip is now directly provided by the excitation

FIG. 28 (color online). (a) Top: PL at 4.2 K from a single QD vs

applied bias driven with excitation at X0 energy. X� PL appears in a

narrow range of voltage. Bottom: Energy dependence vs bias for the

QD vacuum state j0i and the single-electron state jei, showing a

crossing where the ground state changes. X0 and X� cross at lower

bias on account of the hole (Coulomb interaction). For the chosen

bias region (hybridization region), automatic cycling takes place

when a laser is tuned to the j0i $ jX0i transition. (b) Left:

Experimentally measured signal intensity, polarization degree,

and Overhauser shift vs laser energy (detuning) for a �þ pump

and an external field of þ0:5 T at fixed bias in the center of

the hybridization region. Right: Comparison with theory from

Kloeffel et al. (2011).

FIG. 29 (color online). (a) Overhauser field BN in the dot for

Bz ¼ 2:5 T as a function of laser energy. (b) PL transition energy as

a function of laser energy. (c) Energy level diagram of a positively

charged dot in a magnetic field Bz. Long thick arrows show

‘‘allowed,’’ and thin arrows show ‘‘forbidden’’ optical transition.

From Chekhovich, Makhonin, Kavokin et al., 2010.
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laser, in close analogy to the solid-state effect discussed

by Abragam (1961) and more recently in the context of

QDs by Korenev (2007) and Bracker, Gammon, and

Korenev (2008).
Assuming initially 100% pure optical selection rules,

the hole j +i state absorbs a �þ photon to become j +*#i,
the hole j *i state absorbs a �� photon to become j +*"i, and
as the electron and hole g factors are unequal (jghj> jgej) the
energies of the �þ and �� transitions are different. In this

case one expects when scanning a �þ polarized laser across

the Zeeman branches one absorption line and no DNP, as no

carrier-spin flip takes place. This is in stark contrast to the

reported experiments (Chekhovich, Makhonin, Kavokin

et al., 2010): Driving the dot with �þ laser light results

as expected in absorption when in resonance with the j +i !
j +*#i transition but, and this is the first surprise, there is a

second resonance at higher energy for the normally spin-

forbidden transition j +i ! j +*"i. The second surprise is

that DNP is created for both resonances, with the normally

spin-forbidden absorption scheme polarizing nuclear spins

even more efficiently.
Optically assisted nuclear spin-flips can occur in either the

absorption or the ensuing spontaneous emission. The corre-

sponding absorption and emission cycles, as depicted in

Fig. 29(c) are
(1) The �þ laser energy is tuned to the nominally forbid-

den j +i ! j +*"i transition that is difficult to saturate

due to weak oscillator strength. In a second order

process, �þ photon absorption assisted by a flip of

the electron spin and a nuclear spin results in j +*"i
formation. Subsequently the spin allowed optical

recombination j +*"i ! j *i results in �� photon emis-

sion. For the pumping cycle to start again, the hole spin

has to relax from j *i ! j +i, a process that is fast

enough for this dot system in strong magnetic fields

not to limit the efficiency of the spin-pumping cycle

(Chekhovich, Makhonin, Kavokin et al., 2010).
(2) Starting again from j +i but tuning the laser to the spin

allowed j +i ! j +*#i transition results in strong and

easily saturable optical absorption. Reemission of a

�þ photon at the same energy back to j +i is the most

likely course of events. But due to the hyperfine inter-

action, the transition j +*#i ! j *i becomes weakly

allowed, when assisted by a electron-nuclear spin

flip-flop. The final step of this cycle relies again on

hole-spin relaxation j *i ! j +i. Completing either one

of these two cycles once results in lowering the nuclear

spin z projection by 1. To maximize the generated

DNP, the rates characterizing the optical absorption,

emission, and the resident hole-spin flip can be opti-

mized by changing the applied field Bz and/or the laser

intensity. Cycle (2) starting with an allowed optical

transition saturates already at low pumping power,

whereas for cycle (1) the absorption assisted by the

hyperfine interaction continues to grow in strength

when increasing the laser power. This results in more

efficient nuclear spin pumping at high laser powers

using cycle (1), as confirmed by the experiments as

well as the theoretical model detailed in Chekhovich,

Makhonin, Kavokin et al. (2010).

3. Locking of quantum-dot resonances to an incident laser

Several groups have observed that the textbook-like
Lorentzian absorption line shape that one expects as a spec-
trally narrow single-mode laser field is scanned across the QD
resonance gets strongly modified at magnetic fields Bz ex-
ceeding 1 T. As the laser is tuned within 
2 linewidths (��)
of the QD resonance, the absorption abruptly turns on. When
the laser is further scanned across the resonance (in either
direction), the absorption strength remains close to its maxi-
mum value for a laser detuning that can exceed �10��;
see Fig. 30.

Latta et al. (2009) and Högele et al. (2012) carried out a
detailed experimental study of this so-called dragging effect
in charge-tunable InAs/GaAs QDs (Warburton et al., 2000).
The dependence on the laser intensity, laser (or gate voltage)
scan speed, and the electron spin-relaxation (cotunneling)
rate have been mapped out. Their findings demonstrate that
dragging is a consequence of nuclear spin polarization that
enables locking of the QD resonance to the incident probe
laser field frequency. Remarkably, for any given (linear or
circular) laser polarization, nuclear spin polarization is bidi-
rectional, allowing the combined electron-nuclear spin sys-
tem to track the changes in laser frequency dynamically on
both sides of the resonance. This latter observation suggests
that the underlying mechanism is not related to optical pump-
ing of QD electron spin that is used to explain quasiresonant
DNP experiments for which the flip-flop term of the form

/ ðÎþŜe� þ Î�ŜeþÞ in Ĥfc
hf from Eq. (3) dominates.

Experiments carried out on different charge-tunable struc-
tures show that any QD transition that has an electron-spin
decay rate& 107 s�1 will exhibit some degree of dragging. In
particular, it has been shown that X0, X�, and Xþ transitions
in self-assembled QD samples grown in different laboratories
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FIG. 30 (color online). Comparison of the dragging spectra of the

blueshifted Zeeman branch for the X� trion as a function of laser

detuning for a sample with 25 nm thick tunnel barrier (a) and the

prediction of the rate equation (28) (b). For the following parame-

ters: N ¼ 3:2� 104, where N is the number of nuclear spins,
~Ai ¼ 120 �eV=N, Bz ¼ 4:5 T, Ai

nc ¼ 0:012 ~Ai, ℏ� ¼ 0:58 �eV,
�L ¼ 0:7 �, step size ��¼0:23�eV, and dwell time tc ¼ 0:2 s.
From Högele et al., 2012.
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under different conditions exhibit dragging in both Faraday
and Voigt geometries. There is, however, a striking difference
in the dragging profile of the blueshifted and the redshifted
Zeeman transition of a neutral (or singly charged) QD: in
contrast to the blueshifted Zeeman transition which exhibits
the symmetric flat-top response with maximal absorption
described earlier [shown in Figs. 6(d) and 30], nuclear spin
polarization in the red Zeeman transition ensures that the QD
resonance is pushed away from the incident laser frequency.
In addition, the line shape is asymmetric with respect to the
laser (or gate voltage) scan direction. Before we present an
explanation of these features, we highlight the general char-
acteristics of dragging, determined by examining the blue
trion transition.

Figure 31(a) shows the two-dimensional (2D) map of
resonant absorption [resonance fluorescence in Fig. 31(b)]
of the blueshifted trion transition as a function of laser
frequency and gate voltage Vg for two different sample

structures exhibiting radically different ranges of the cotun-
neling rate � (see Sec II.E for an introduction to cotunneling).
For a QD that is separated from the Fermi sea by a 25 nm
GaAs barrier [see Fig. 31(a)], the cotunneling rate ranges
from >109 s�1 at the edge of the charging plateau to

106 s�1 in the center. Consequently, we observe that the
bidirectional dragging effect is strongest in the plateau center
and is completely suppressed at the edges [Vg 
 160 and


260 mV in Fig. 31(a), and Vg 
 220 and 
320 mV in

Fig. 31(b)], where the electron-spin orientation is completely
randomized due to the spin-flip assisted cotunneling intro-
duced in Sec. II.E. In Fig. 31(a), each horizontal cut is
obtained by scanning the gate voltage for a fixed laser fre-
quency; bars show data obtained by scanning the gate voltage

such that the detuning�! ¼ !X �!L decreases (increases),

where !X is the frequency of the QD transition and !L is the

laser frequency. Figure 31(b), on the other hand, shows the

resonance fluorescence map, obtained by scanning the single-

mode laser frequency at a fixed gate voltage, for a QD

separated from the Fermi sea by a 35 nm tunnel barrier.

Because of strong electron-spin pumping in the center,

dragging in this case is restricted to the edges of the single-

electron charging plateau. The overall range for dragging is


30 �eV for Bz ¼ 5 T, which has to be compared with the

theoretical absorption linewidth in the radiative limit ℏ=�r �
1 �eV. The range of dragging depends on the laser Rabi

frequency�L; while some degree of dragging is observed for

�L ranging from 
0:3�� to 3��, the maximum width is

obtained at saturation intensity.
Experiments carried out on QDs in all samples showed that

the dragging width (in energy) increases sublinearly with Bz

beginning at
1 T (Högele et al., 2012). This result is at first

sight unexpected, given that the maximum Overhauser

field that builds up as a result of dragging is a factor of 5

smaller than the external field: therefore, a compensation of

the electron Zeeman splitting due to Bz by the built-in

Overhauser field Bn is not taking place. If the mechanism

for DNP was based on Fermi-contact hyperfine interaction

Ĥfc
hf of Eq. (3), we would have expected the polarization rate

at high Bz to be suppressed due to energy nonconservation of

the hyperfine-induced spin flip-flop processes. We emphasize

here that, in contrast to the quasiresonant experiments, the

electron-spin coherence time in resonant experiments is an

order of magnitude longer. Since the exchange interaction

with the Fermi reservoir needs to be suppressed to observe

dragging, electron-nuclear flip-flop processes accompanied

by a cotunneling event lead only to a weak directional

Overhauser effect. Similar arguments apply to spin-flip spon-

taneous Raman scattering leading to a reverse Overhauser

effect (Latta et al., 2009).
The experimental observations therefore suggest that DNP

based on hyperfine flip-flop interaction and electron spin

pumping are unlikely to explain the dragging effect. Noting

this difficulty, Yang and Sham (2010) proposed that the

presence of a small noncollinear hyperfine coupling of the

form given in Eq. (15) between the heavy hole and the nuclear

spins would lead to symmetric bidirectional nuclear spin

polarization. Next it is argued that noncollinear hyperfine

coupling is a key ingredient to explain dragging. The strength

of the heavy hole to nuclear spin coupling relies on heavy-

hole–light-hole mixing; see also Sec. VII. In the sample

material used by Latta et al. (2009) and Högele et al.

(2012), however, experimentally determined values of

hole-hyperfine interaction suggest that the resulting nuclear

spin-flip rates are an order of magnitude too small to

explain the relative insignificance of the directional reverse

Overhauser effect. In addition, the large apparent variation in

heavy–light-hole mixing in QDs as indicated by the measured

in-plane hole g factors suggests that dragging features would

change appreciably from QD to QD, if the mechanism were

due to hole-hyperfine interaction, described in Sec. VII.

This is in contradiction with the experimental observa-

tions. Moreover, recent experiments (Latta, Srivastava, and

Imamoğlu, 2011) described in Sec. VI.C demonstrate that

967.90

967.85

967.80

967.75

160 180 200 220 240 260

La
se

r 
w

av
el

en
gt

h 
(n

m
)

0.01

0

220 240 260 280 300 320

951.08

951.06

951.04

Gate voltage (mV)

100

0

25 nm
4.5 T

35 nm
4.0 T

cts/ms

contrast

(a)

(b)

voltage scan

laser scan

FIG. 31 (color online). Differential transmission as a function of

gate voltage showing a dragging plateau for a charge-tunable

sample with a tunnel barrier thickness of (a) 25 nm at Bz ¼ 4:5 T

and (b) as (a), but measured in resonance fluorescence for tunnel

barrier thickness 35 nm at the Bz ¼ 4:0 T sample.

Bernhard Urbaszek et al.: Nuclear spin physics in quantum dots . . . 111

Rev. Mod. Phys., Vol. 85, No. 1, January–March 2013



noncollinear hyperfine interaction between the electron and
the nuclei plays a significant role in determining QD nuclear
spin dynamics even in the absence of optically generated
holes. As an alternative origin to the proposed coupling of
holes to nuclei, this important noncollinear interaction with
electrons can be induced by large quadrupolar fields in
strained self-assembled QDs (introduced in Sec. III.B) which
ensure that nuclear spin projection along Bz is not a good
quantum number. We recall that an effective noncollinear
interaction between the electron in the dot and the nuclei of
the simple form of Eq. (15) for highly strained self-assembled
QDs was introduced by Huang and Hu (2010). Here
Ai
nc ¼ Anc=N, and Anc is the noncollinear counterpart of 2 ~A

in Ĥfc
hf of Eq. (6).

Our next target is to understand the physical origin of this
effective noncollinear coupling. We recall (see Sec. III.B) that
the quadrupolar interaction Hamiltonian for a nuclear spin
with strain axis (i.e., the principal axis of the electric field
gradient) tilted by an angle 
 from the z axis in the x-z plane
in the limit of small angles [compare with Eq. (9)] can be
written as

ĤQ¼BQ

�
Î2zcos

2
�IðIþ1Þ
3
þðÎzÎxþ ÎxÎzÞsin
cos


�
:

(23)

The first two terms are very small corrections to the energy
and will not be considered in the following. We focus our
attention on the term / ðÎzÎx þ ÎxÎzÞ, which can be treated
as a perturbation to the nuclear Zeeman energy under the
experimental conditions Bz ¼ 5T � BQ, and apply a

Schrieffer-Wolff (SW) transformation (Schrieffer and Wolff,
1966). When this transformation is applied to the

P
iAiSzIz

term of the Fermi-contact hyperfine interaction Hamiltonian
Ĥfc

hf , we obtain

Ĥhf-quad ¼
X
i

~Ai
ncŜ

e
z½ÎixÎiz þ ÎizÎ

i
x�; (24)

with ~Ai
nc ¼ AiðBi

Q=!
n
ZÞ sin2
i. In Ĥhf-quad we kept only the

terms that describe processes which leave the electron spin
state unchanged, since contributions that flip the electron spin
have a negligible contribution at high external fields Bz as
they are energetically forbidden.

The transformed hyperfine interaction Hamiltonian
reads Ĥhf ¼ Ĥfc

hf þ Ĥhf-quad. A calculation of Bi
Q and 
i for

In0:7Ga0:3As QDs has been carried out where atomistic strain
and nuclear quadrupolar distributions are extracted over a
relaxed structure (Högele et al., 2012). These calculations
yield an average value ~Ai

nc ’ 0:07 ~Ai. Anionic As nuclei
dominate the noncollinear hyperfine coupling term by con-
tributing 75% to the average value; the residual 25% are due
to the cations, where the contribution of In nuclei due to their
large nuclear spin of 9

2 is a factor of 10 larger than that of

Ga nuclei.
We emphasize that Ĥhf-quad differs from the noncollinear

hyperfine term of Eq. (15) we introduced earlier, since it does
not allow for a coupling between nuclear spin states with
positive and negative spin projection along the z axis
(the difference compared to the Îx operator is that ÎxÎz þ
ÎzÎx does not couple the �1=2 states to each other). It could
be argued, however, that even for large Bz, the dominant role

of flip-flop terms of Fermi-contact hyperfine interaction is to
induce indirect interaction between the QD nuclei (Latta,
Srivastava, and Imamoğlu, 2011) as introduced in Eq. (16):
the primary effect of this interaction, in the presence of fast
optical dephasing of the electronic spin resonance, is to
ensure that the nuclear spin population assumes a thermal
distribution on fast time scales compared to the polarization
time scale determined by Ai

nc. In this limit, the dynamics due
to Ĥhyp-quad in Eq. (24) will be indistinguishable from that

described by Ĥnc in Eq. (15). Aiming at this stage for a
qualitative understanding of the dragging mechanism further
analysis is based on the reasonable assumption that the
quadrupolar fields in highly strained QDs can give rise to
noncollinear hyperfine interaction with effective dynamics of

the general form ÎixŜ
e
z provided we take ~Ai

nc ¼ Ai
nc.

The fact that Ĥnc
hf as defined in Eq. (15) could explain

dragging is at first sight surprising since its dominant effect
appears to be nuclear spin diffusion. However, a careful
inspection shows that the same Hamiltonian also leads to a
small polarization term whose direction is determined by the
sign of the optical detuning. To explain this, we focus on X�
and simplify the physical system by considering only the
blueshifted trion transition. For this system, we write down
an effective Hamiltonian:

Ĥdrag ¼ �!L�̂tt þ!n
ZÎz þ

X
i

2 ~AiÎizŜ
e
z

þ�Lð�̂t" þ �̂"tÞ þ
X
i

Ai
ncŜ

e
z Î

i
x (25)

with �̂eg ¼ jeihgj. Here jti and j "i denote the excited trion

state and the single-electron spin ground states of X�;
�!L ¼ !t �!L is the optical detuning with respect to the
bare trion resonance at!t and�L is the Rabi frequency of the
laser field. The complete system dynamics is given by a
master equation for the reduced density operator � involving
coherent dynamics due to Ĥdrag and a dissipative evolution

given by the Liouvillian Lð�Þ ¼ 0:5�ð2�̂"t��̂t" � �̂tt��
��̂ttÞ, with � denoting the spontaneous emission rate of the
trion state.

In Eq. (25), we neglected the flip-flop terms of the Fermi-
contact hyperfine interaction. To justify this assumption, we
consider the limit of a large external magnetic field where
!e

Z � �L 
 �. If we, in addition, assume !n
Z � �L 
 �,

the nuclear spin-flip processes described by the last term
in Eq. (25) are energetically forbidden to first order in
perturbation theory. Eliminating these terms by a SW trans-
formation we arrive at the following correction terms due
to the noncollinear hyperfine interaction to the laser-trion
coupling

Ĥnc-laser ¼ i
X
i

�LA
i
nc

2ð!n
Z � ~AiÞ ½ð�̂"t � �̂t"ÞÎiy�: (26)

Application of the same SW transformation to the Liouvillian
term leads to nuclear spin-flip assisted spontaneous emission
terms with rate ’ �ðAi

nc=4!
n
ZÞ2. The corresponding terms

for spin-flip Raman scattering processes arising from the
Ĥfc

hf take place at a rate ’ �ð2 ~Ai=4!e
ZÞ2; given that

!e
Z ’ 1000!n

Z and Ai
nc ’ 0:07 ~Ai, we conclude that the latter

processes take place at a rate that is 
1000 times slower.
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To obtain a qualitative understanding of the coupled
electron-nuclear-optical dynamics, we consider the energy
level diagram in Fig. 32, which shows a ladder of two-level
quantum systems coupled by nuclear spin-flip processes.
Here we adopt a mean-field description of the nuclear spins
by neglecting the quantum fluctuations in the Overhauser
field (Iz ¼ hÎzi). We also make the assumption that the
electron couples equally to all nuclear spins with a coupling
strength ~Ai ¼ ~A=N. For a given nuclear spin polarization Iz
we can label the two-level system by the states j "; Izi and
jt; Izi, where jti stands for the X� trion formed by an indi-
vidual hole and two electrons in a spin-singlet state. The
excited states jt; Izi do not couple to the nuclear spins (we
neglect the hole Overhauser field) and differ by an energy!n

Z.

The ground states which couple to the nuclear spins differ by
an energy !n

Z � ~A=N. The strong direct laser coupling and

spontaneous emission processes as well as the hyperfine-
assisted processes (thin, gray arrows) are depicted.

The diagonal spontaneous emission processes taking place
at a rate of �þ ¼ �� ¼ �diff ¼ �ðAi

nc=2!
n
ZÞ2 cause nondirec-

tional nuclear spin diffusion, limiting the range of achievable
DNP. The transition rate associated with hyperfine-assisted
laser coupling, on the other hand, is given by

W�ðIzÞ ¼
�

�L
~Ai
nc

4ð!n
Z � ~AiÞ

�
2

� �

4½�!L � ~AiðIz � 1Þ �!n
Z�2 þ �2

: (27)

A remarkable feature of W�ðIzÞ is its dependence on the sign
of the laser detuning entering through the effective optical
detuning � ¼ �!L � ~AiðIz � 1Þ �!n

Z: when the incident

laser field is red detuned (blue detuned), the transition rate
WþðIzÞ [W�ðIzÞ] dominates over W�ðIzÞ [WþðIzÞ] and en-
sures that the Overhauser field increases (decreases). This
directional nuclear spin polarization will, on the other hand,
result in a decrease of � from �!L � Iz to �!L � Iz � ~Ai

(�!L � Iz þ ~Ai). If initially Iz � N=2, then DNP will
continue until � ’ 0, consistent with the experimental
observations.

To obtain a more quantitative prediction, we consider the
rate equation11

dIz
dt
¼ WþðIzÞðN=2� IzÞ �W�ðIzÞðN=2þ IzÞ � �diffIz;

(28)

which exhibits bistability due to the nonlinear Iz dependence
of the rates W�ðIzÞ. A comparison between the predictions of
this rate equation and experiments is shown in Fig. 30.
Figure 30(a) shows two laser scans across the blueshifted
Zeeman line of X� at 4.5 T with opposite sweep directions.
For both scans, DNP was erased by waiting at a gate voltage
of strong cotunneling for 10 s. A calculation of the differen-
tial transmission signal is potted in Fig. 30(b). The experi-
mental findings are qualitatively well reproduced by the
theoretical description based on the noncollinear hyperfine
coupling.

So far, we have not discussed the redshifted trion transi-
tion. While a laser scan across the blue transition leads to
positive feedback of the nuclear spins to ensure a locking
condition, a scan across the red Zeeman line will cause an
antidragging effect. To understand this, we note that the
transition rate associated with hyperfine-assisted laser cou-
pling in this case is given by

R�ðIzÞ ¼
�

�L
~Ai
nc

4ð!n
Z � ~AiÞ

�
2

� �

4½�!L þ 2 ~AiðIz � 1Þ �!n
Z�2 þ �2

: (29)

The simple sign change in the effective optical detuning from
� ¼ �!L � ~AiðIz � 1Þ �!n

Z in Eq. (27) for the blue trion to

� ¼ �!L þ ~AiðIz � 1Þ �!n
Z renders the exact resonance

between the laser field and the trion transition an unstable
state. The DNP that ensues in the presence of a small but
nonzero � results in nuclear spin-flip processes that increase
j�j resulting in pushing the QD trion transition away from the
laser field.

These considerations allow one to explain the dragging
observed for the blue- and redshifted transitions (Högele
et al., 2012), suggesting that the dragging phenomenon in
resonantly driven QD transitions is due to noncollinear elec-
tron hyperfine interactions. The main requirement for DNP
via resonant laser scattering is the presence of an unpaired
electron spin with a long spin-flip time, in either the initial or
the final state of the optical transition. This condition is

FIG. 32 (color online). Energy level diagram depicting the nuclear

spin-flip assisted transitions for the X� trion higher energy Zeeman

branch in a finite magnetic field applied along the growth direction

z: a resonant laser field couples dipole allowed and dipole forbidden

transitions (straight and diagonal arrows, respectively) of the trion-

nuclear spin manifold. The lower states of the manifold are electron

spin-up states j "i split by the sum of nuclear Zeeman energy and the

Overhauser field, �GS ¼ !n
Z � ~A=N, according to their nuclear spin

projection Iz along z. The upper states are X� trion states (an

individual hole and two electrons in a spin-singlet state) split by the

nuclear Zeeman energy through �ES ¼ !n
Z. Nuclear spin polariza-

tion occurs through spin-flip assisted diagonal transitions (diagonal

arrows) followed by spin preserving radiative decay (wavy arrows).

Finite laser detunings lead to an imbalanced competition between

the bidirectional nuclear spin diffusion processes within the mani-

fold (horizontal arrows): the coupled trion-nuclear spin system

reaches steady state by locking to the laser resonance. From

Högele et al., 2012. 11For simplicity we consider a system of spin I ¼ 1=2 nulcei.
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generically satisfied by all fundamental QD transitions, i.e.,
the neutral exciton X0 as well as the singly negatively and
positively charged excitons X� and Xþ. In all cases, the
Overhauser field experienced by the unpaired electron facil-
itates the feedback that modifies the QD transition energy.
Whether or not this feedback leads to resonance seeking or
resonance avoiding excitations, as in the blue and red Zeeman
branch transitions, respectively, depends on the spin orienta-
tion of the electron that couples to the incident laser field.

4. Preparation of nuclear spin states using periodic pulsed-laser

excitation of quantum-dot ensembles

Given the large inhomogeneous distribution of QD optical
transition energies, we expect that nuclear spin manipulation
in an ensemble of QDs would be possible only either with
nonresonant excitation or by resonant short-pulse and broad-
bandwidth laser pulses. Even then, sizable dot-to-dot varia-
tions in the electron g factor make it practically impossible to
assess the degree of nuclear spin polarization and it was far
from obvious that there could be any signatures of nuclear
spin effects beyond electron-spin decoherence in an ensemble
setting.

Remarkably, Bayer and co-workers (Greilich et al.,
2007) demonstrated that hyperfine interaction effects are
manifest in electron-spin dynamics when an ensemble of
QDs is driven by periodic short-laser pulse trains. In their
experiments (and as an extension to the experiments dis-
cussed in Sec. IV.D), electron-spin polarization is generated
along the growth (z) direction using circularly polarized
laser pulses with a duration of �p ¼ 1:5 ps and a repetition

rate of 75.6 MHz, corresponding to an interpulse separation
of TR ¼ 13:2 ns. Even at a relatively high external (Voigt
configuration) magnetic field strength of Bx ¼ 6 T, the
electron dynamics can be considered to be completely
frozen during the optical excitation. Following the excita-
tion and polarization, the electron spins undergo precession
around Bx and dephase on a time scale given by T	2 < 1 ns:
this anticipated dynamics, depicted in the top panel of
Fig. 33, is monitored using the Faraday rotation of a second
linearly polarized probe laser pulse with a variable time
delay with respect to the excitation pulse.

When a second pulse is applied at time TD with
TD ¼ TR=k (k 2 Z), they observed a burst at a time delay
of 2TD, indicating a revival of the electron-spin coherence in
a manner reminiscent of spin echo. The fact that the observed
Faraday signal cannot be explained as a simple echo is
evident because the spin polarization also recovers before
the arrival of the second laser pulse, as well as at nTD with
n > 2. More strikingly, they observed that the bursts continue
to appear minutes after the second (delayed) pulse excitation
is turned off.

These stunning observations could be explained if the
pulsed-excitation protocol leads to a nuclear spin polarization
in each dot that ensures that the Larmor frequency is an
integer multiple of 2�=TD and hence of 2�=TR. Even as
one starts from an ensemble of QDs, each with a different
g factor, a quasicontinuous Overhauser field generated by
nuclear spin polarization and intradot diffusion could ensure
that this condition is satisfied. If the intrinsic nuclear spin
lifetime is �n, then this polarization is maintained for times


�n even after the pulses are turned off; since recent single
QD experiments revealed nuclear spin polarization decay
times exceeding hours (Maletinsky, Kroner, and Imamoglu,
2009; Latta, Srivastava, and Imamoğlu, 2011), it is no longer
surprising to see the memory of the second pulse train survive
for minutes time scales.

To explain the observed locking effect, we introduce the
concept of time-dependent electronic dark states: recently, it
was shown theoretically that coherent population trapping
(CPT) achieved using continuous-wave laser fields satisfying
a two-photon resonance condition in a single QD in Voigt
geometry could lead to preparation of Overhauser field
eigenstates with uncertainty that can be as small as the
Overhauser field due to a single nuclear spin (Issler et al.,
2010). This nuclear spin cooling mechanism by Overhauser
field selective CPT relies on pure unbiased optical excitation
induced diffusion of QD nuclear spins. The counterpart of
CPT electron-spin dark states in the right-hand circularly
polarized (�þ) pulsed-laser-train excitation setting is the
time-dependent superposition

jc dark-tdðtÞi ¼ 1ffiffiffi
2
p ðj "xi � ei	peið!

e
x;j�Ix;jÞtÞj #xi; (30)

where the phase 	p is set by the pulse train; this phase

together with an Overhauser field Ix;j specific to the jth QD

ensure that at times satisfying t ¼ TD, the QD electron spin is
in state j #zi, making it dark against optical excitation by a �þ
laser pulse. Provided that the nuclear spin flips are possible
only upon excitation of the trion state, once this specific value
of Ix;j is attained by optical excitation induced unbiased

nuclear spin diffusion, nuclear spin dynamics will freeze,
ensuring that the dark state condition is satisfied for times
that are limited only by �n.

Given the dominant role noncollinear hyperfine interac-
tion Ĥnc

hf plays in continuous-wave resonant laser induced
nuclear spin polarization discussed in Sec. V.C.3, it is
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of single-electron-charged QDs resonantly excited with a periodic
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The top panel shows the Faraday signal when the ensemble is

excited with a single pulse train. Remarkably, excitation with a two-

pulse train leads to bursts in the Faraday signal at time delays that

are integer multiples of the time delay of the two laser pulses, where

electron spins recover a high degree of polarization. Even after the

second laser pulse is turned off, the system continues to produce

bursts, suggestive of memory times exceeding minutes. From

Greilich et al., 2007.
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natural to consider the origin of the nuclear spin diffusion
in the experiments of Greilich et al. (2007). Having seen
that, at high external magnetic fields, noncollinear hyperfine
interaction leads to nuclear spin-flip rates that are more
than an order of magnitude stronger than those induced by
Fermi-contact flip-flop terms, we argue that nuclear spin
diffusion in self-assembled QDs under pulsed-laser excita-
tion should be primarily due to Ĥnc

hf . While the directional
nuclear spin polarization due to Ĥnc

hf during laser excitation
plays a key role in the dragging experiments (Högele
et al., 2012), the corresponding processes are negligible
in the experiments reported by Greilich et al. (2007) due
to the short laser-pulse duration; simple considerations
show that the probability of a nuclear spin flip during
optical excitation (induced by Ĥnc

hf ) is smaller by a factor

ð!n

z�pÞ2 as compared to those taking place during radia-

tive recombination from the trion state. We conclude there-
fore that unlike continuous-wave excitation, the role of Ĥnc

hf

in pulsed-laser excitation is to induce pure unbiased nuclear
spin diffusion, allowing the QD nucleiþ electron system to
find the time-dependent dark state and thereby satisfying
the observed phase synchronization condition (Greilich
et al., 2007). See Barnes and Economou (2011) and
Glazov, Yugova, and Efros (2012) for complementary mod-
els that help to understand the experimentally observed spin
locking effects.

VI. NUCLEAR SPIN DYNAMICS IN QUANTUM DOTS

A key ingredient for the understanding of the coupled
electron-nuclear spin system is knowledge of the relevant
time scales of the dynamics of nuclear spin polarization.
This has already become apparent in Sec. V.B.1, where
Eq. (19) shows that the maximal nuclear spin polarization
in a QD is limited by the ratio of buildup and decay times
of the nuclear spins. Many other aspects such as the re-
spective roles of nuclear spin diffusion, quadrupolar relaxa-
tion, and trapped excess QD charges can influence the
dynamics of DNP. The buildup time of DNP (�buildup)

typically depends on the experimental conditions under
which the nuclear spin system is addressed. For an empty
QD (free of any charge carriers) the DNP decay time
(�decay) is an inherent property of the isolated nuclear spin

system. Furthermore, an experimental determination of
�decay is essential for understanding the limits of electron-

spin coherence in QDs (Merkulov, Efros, and Rosen, 2002),
as �decay directly yields the correlation time of the fluctua-

tions of the Overhauser field along the axis in which the
nuclei are polarized (see Sec. IV)

A. Dynamics of nuclear spin polarization in low magnetic fields

The buildup and decay of DNP were studied by several
groups (Maletinsky, Badolato, and Imamoglu, 2007; Belhadj
et al., 2008; Cherbunin et al., 2009; Nikolaenko et al.,
2009; Chekhovich, Makhonin, Skiba-Szymanska et al.,
2010; Makhonin et al., 2010) using optical ‘‘pump-probe’’
measurements. The principle of these measurements is illus-
trated in Fig. 34(a). Short pump and probe pulses of duration
�pump and �probe are used to polarize the nuclear spins and read

out the resulting degree of DNP after a waiting time �wait. In
order to measure the buildup (decay) time of DNP in these
experiments, �pump (�wait) are varied, respectively, while

keeping all other experimental parameters fixed.
Figures 34(b) and 34(c) show examples for buildup and

decay curves of DNP obtained with the above-mentioned
technique at zero magnetic field in a single InAs QD. In
this regime, buildup and decay both follow exponential
curves with time constants �buildup ¼ 9:4 ms and �decay ¼
1:9 ms, respectively. The time scales of a few tens of ms
for optical pumping of nuclear spins at low magnetic fields
have additionally been confirmed in different QD systems
by Nikolaenko et al. (2009) and Chekhovich, Makhonin,
Skiba-Szymanska et al. (2010).

Compared to the rather slow time scales of nuclear spin
buildup suggested by Gammon et al. (2001) and
Maletinsky et al. (2007), the observed few-ms buildup
times are relatively fast. However, these early estimates
were based on high-field measurements of DNP, which
leads to slower and, due to the nonlinear electron-nuclear
spin coupling, more complex dynamics of DNP as shown in
Sec. VI.B. A further shortening of �buildup compared to

earlier studies arises from the strong localization of carriers
in self-assembled QDs. Such localization has been shown to
be an important ingredient for efficient nuclear spin polar-
ization (Malinowski, Brand, and Harley, 2001) as it in-
creases the mean value of the Knight field [Eq. (5)] and
therefore the rate of electron-mediated nuclear spin relaxa-
tion in QDs [see Eq. (18)].

0 5 10 150 20 40
0

5

10

15

c

(c)(b)

(a)

shutter AOM

sample

ex
ci

ta
tio

n

de
te

ct
io

nA
O

M

τ
wait

 (ms)τ
pump

 (ms)

|ω
e O

S
| (

µe
V

)

τ
pump t

sh
ut

te
r

t

o

o

c

τ
wait

τ
probe

τ
buildup

=9.4 ms τ
decay

=1.9 ms

FIG. 34. (a) Schematic of the pulse sequences used in the buildup

and decay time measurements of DNP in zero external magnetic

field. An optical modulator is used as a fast switch for the PL

excitation laser, where o and c denote the open and closed states,

respectively. This creates pump (probe) pulses of respective lengths

�pump (�probe), separated by a waiting time �wait. A mechanical

shutter blocks the pump-induced luminescence from reaching the

spectrometer, while letting the probe-induced luminescence pass.

(b) Buildup of nuclear spin polarization measured by varying �pump

at fixed �wait (0.5 ms) and �probe (0.2 ms) for �� (�þ) excitation.
(c) DNP decay curves obtained by varying �wait at fixed �pump

(50 ms) and �probe (0.5 ms). Exponential fits yield time constants

�buildup ¼ 9:4 ms and �decay ¼ 1:9 ms. Adapted from Maletinsky,

Badolato, and Imamoglu, 2007.
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1. Nuclear spin relaxation in semiconductor quantum dots

While the buildup time of nuclear spin polarization
depends on various experimental parameters (such as
optical excitation intensity, etc.), the dynamics of nuclear
spin decay is a more intrinsic property of the QD nuclear
spin system. Three possible relaxation mechanisms for
nuclear spins in semiconductor QDs have been discussed

in the past.
� Nuclear spin diffusion: Dipolar coupling of like spins

can lead to diffusion of nuclear spin polarization to the
surrounding, unpolarized bulk (Abragam, 1961). The
terms responsible for nuclear spin diffusion are inter-
nuclear flip-flop terms which are energetically allowed
only between nuclear spins exhibiting the same level
spacing. In addition to the diffusion mediated by the
dipole-dipole interaction, the Fermi-contact hyperfine

interaction also leads to nuclear spin diffusion spatially
limited to the regions where the electron wave function
is nonvanishing (Paget et al., 1977; Klauser, Coish, and
Loss, 2006; Latta, Srivastava, and Imamoğlu, 2011);
see Sec. VI.C.

� Electron-mediated nuclear spin relaxation: Fluctuations
of the spin of electrons occupying a QD typically lead to
nuclear spin relaxation through the same processes that
allow for nuclear spin pumping in the first place (i.e.,

electron-nuclear flip-flop interactions). These spin fluc-
tuations can occur either if the charge state of a given
QD is fluctuating or if a QD is occupied by an odd
number of (unpaired) electrons that are coupled to a
nearby charge reservoir, which induces electron spin
relaxation through spin-flip cotunneling introduced
in Sec. II.E.

� Quadrupolar relaxation of nuclear spins: As introduced
in Sec. III.B, nuclear spins couple to electric field

gradients in the lattice through their quadrupolar mo-
ment. Modulation of electric field gradients at nuclear
sites can therefore lead to nuclear spin relaxation
(Huang and Hu, 2010) described in Sec. V.B.2. This
modulation can occur either in the form of lattice
vibrations (phonons) or through QD charge fluctuations.
While phonon-induced quadrupolar relaxation is typi-
cally suppressed for temperatures below 20 K (McNeil

and Clark, 1976), quadrupolar relaxation of QD nuclei is
relevant even at low temperatures as QD charge fluctua-
tions can be induced either by optical excitation (Paget,
Amand, and Korb, 2008) or by charges tunneling in and
out of a QD.

Which of these nuclear spin-relaxation mechanisms has to
be taken into account to explain experimental observations

depends greatly on the QD system under investigation and the
experimental parameters. As shown next, the more ‘‘open’’
nuclear spin system of QDs formed by interface fluctuations
in quantum wells (Gammon et al., 1997) is more likely to
exhibit nuclear spin diffusion. In contrast, the nuclear spin
system in self-assembled QDs, such as InAs QDs in GaAs,
has been shown to be well isolated from its surroundings

(Maletinsky, Kroner, and Imamoglu, 2009); in fact, the
experiments reviewed here demonstrate that nuclear spin
relaxation in these systems takes place only when the QD is
occupied by an unpaired resident electron.

The exceedingly high nuclear spin-relaxation times

reported by Greilich et al. (2007), Maletinsky, Kroner, and

Imamoglu (2009), and Latta, Srivastava, and Imamoğlu

(2011) for self-assembled QDs indicate that nuclear spin

diffusion from the QD to its surroundings is negligible in

strained InAs/GaAs dots. This is in stark contrast to interfa-

cial QD systems studied by Gammon et al. (1996) or nuclear

spin-pumping experiments performed by Paget (1982) on

shallow donors in GaAs. These open nuclear spin systems

couple to their bulk surroundings through spin diffusion and

therefore exhibit nuclear spin-relaxation times on the order of

a few seconds. A recent study on interfacial QDs, however

(Nikolaenko et al., 2009), has shown that even in these

systems nuclear spin diffusion can be inhibited under certain

experimental conditions. The exact physical mechanism

leading to this suppressed nuclear spin diffusion remains

unknown up to now. The different experiments suggest that

the dipolar-induced spin diffusion is governed by the

chemical contrast, as strongly reduced nuclear spin diffusion

measured between two GaAs quantum wells separated by

AlGaAs barriers seems to indicate (Malinowski, Brand, and

Harley, 2001).
In the following we focus on nuclear spin dynamics in self-

assembled QDs, where nuclear spin diffusion from the QD

nuclei toward the surrounding matrix is irrelevant and

electron-mediated nuclear spin relaxation as well as quad-

rupolar relaxation can be studied in more detail.
The influence of the QD charge state on nuclear spin

polarization was investigated by Maletinsky et al. (2007).

The experimental arrangement was analogous to the decay

measurements presented in Fig. 34(a) with the addition that the

QD charge state during the decay time was varied using QD

gate electrodes (cf. Sec. II.B). Figure 35(b) shows a compari-

son between nuclear spin decay for the same QD in the

presence and absence of a single electron. The effect of the

QD charge state on DNP lifetime is striking. A further exten-

sion of the decay interval [see Fig. 35(c)] shows that the

nuclear spin lifetime in theseQD systems significantly exceeds

1 h. This observation is in accordance with earlier measure-

ments of nuclear spin memory time performed by Greilich

et al. (2007) on ensembles of self-assembled InAs QDs. This

near-perfect isolation of the QD nuclear spin system from

its unpolarized environment is a consequence of the

strong inhomogeneous quadrupolar shifts of the QD nuclei

(cf. Sec. III.B) as well as the material mismatch between the

QD and its surrounding, which taken together almost com-

pletely suppress nuclear spin diffusion out of the QD.
Two mechanisms could lead to the efficient decay of DNP

due to the residual QD electron. The first mechanism is

caused by the randomization of the electrons spin through

cotunneling to the close-by electron reservoir. Smith et al.

(2005) showed that cotunneling occurs on a time scale of

�cot � 3 ns in the center of the single-electron charging

plateau for a structure similar to the one studied in this

work. The resulting electron-spin depolarization is mapped

onto the nuclear spin system via hyperfine flip-flop events.

Taking into account the detuning !e
Z of the two electron spin

levels and assume !e
Z � 1=�cot, the nuclear spin depolariza-

tion rate can be estimated through Eq. (18) as T�11e �
ð ~A=Nℏ!e

ZÞ2=�cot (Meier and Zakharchenya, 1984). In this
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expression, �cot plays the role of the hyperfine interaction
correlation time in Eq. (18). With !e

Z assumed constant and

equal to half the maximum measured Overhauser shift for a
rough estimate, one obtains a nuclear spin depolarization time
on the order of 10 ms in qualitative agreement with the
measurement presented in Fig. 35(b).

A second possible mechanism is the indirect coupling of
nuclear spins due to the presence of a conduction electron in
the QD (Abragam, 1961) as given by Eq. (16). Such indirect
interactions result in a long-range coupling of nuclear spins
and can thereby significantly enhance nuclear spin diffusion
rates. While this process conserves the total angular momen-
tum of the nuclear spin system, it can lead to a decay of the
Overhauser shift by redistributing the nuclear spin polariza-
tion within the QD and by increasing the nuclear spin diffu-
sion rate out of the QD. The resulting decay rate for the
nuclear field was estimated (Klauser, Coish, and Loss, 2006)
to be on the order of T�1ind ’ ~A2=ℏ2N3=2!e

Z, assuming a weakly

polarized nuclear spin system and ℏ!e
Z � ~A. It is important,

however, that Tind gives the time scale over which coherent
evolution due to the indirect interaction takes place and, as
such, only marks an upper limit to the nuclear spin-relaxation
rate due to indirect interactions (Klauser, Coish, and Loss,
2006). An estimate of nuclear spin diffusion induced by
indirect interactions is given in Sec. VI.C. Finally, indirect
interaction leads only to a partial relaxation of DNP, in
contrast to the full decay shown in Fig. 34(b).

Electron-mediated nuclear spin relaxation is not limited to
the regime where QDs are occupied by a single electron.
Figure 36 shows a comparison of nuclear spin relaxation for
QD charges between zero and four electrons. For this, the QD
nuclei were first polarized at a QD gate voltage V1 and then

left to evolve for a fixed period of �wait ¼ 20 ms at a variable
gate voltage V2, before the final degree of DNP was measured
with a short probe laser pulse. Figure 36 shows the resulting
Overhauser shift as a function of the gate voltage V2. Regions
of fast and slow DNP decay can clearly be distinguished and
correspond to QD occupations with an odd or even number of
electrons, respectively.12 When two electrons occupy the QD
orbital ground state, the Pauli principle ensures that they form
a spin singlet, which does not couple to the QD nuclei and
therefore results in a prolonged lifetime of DNP on the order
of seconds. The third QD electron occupies the next QD
orbital (the p shell), where it can again interact with the
QD nuclei and lead to a fast depolarization of nuclear spins
on a ms time scale. Injecting a fourth electron into the QD at
Vg � 0:6 V increases the DNP lifetime again, indicating that

the two p-shell electrons form a spin-singlet state.
This last observation is at first surprising, since Hunds rule

states that the first two electrons occupying the p shell of a
QD should form a spin triplet at Bext ¼ 0 (Warburton et al.,
1998) and should therefore still couple to the QD nuclei.
While the corresponding singlet-triplet splitting is typically
on the order of 1 meV (Urbaszek et al., 2003; Karrai et al.,
2004), interactions breaking the rotational symmetry of the
QD such as QD deformations (Schulhauser, 2004) or lattice
effects (Bester et al., 2007) can lower the singlet-triplet
splitting and break Hunds rule, which explains the apparent
singlet character of the p-shell electrons in this QD. It is
interesting to note that, in this experiment, the QD nuclear
spins can be seen as a probe for the properties of the QD and
allow for an efficient test of Hunds rule in an individual QD.

To conclude, we point out certain subtleties, originally
discussed in Dyakonov (2008), regarding the interpretation
of the previously described measurements of DNP dynamics
at low magnetic fields. For external magnetic fields smaller
than the typical nuclear dipolar coupling (characterized by a
dipolar field BL � 0:1 mT), nuclear spin is in general
not a conserved quantity, as dipolar interactions include
‘‘nonsecular,’’ spin nonconserving processes. Therefore, a
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12The QD charge state for a given gate voltage was independently

identified through corresponding features in the QD PL spectra, as

discussed by Urbaszek et al. (2003).
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nuclear polarization at zero magnetic field should completely

relax within the nuclear coherence time Tdipole / 1=BL �
100 �s. The long nuclear spin lifetimes shown in Fig. 35

seem to contradict this statement as DNP persists for a few

minutes even at zero magnetic field (Maletinsky, Badolato,
and Imamoglu, 2007). Two mechanisms could explain this

discrepancy:
� If the relevant energy scale for QD nuclei is set by an

interaction other than nuclear dipolar interaction, the
above argument is invalid as nonsecular dipolar cou-

pling terms will be suppressed. This is the case if an

external magnetic field is applied to the nuclei, but can

also be induced at zero external field by quadrupolar
interactions (see Sec. V.B.2).

� As discussed in Sec. V.B.5, the Knight field of the

electron can ensure nuclear spin polarization and thereby
nuclear spin cooling, even at zero magnetic field.13 In

contrast to spin polarization, nuclear spin temperature is

known to have a slow relaxation time constant (Goldman,

1970) (characterized by T1) and can therefore persist
over time scales much longer than Tdipole.

These two scenarios can be distinguished experimentally

by changing the light polarization of the probe pulse used in
nuclear pump-probe experiments: In the case where nuclear

spins are stabilized by quadrupolar interactions, the detected

nuclear spin polarization should be independent of this po-
larization. Conversely, in the case of Knight-field stabilized

nuclear spins, the sign of the nuclear spin polarization mea-

sured in the probe pulse should follow the helicity of the

probe laser light. In particular, DNP should be zero for a
linearly polarized probe pulse and parallel (antiparallel) to the

initially created nuclear polarization if the probe pulse helic-

ity is equal (opposite) to the pump pulse helicity.
These additional tests were performed by Maletinsky

(2008) and showed that in the case of self-assembled InAs

QDs long nuclear spin lifetimes at zero magnetic field are

indeed enabled by the strong nuclear quadrupolar shifts
introduced in Sec. III.B.14

B. Nonlinear nuclear spin dynamics in high magnetic fields

In view of the nonlinear coupling between the electron and
the nuclear spin system that was demonstrated in Sec. V.B.1,

the purely exponential buildup and decay curves presented in

Sec. VI.A might come as a surprise. Since the nuclear spin-
relaxation rate T1e due to the QD electron depends on

electron-spin detuning, the buildup and decay rates of DNP

should depend on the degree of nuclear spin polarization and
therefore change during the time traces presented in Fig. 34.
These nonlinear effects should be most prominent at the
moment where the external and nuclear magnetic fields
cancel and are therefore more easily observed at elevated
external magnetic fields.

Nonlinearities in buildup and decay of DNP have been
studied by Maletinsky (2008) and Chekhovich, Makhonin,
Skiba-Szymanska et al. (2010) using pump-probe techniques
similar to the ones described in the Sec. VI.A. Figure 37(a)
shows DNP buildup curves measured at various external
magnetic fields and clearly demonstrates the discussed non-
linear buildup dynamics. A numerical simulation of the
dynamics described by the nonlinear equation of motion
(19) at the corresponding magnetic fields is presented in
Fig. 37(b) and shows qualitative agreement with the experi-
mental data.

A much more interesting situation arises for the decay of
DNP in sizable external magnetic fields. Since the nuclear
spin decay rate depends strongly on the electronic environ-
ment of the nuclei, the dependence of the electron-mediated
DNP decay rate on !e

Z can have various forms, depending on

the relative importance of the different possible mechanisms
discussed in Sec. VI.A.1.

A good picture of the different decay characteristics at
various QD gate voltages in high magnetic fields can be
obtained by measuring DNP simultaneously as a function
of gate voltage and time. The nuclei are first initialized in a
state of maximally achievable DNP. The gate voltage is then
switched to a value V2 and DNP is measured after a waiting
time �wait. The measurement result as a function of V2 and
�wait is shown in Fig. 38, where the final degree of DNP is
encoded in gray scale. In accordance with the discussion in
Sec. VI.A.1, significant nuclear spin relaxation is observed
only if the QD is occupied with a single electron. There the
decay rate shows a marked increase when V2 approaches the
edge of the 1e� plateau, where cotunneling rates (introduced
in Sec. II.E) increase substantially (Smith et al., 2005). This
illustrates the importance of cotunneling in electron-mediated
DNP decay, which is twofold: Cotunneling ensures that the
mean electron-spin polarization is zero due to the coupling to
the (unpolarized) electron reservoir and therefore sets the
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FIG. 37. (a) Buildup of DNP in external magnetic fields on the

order of the final Overhauser field. Experiments were performed

with the procedure and external parameters described in the main

text at magnetic fields B1 ¼ 1:1T, B2 ¼ 1:2 T, B3 ¼ 1:3 T, and
B4 ¼ 1:4 T. (b) Simulations according to the classical nonlinear

rate equation (19). The magnetic fields used for the simulation are

B1 ¼ 1:22 T, B2 ¼ 1:24 T, B3 ¼ 1:26 T, and B4 ¼ 1:28 T.
Adapted from Maletinsky, 2008.

13In the absence of any external magnetic field the natural spin

quantization axis is normal to the QD plane, set by the stronger

confinement along growth (z) direction. The combination of circu-

larly polarized excitation and the large spin-orbit interaction in the

valence band then ensures that high-purity electron spin and heavy-

hole pseudospin eigenstates can be prepared using laser pulses

propagating along the z direction. The average optically prepared

electron spin is oriented parallel to the z direction in this case.
14We note that there is still a substantial degree of Knight-field

stabilization in these systems as evidenced by the discussion in

Sec. V.B.5. These Knight-field related effects are likely to be caused

by nuclei occupying spin states mI ¼ �1=2.
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equilibrium nuclear spin polarization. Furthermore, cotunnel-

ing shortens the electron-spin correlation time �ec which

broadens the electron-spin states and therefore allows for

electron-nuclear spin flips to happen.
Some features in the data shown in Fig. 38 seem to contra-

dict the picture of electron-mediated nuclear spin decay.

When approaching the 1e�-2e� transition point (0:02<
V2 < 0:04 V), nuclear spin lifetime increases again, even

though the stable configuration of the QD is still singly

charged. This observation is a signature of motional narrow-

ing of the nuclear spins: While a finite �ec is necessary to

overcome the energy mismatch of the initial and final states of

an electron-nuclear spin flip-flop, the nuclei cannot undergo

such a transition if the electron-spin fluctuations become too

fast (Abragam, 1961; Meier and Zakharchenya, 1984). This

becomes apparent by inspecting Eq. (18) which shows that

T1e has a maximum for �ec ¼ 1=!e, after which T�11e drops for

decreasing �ec. We observe the maximal electron-nuclear

spin-relaxation rate at a gate voltage V2 ¼ 0:02 V. Since at

�wait ¼ 0 the total electron Zeeman splitting ℏ!e amounts to


20 �eV, the corresponding electron cotunneling rate at this
gate voltage should be on the order of 30 GHz, according to

Eq. (18). This is in reasonable agreement with independent

calculations of the electron cotunneling rate in QD structures

similar to the one studied here (Smith et al., 2005). Motional

narrowing is not observed on the 0e�-1e� transition, where
one would at first expect a similar behavior as in the 1e�-2e�
transition. However, the electron tunneling rate is growing
with increasing gate voltage which leads to slower cotunnel-
ing rates for the 0e�-1e� transition compared to the 1e�-2e�
transition. �ec might therefore never reach the value 1=!e on
the low-voltage side of the 1e� plateau.

C. Nuclear spin dynamics at millikelvin temperatures

The experiments we described earlier in charge-tunable
InAs QDs identified the role of exchange coupling to an
electron gas in determining the nuclear spin relaxation in
single-electron charged QDs. It is then natural to ask if
elimination of the ensuing cotunneling processes either by
increasing the tunnel barrier thickness or by reducing the
temperature would reveal other, intrinsic Overhauser field
decay mechanisms.15 Motivated by this question, Latta,
Srivastava, and Imamoğlu (2011) studied the Overhauser field
dynamics on a 35 nm tunnel barrier sample (compared to the
more conventional 25 nm studied in Sec. VI.B) in a regime
where the coupling to the degenerate electron gas is vanish-
ingly small and the Overhauser field dynamics is determined
solely by the coupling of each nucleus to a confined electron
spin. These experiments revealed that in an external magnetic
field of Bz ¼ 5 T in Faraday geometry and temperatures of

200 mK there are two distinct mechanisms for the
Overhauser field decay:

(1) a spatially limited, temperature-independent, nuclear
spin diffusion within the dot originating from electron-
mediated nuclear spin interactions, and

(2) a cotunneling mediated, temperature-dependent
(Dreiser et al., 2008) decay of the Overhauser field
approaching �decay � 105 s. Remarkably, the diffusion

induced reduction in the Overhauser field taking place
on 
100 s time scale can be strongly suppressed by
repeating the preparation cycle consisting of polariza-
tion (pump) and free evolution (wait). In these experi-
ments an Overhauser field was established by resonant
dragging of the blueshifted Zeeman line of the X0

transition, as described in Sec. V.C.3, followed by a
waiting period �wait at a gate voltage where the QD
contained a single electron and the laser field is com-
pletely off resonant with all QD transitions. Finally the
Overhauser field remaining after �wait was determined
by first ejecting the resident electron from the QD and
then scanning the laser field across the X0 resonance
quickly so as to measure but not destroy the QD
nuclear polarization.

When the gate voltage is chosen such that the QD is singly
charged with a cotunneling rate (� � 107 s�1) that does not
allow for appreciable electron-spin pumping (Atature et al.,
2006), the Overhauser field exhibits a fast decay (Maletinsky
et al., 2007; Latta et al., 2009) on the order of a few seconds.
The observed decay is temperature dependent, consistent
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Bext ¼ 1 T. The nuclear spin polarization was initialized with a

100 ms, �þ-polarized pump pulse at a gate voltage V1 correspond-

ing to the center of the 1e� plateau, resulting in an initial

Overhauser shift !e
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value V2. (Left) Measurement of !e
OS in �eV as a function of
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according to Eq. (18). Adapted from Maletinsky, 2008.

15The optical investigation of nuclear spin dynamics is carried out

almost exclusively in the regime where kT > !e
Z (for the singular

exception of this, see Sec. VI.C). In this regime, the spin relaxation

and excitation rates are both proportional to kT.
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with the predictions of the cotunneling mediated process
discussed in Sec. VI.A.1.

When the exchange coupling between the QD electron and
the Fermi reservoir is minimized by choosing a gate voltage
during �wait corresponding to the center for the X� plateau,
the temperature dependence of the long-time decay rate
becomes even more prominent: Fig. 39(a) shows two mea-
surements at 4 K and 200 mK of the Overhauser field
magnitude as a function of waiting time �wait. In both cases,
there is an initial partial decay taking place at 
100 s time
scale which saturates after the Overhauser field decays to half
of its value. The slow decay at 4 K takes place on a time scale
of 5� 103 s, whereas at 200 mK the corresponding decay
time exceeds 104 s.

The temperature-dependent decay of the Overhauser field
can be explained by a second order process originating from
an effective noncollinear dipolar hyperfine interaction Ĥnc

hf of
Eq. (15): as discussed in Sec. V.C.3 such an effective coupling
appears when the quadrupolar axes z0 of the QD nuclear spins
are not parallel to the external field Bz. The energy conser-
vation in this irreversible nuclear spin-flip process is ensured
by the exchange coupling of the QD electron to the degener-
ate electron gas leading to a cotunneling rate � ¼ 1=�cot; the
corresponding Overhauser field decay rate can then be shown
to be ðAi

nc=ℏ!n
ZÞ2=�cot. In the studied sample �cot is estimated

to be on the order of 10 ms at 4 K in the plateau center which
allows one to obtain the value of Ai

nc ’ 0:03 ~Ai for the effec-
tive noncollinear dipolar hyperfine coupling constant between
the electron and the nuclei. It should be emphasized that the
energy difference of the states coupled by Ĥnc

hf is given by
!n

Z < 10 mK which is in turn much smaller than the electron

temperatures that can be reached. This observation suggests
that the relevant cotunneling rate and hence the Overhauser
field decay rate will simply be linearly proportional to the
electron temperature. Finally, even though 1=�cot � !n

Z,

the fact that T � !n
Z ensures the validity of the Markov

approximation in describing the nuclear spin flips associated
with Ĥnc

hf .
As seen in Fig. 39(a), the observed nuclear spin dynamics

is much richer than a simple exponential decay curve. To
explain the initial partial decay of DNP taking place on an

100 s time scale, we consider the nuclear spin spatial

diffusion mediated by an indirect interaction through
the electron present in the dot already introduced in
Sec. V.A, Eq. (16).

This Hamiltonian ensures the conservation of the total
nuclear spin polarization and leads to diffusion within the
region where the electron wave function is nonvanishing.
Although the total magnitude of QD nuclear spin polarization
does not decrease due to this diffusion process, the Overhauser
field seen by the electron decays partially due to a redistrib-
ution of the nuclear spin polarization within the QD.

Strong evidence that the initial partial decay of the expe-
rienced Overhauser field stems from Ĥind is provided by
repeating the polarization-wait-measure cycle and observing
its effect on the decay dynamics. In these experiments, it
was ensured that the initial value of the Overhauser field
(immediately after the polarization cycle) is identical for all
repetitions. The total waiting time in each cycle was chosen to
be 200 s, which is longer than the time scale over which the
initial limited decay takes place. The corresponding decay of
the Overhauser field is shown in Fig. 39(b). Clearly, the initial
limited decay is suppressed in this case, indicating a satura-
tion of the nuclear spin polarization within the QD. The
experimental data are in excellent agreement with numerical
calculations based on semiclassical rate equations taking into
account electron-mediated diffusion and the pure decay of
nuclear spin polarization (Latta, Srivastava, and Imamoğlu,
2011). The model assumes that the coherent evolution de-
scribed by Ĥind is interrupted by a dephasing process; the
absence of temperature dependence of the saturable decay
and hence the dephasing process suggests that the relevant
noise is channeled through electrical wiring. Finally, the finite
bandwidth of the measurement setup ensured that this elec-
trical noise has vanishing contribution at !n

Z, explaining why

there is no temperature-independent contribution to the decay
processes stemming from Ĥnc

hf .

D. Dynamic nuclear polarization in a transverse field:

The anomalous Hanle effect

Since a finite nuclear polarization can be achieved in InAs/
GaAs QDs along the optical axis z in zero external magnetic
field (see Sec. V.B.5), it is interesting to study its evolution
against a transverse magnetic field B ¼ Bxux. In particular,
the quadrupolar interaction with principal axis k z is expected
to inhibit the alignment of the nuclear polarization parallel or
antiparallel toB, as expected from Eq. (17), up to fields of the
order of a few BQ’s. The splitting n� ℏ!Q between the states

jn� 1=2i drastically reduces the effect of the magnetic
coupling, except for the states j � 1=2i (n ¼ 0) which still
split linearly in low field according to ��1=2 ¼ 2ℏ�nBx.

Their spin polarization k z should thus be canceled in a
very small transverse field. In contrast, the pairs of levels
j �mi with jmj> 1=2 have a vanishingly small splitting
/ ℏ�nBxðBx=BQÞ2m�1 as long as Bx < BQ. One may thus

infer that their nuclear polarization should be substantially
preserved in fields below BQ, maintaining a nuclear field k z
of a few 100 mT.

Interestingly, the evolution of the nuclear field can be
investigated through the decrease of electron-spin polariza-
tion in the transverse field Bx (Hanle effect) which is
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FIG. 39 (color online). (a) Decay of the Overhauser field with

negligible cotunneling for the case of a resident electron (Vwait ¼
530 mV) at 200 mK (squares) and 4 K (circles). The inset shows the

same data in a linear-linear plot. (b) Demonstration of the spatially

limited nuclear spin diffusion: By sequential polarization of the

nuclear spins, the polarization can be saturated, suppressing further

nuclear spin diffusion. From Latta, Srivastava, and Imamoğlu, 2011.
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directly accessible from the photoluminescence of Xþ trion

photocreated with a circularly polarized excitation. In the
absence of nuclear effects, such Hanle depolarization curves

assume a Lorentzian profile with half-width B1=2 ¼
ℏ=jgej�B�r. Deviations from this well-understood behavior
are usually caused by nuclear effects and can thus be used to

study DNP in QDs. Such measurements of the Hanle effect

have been successful in the past to demonstrate nuclear spin
cooling in the electron Knight field at very low external fields

for bulk semiconductor, as well as the magnetic anisotropy of

nuclei due to the quadrupolar interaction in alloys such as
AlGaAs (Meier and Zakharchenya, 1984). More recently, the

Hanle effect has been measured in an ensemble of p-type
doped InP/InGaP QDs (Dzhioev and Korenev, 2007): the
half-width B1=2 of the Lorentzian decrease was found to be

3 times larger when a nuclear field was created (under
constant �þ excitation) than in absence of nuclear polariza-

tion (excitation with 50 kHz-modulated �þ=�� polariza-

tion). From this observation it was concluded that a finite
nuclear field is maintained perpendicular to the external field

thanks to the quadrupolar splitting of the levels as described

above. However, a direct measurement of the Overhauser
field to confirm this hypothesis is not possible in experiments

on ensembles of QDs.
The study of individual InAs/GaAs QDs allows one to

measure both the Hanle effect and the Overhauser field to
further refine this interpretation, while revealing more pro-

nounced anomalies of the Hanle depolarization curves.
The Hanle effect in single QDs was first investigated in

interfacial GaAs QDs (Bracker et al., 2005), yet in conditions

where no nuclear field was generated. Besides, for these

unstrained and almost pure GaAs QDs the electric field
gradient should cancel out on nuclear sites making the quad-

rupolar interaction vanishingly small. Depolarization curves

following a Lorentzian profile were indeed obtained by
Bracker et al. with a B1=2 field in good agreement with the

expected estimate. In contrast, a strongly anomalous Hanle

effect is reported for InGaAs/GaAs QDs under excitation
conditions producing DNP in zero field (Krebs et al.,

2010). For these QDs the theoretical B1=2 field (in absence

of nuclear polarization) amounts to 
30 mT. Note that the
value of ge which determines B1=2 can be precisely inferred

from the Zeeman effect in a magnetic field Bx * 1 T, since it
produces four distinct linearly polarized transitions with split-
tings given by ðjgej � jghjÞ�BBx; see Figs. 40(a) and 40(b).

As shown in Fig. 40(c), the experimental Hanle curves of Xþ
trions reveal that a sizable electron-spin polarization
50% is

maintained in fields as high as 
1 T, up to a critical field Bc
x

where it abruptly collapses. Moreover, this evolution is sym-
metrical in the magnetic field which means that it does not

depend on the specific helicity �þ or �� of the illumination

while keeping the field direction constant. However, under
excitation with 50 kHz modulated �þ=�� polarization such

that no nuclear field k z is created, the electron-spin stabiliza-
tion is significantly reduced.

These observations agree qualitatively well with the inter-
pretation that a nuclear field k zwould bemaintained thanks to

the quadrupolar interaction. Yet the magnitude of this nuclear

field should be as high as Bc
x in order to keep the electron-spin

polarization above 50% up to Bc
x. The direct measurement of

this nuclear field component Bn;z, deduced as in Faraday

configuration from the splitting of the �� lines, indicates in
contrast that Bn;z monotonically decreases with Bx from a

maximum value around 0.35 T down to 
0 T at 0.5 T
(Krebs et al., 2010), which invalidates the above interpreta-
tion. If a nuclear field is responsible for the electron-spin
stabilization, it must be nearly opposite to the external field
(Bn;x � �Bx), such that the in-plane component of the total

field remains smaller than B1=2 up to Bc
x.

Determining the actual magnetic field experienced by the
electron in the field range of interest, namely, around Bc

x

requires in principle a very high spectral resolution to sepa-
rate the four different lines of Xþ. However, if the hole
g factor is sufficiently large, this requirement can be circum-
vented because the splittings of the �x- and �y-polarized

lines can be measured separately for fields as small as

0:5 T, with a �x- or �y-polarized detection while keeping

a �þ excitation; see Fig. 41(a). For both polarizations the Xþ
splitting turns out to be reduced solely to the hole Zeeman
splitting gh�BBx for fields below Bc

x and present jumps at Bc
x

where they recover their normal values ðgh � geÞ�BBx; see
Fig. 41(c). This behavior proves that the anomalous Hanle
effect is due to a nuclear field which essentially cancels out
the applied field, as depicted in Fig. 41(b). The detailed
mechanism leading to the establishment of this in-plane
nuclear field is yet to be elucidated, and the possible role
of the noncollinear hyperfine interaction (see Sec. V.C.3)
deserves further investigation. In this context, we remark
that a mean-field approach such as the one proposed by

FIG. 40 (color online). (a) Schematics of optical transitions and

polarization rules for an Xþ trion in a transverse magnetic field Bx.

(b) Typical density plot of Xþ PL intensity from a single QD against

magnetic field Bx and detection energy around E0 ¼ 1:355 eV. The

excitation is linearly polarized and the detection either �x or �y as

indicated. (c) Depolarization curves (Hanle effect) of Xþ lines from

three different QDs under �þ quasiresonant excitation. QD1 mea-

surements are vertically shifted for clarity. From Krebs et al., 2010.
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Dzhioev and Korenev (2007) predicts in contrast the buildup
of an in-plane nuclear field pointing in the same direction as
the transverse field.

E. Optically detected NMR on semiconductor quantum dots

The Overhauser shift of the emission spectrum of a single
dot allows for a direct measurement of the steady state
nuclear spin polarization. Further information about the QD
composition and the QD nuclear spin system can in principle
be gained through optically detected nuclear magnetic reso-
nance (NMR) experiments. Under optical pumping condi-
tions, the spin polarization of the nuclei can be decreased by
applying an oscillating magnetic field orthogonal to the
nuclear spin quantization axis at a frequency which matches
the nuclear level splitting in the rf range. This drives tran-
sitions between nuclear spin states and the corresponding
change in nuclear spin polarization can be detected via
changes of the Overhauser shift. The first such experiment
was demonstrated by Gammon et al. (1997) in GaAs inter-
face fluctuation QDs and provided the first direct proof of
nuclear spin pumping in these QD systems. Figure 42(a)
shows the observed NMR spectra of 75As and 69Ga; the
corresponding resonance lines are remarkably narrow,
indicating that the nuclear spin system in interfacial QDs is
rather unperturbed by inhomogeneous strain or other line-
broadening mechanisms linked to nuclear quardrupole effects
(see Sec. III.B).16 Another line-broadening mechanism can

stem from (inhomogeneous) Knight shifts of NMR lines
which are caused by the effective magnetic field that a

spin-polarized electron exerts on the QD nuclei (see
Sec. III.A). NMR line broadening and line shifts due to this
Knight field were recently observed by Makhonin et al.

(2010) in NMR experiments in individual interfacial QDs.
Performing optically detected NMR experiments on the

well-isolated nuclear spin system in self-assembled QDs,
such as InAs QDs in GaAs, has remained an open challenge
for many years. Only recently first optically detected NMR

experiments on large ensembles of self-assembled InAs QDs
were reported by Flisinski et al. (2010) and Cherbunin et al.
(2011). The difficulty in observing NMR in self-assembled

QDs lies in the significant inhomogeneity of the nuclear spin
system due to the strongly strained lattice of these QDs. Strain
in theQD lattice results in strong, inhomogeneous quadrupolar

splittings of the nuclear spin states. As a result, NMR lines
become strongly broadened and are difficult to observe.

Flisinski et al. (2010) partly circumvented these difficul-
ties in two ways: The splitting between nuclear

ms ¼ �1=2 states is invariant under nuclear quadrupole
interactions (Abragam, 1961) and the corresponding NMR
lines are thus expected to be insensitive to inhomogeneous

quadrupolar fields. Alternatively, by sweeping the NMR
driving frequency over a broad range, all possible nuclear
spin transitions can be addressed simultaneously. Flisinski

et al. (2010) employed both these techniques to detect NMR
in Hanle depolarization experiments performed on a large
ensemble of self-assembled InGaAs QDs. Figure 42(b) shows
modifications of Hanle curves due to the presence of a rf field

which depolarizes the nuclei. These data show that nuclear
spins in self-assembled QDs can be addressed using rf driving
fields together with optical detection of DNP. By keeping the

frequency of the NMR driving field fixed, Flisinski et al.
(2010) were able to observe resonant NMR features in the
low-field region of the Hanle depolarization curves [see

Fig. 42(b), inset]. These resonances correspond to transitions
between mI ¼ �1=2 states of 71Ga and 75As and provide an
additional fingerprint of the strong quadrupolar interactions

present in the QDs studied in this work: For 3=2 spins (such
as 71Ga and 75As) the gyromagnetic ratio for the mI ¼ �1=2
is enhanced by a factor of 2 in the presence of strong quad-

rupolar interactions and a magnetic field applied perpendicu-
lar to the quantization axis of the spins. The data shown in
Fig. 42(c) confirm this picture and demonstrate that the strain

in the QDs under study is predominantly oriented along the
QD growth direction. The broadening of the NMR lines in
Fig. 42(b) can then be interpreted as a variation of the strain

axis, within individual QDs or between different QDs in the
ensemble.

Finally we note that recent advances in optically detected
NMR spectroscopy in single dots have allowed an isotope
sensitive determination of hyperfine constants for holes

coupled to nuclear spins in both strained and unstrained dot
systems (Chekhovich et al., 2011).

F. Irreversibility and hysteresis in demagnetization experiments

A remarkable feature of the nuclear spin system of InAs/

GaAs QDs is the isolation from its environment if the QD is

FIG. 41 (color online). (a) Comparison of Xþ PL density plots

measured under �þ=�þ or �þ=�x configurations of excitation or

detection polarizations. The latter enables one to resolve the tran-

sition splittings for fields above
0:5 T and thus to infer the nuclear

field. (b) Sketch of the nuclear polarization generated almost

parallel to Bx giving rise to a nuclear field Bn;x � �Bx responsible

for the anomalous Hanle effect. (c) Splitting of Xþ �x- and

�y-polarized transitions evidencing the cancellation of the external

field for Bx < Bc
x. Normal splittings are recovered above Bc

x when

the nuclear polarization is eventually destroyed. Adapted from

Krebs et al., 2010.

16Gammon et al. (1997) noted, however, a certain variability of

NMR frequencies between different QDs as well as occasional lines

which are anomalously broad.
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charged with an even number of electrons and kept in the dark

(see Secs. VI.A and VI.B). In the specific case where all
charge carriers are removed from the QD after a sequence of
optical DNP, the relaxation of the nuclear polarization turns
out to be extremely slow. Its characteristic time is shown to
exceed 1 h when the QD is subject to a longitudinal magnetic

field Bext in the 0–2 T range; see Fig. 35 and Maletinsky,
Kroner, and Imamoglu (2009). This indicates that not only the
dipolar relaxation but also the nuclear spin diffusion toward
the surrounding material is strongly suppressed. Under these
circumstances, manipulating the nuclear polarization by
slowly varying an external parameter such as the magnetic

FIG. 42 (color online). Optically detected nuclear magnetic resonance in semiconductor QDs. (a) NMR spectra of a single interfacial, GaAs

QD: The Zeeman splitting of the QD in a longitudinal magnetic field of 1 T changes as a function of the frequency of an applied transverse rf

magnetic field when the frequency matches the nuclear Larmor precession frequency. Adapted from Brown, Kennedy, and Gammon, 1998.

Frequency offset for 75As : 7:274 MHz, and for 69Ga : 10:193 MHz. (b) Hanle curves measured on an ensemble of self-assembled InAs QDs

for �þ-polarized excitation in the absence and presence of an rf field applied along the z axis. The radio frequency is scanned over all the In

and As nuclear magnetic resonances for the relevant magnetic field range. For comparison, the Hanle curve detected for excitation with

polarization modulation at fmod ¼ 100 kHz is shown. (c) Effect of fixed radio-frequency irradiation (with rf field along the y axis), which

reveals distinct nuclear resonances for the low-field range indicated by the dashed rectangle (curves are shifted vertically for clarity).

(d) Magnetic field dependences of resonant frequencies extracted from the inset in (a). The dependences of NMR for mI ¼ �1=2 states in
71Ga and 75As nuclei calculated with and without quadrupole interaction are shown by the solid and dashed lines, respectively. Adapted from

Flisinski et al., 2010.
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field is technically possible. Besides its intrinsic interest it
may also provide valuable information on the thermodynam-
ics of the nuclear spin system in one QD.

While the nuclear polarization achieved under constant
circularly polarized optical excitation depends drastically
on the magnetic field (see Sec. V.B.3), if the QD is isolated,
under conditions where relaxation is suppressed, its polariza-
tion should evolve adiabatically as a function of a slowly
varying magnetic field. In the absence of quadrupolar inter-
action, the nuclear spin component k z is a good quantum
number so that the change of the external field should not
produce any change of the nuclear level populations and the
initial nuclear polarization should remain constant. Only in
magnetic fields & BL, the local field induced by the dipolar
interaction between nuclei, should the polarization decrease
and eventually vanish in strictly zero field.17 Yet, if the
system is well isolated (no heat flow) its entropy does not
change during the adiabatic demagnetization, so that apply-
ing again a magnetic field above BL restores in principle the
initial polarization. This thermodynamic approach corre-
sponds to a description of the system by a spin temperature
Ts which is related to the nuclear polarization according to
Curie’s law. Since the entropy of the QD spin ensemble
depends only on the ratio ðB2

ext þ B2
LÞ=T2

s (Slichter, 1990),

the adiabatic demagnetization leads to a reduction (in abso-
lute value) of Ts proportional to the field until Bext � BL.

Remarkably, when a magnetic field above BL is reapplied,
Curie’s law predicts that the polarization should be recovered

and aligned parallel to the field, independent of its orienta-
tion, in the same or opposite direction depending only on the
sign of Ts. Such reorientation of an initially created nuclear
polarization k z to a transverse direction was evidenced in
bulk GaAs (Meier and Zakharchenya, 1984), convincingly

demonstrating the validity of the spin temperature concept
in this case. Clearly, in a self-assembled QD with large
quadrupolar interaction the validity of the spin temperature
concept requires further consideration.

To address this issue in the case of InAs/GaAs QDs,
adiabatic demagnetization experiments were performed

in a longitudinal magnetic field (Maletinsky, Kroner, and
Imamoglu, 2009). The procedure is sketched in Fig. 43(a).
The nuclear spins of a single QD are first polarized by optical
pumping for a duration �pump � 600 ms and in an initial field

Bi ¼ 2 T parallel to z. When the excitation is switched off,
the gate voltage of the sample is immediately changed to

uncharge the dot (to assure long nuclear spin-relaxation
times, as in Fig. 35), and the magnetic field is slowly varied
at a rate �B ¼ 10 mT s�1 to a final value Bf . To read out the
remaining polarization, an electron is reinjected in the dot by
applying the required voltage and a linearly polarized optical

pulse, short enough to not destroy the DNP, is used to
measure the Overhauser shift from the X� trion PL. The
normalized polarization PnucðBfÞ=PnucðBiÞ following the de-
magnetization process Bi ! Bf is plotted in Fig. 43(b) with

Bf going from 2 T (Bf ¼ Bi) to �1 T. These measurements
are completed by remagnetization experiments where the
field is ramped down and up according to Bi ! B0f ! Bf

with B0f ¼ �1 T, in order to probe the reversibility of the

FIG. 43 (color online). (a) Schematic diagram of the experimental procedure for adiabatic demagnetization of QD nuclear spins in a charge-

tunable InGaAs/GaAs QD. The nuclei are optically pumped at Bext ¼ Bi via quasiresonant excitation of the X� trion while the QD is in

charge state qQD ¼ 1e. Immediately after the pumping pulse, the electron is ejected from the QD. Bext is then linearly ramped at a rate �B to a

final value Bf , at which the nuclear polarization Pnuc is measured with a short linearly polarized optical pulse. (b) Demagnetization as a

function of the final magnetic field Bf , for a monotonic decrease from Bi ¼ 2 T (black) and for a return from an intermediate field B0f ¼ �1 T

(gray). (c) Remanent polarization at zero field normalized to the polarization generated at 2 T, when Bi is varied. (d) Nuclear polarization

following a complete round-trip as indicated. Adapted from Maletinsky, Kroner, and Imamoglu, 2009.

17Note that for an empty dot (neither conduction electron nor

valence hole present) the depolarization due to the indirect inter-

action of Eq. (16) as used to describe nuclear spin depolarization in

fields of 5 T in Sec. VI.C is not applicable as it requires the presence

of charge carriers.
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whole process. At first glance, the system obeys satisfactorily
Curie’s law: the nuclear polarization is almost constant when

the field decreases from Bi down to 
0:3 T, then decreases
rapidly and changes sign when the magnetic field passes

through zero, and eventually recovers to a constant level for
Bf <�0:3 T. Significant discrepancies to the spin tempera-

ture model are yet noticeable: there is a finite remnant nuclear
polarization Prem

nuc ’ 0:2 at Bf ¼ 0 T, the field at which the

polarization starts decreasing or recovering is much higher
than the dipolar field BL, and the final polarization recovered

in negative fields amounts to only 60% of its initial magni-
tude. When the QD is remagnetized toward a positive field a
similar behavior is observed so that a complete cycle eviden-

ces a drastic irreversibility. Figure 43(d) shows that the
irreversibility for a round trip field ramp Bi ! B0f ! Bi

develops for jB0f j< 0:3 T.
The strain-induced quadrupolar interaction of self-

assembled QDs is most certainly responsible for the observed
disagreements to the spin temperature description. On the one

hand, the inhomogeneous dispersion of the principal axis
angle 
 produces anticrossings of the nuclear levels in fields

of a few 100 mT; see Figs. 19(a) and 19(b). When the
field ramp passes through anticrossings of energy splitting

ℏ!S � ℏ
!Q between states with �m ¼ �1 and such that

!S � ffiffiffiffiffiffiffiffiffiffiffiffi
�n�B
p 
 300 Hz (Landau-Zener criterion for adia-

batic anticrossing), the population of each level is conserved

while the corresponding eigenstates are progressively ex-
changed. One ends up with an effective exchange of the

actual populations and therefore an inversion of their relative
polarization, e.g., pþ3=2! pþ1=2 for Bz around BQ when the

j þ 3=2i and j þ 1=2i states anticross. This explains why the
polarization starts decreasing in fields around 0.3 T. On

the other hand, the quadrupolar splitting quenches the effect
of the dipolar interaction in zero field for states jmj> 1=2.
The typical dipolar splitting of j � 1=2i states ℏ�nBL is

reduced by factors ðBL=BQÞ2m�1 � 1 for those states, so

that the randomization of their polarization is suppressed

yielding a finite Prem
nuc in zero field. The latter is noticeably

larger than that directly created in zero field (see Sec. V.B.5),
but obviously decreases with the magnitude of the initial

polarization when the initial field Bi decreases [see
Fig. 43(c)]. Actually the pairs of levels j �mi with

jmj> 1=2 do cross in zero field in the sense that their splitting
� ffiffiffiffiffiffiffiffiffiffiffiffi

�n�B
p

. Therefore and in contrast to the j � 1=2i states,
their polarization is conserved without changing sign when
the field passes through zero.

The combination of these polarization-conserving cross-

ings and polarization-inverting anticrossings is mostly re-
sponsible for the reduction of the polarization which is
recovered in fields <� 0:3 T. However, the pronounced

irreversibility observed when the QD is remagnetized cannot
be explained by these processes which are perfectly revers-

ible. A specific mechanism leading to the increase of the
system entropy is required to explain this observation.

Maletinsky, Kroner, and Imamoglu (2009) suggested that cross
relaxation between pairs of nuclear spins should be dramati-

cally enhanced at specific fields where a harmonic configura-
tion of any three nuclear levels is created (Abragam, 1961).

Efficient thermal relaxation involving a coupling to the envi-
ronment (in particular, to the unpolarized nuclei surrounding

the QD) would then make these crossover transitions irrevers-
ible. This interpretation was shown to agree well with a
numerical simulation of the demagnetization and remagnetiza-
tion curves relying on the adiabatic evolution of the popula-
tions as discussed above, but including this irreversible process
(Maletinsky, Kroner, and Imamoglu, 2009).

In addition, one could question if all two-level crossings or
anticrossings of a given nucleus are truly adiabatic. Assuming
an average dipolar local field BL 
 0:15 mT, the zero field
splitting of j �mi states, �nBL 
 1 kHz, is roughly of the
same order as

ffiffiffiffiffiffiffiffiffiffiffiffi
�n�B
p

at the ramping rate �B of 10 mT s�1.
As a result, the adiabaticity condition is probably not verified
for all the nuclei in a magnetic field ramp through zero.
Similarly, for indium nuclei (I ¼ 9=2) the quadrupolar inter-
action gives rise to many different anticrossings at different
magnetic fields; their typical splittings cover several orders of
magnitude because for small 
 they scale as ℏ!Q


j�mj, where
j�mj 2 f1; . . . ; 8g is the difference of angular momentum.
Taking into account in addition the dispersion of 
 in a QD, it
seems very likely that for a large fraction of nuclei in a QD
there is at least one pair of anticrossing levels such that
!Q


j�mj 
 ffiffiffiffiffiffiffiffiffiffiffiffi
�n�B
p

, which results in irreversibility. The fact

that the observed irreversibility [see Fig. 43(d)] develops
essentially in the field region where these quadrupole-induced
anticrossings take place rather supports the above idea,
although we note that in these experiments changes in the
magnetic field ramp speed did not cause any noticeable effect
on the experimental results.

VII. HOLE SPINS COUPLED TO NUCLEAR SPINS

The interaction between valence hole spins and nuclear
spins has usually been ignored in semiconductors for two
main reasons. First, the p symmetry of the periodic part of the
valence Bloch wave function results in negligible overlap
with the nuclear spins yielding vanishing Fermi-contact in-
teraction. Therefore, Ĥfc

hf of Eq. (3) that is at the origin of the
hyperfine interaction discussed for conduction electrons in
Secs. IV, V, and VI does not apply. Second, the hole spin in
bulk or quantum well structures is very fragile: the hole spin-
relaxation time is of the order of 10 ps or less in bulk GaAs
due to strong heavy-hole–light-hole mixing in the valence
bands (Meier and Zakharchenya, 1984), which leads to a
correlation time for the hyperfine interaction that is too
short to achieve a significant dynamic nuclear polarization.
In QDs the hole spin is much more robust than in bulk or
quantum well structures because of the discrete energy states
(Flissikowski et al., 2003; Laurent et al., 2005; Heiss et al.,
2007) and significant effects linked to the hole-nuclear spin
interaction have been revealed.

The hyperfine interaction of nuclear spins with an
electron in the valence band is primarily dipolar. For a
given nucleus, the Hamiltonian of this interaction reads
(Abragam, 1961)

Ĥ
dip
hf ¼ 2�B

�I

I
Î �

�
L̂

�3
� Ŝ

�3
þ 3

�ðŜ � �Þ
�5

�
; (31)

where �B is the Bohr magneton, �I is the nuclear magnetic
moment, Î is the nuclear spin operator, � is the electron

position vector with respect to the nucleus, and L̂ and Ŝ are
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the electron orbital momentum and spin operators, respec-
tively. The dipolar hyperfine interaction depends on the
valence-band mixing �, which quantifies the deviation of
the confined hole from the ideal, pure heavy-hole case. In a
simple picture, for a heavy hole Jz ¼ 3=2 to do a flip-flop
with a nucleus (�Jz ¼ �1), it would have to access the Jz ¼
1=2 light-hole state. This is energetically forbidden as heavy
and light holes are separated in energy by �HL. Valence-band
mixing is thus required to circumvent this blockade. The
valence-band mixing � may arise from anisotropic strain
fields within the QD and/or shape and interface anisotropy
(Krebs and Voisin, 1996; Krizhanovskii et al., 2005; Belhadj
et al., 2010). This makes it necessary to consider the mixed
hole states by including the light-hole component as in

j g�3=2i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�j2p ðj � 3=2i þ �j � 1=2iÞ; (32)

where j�j should be much smaller than unity, as a direct
consequence of the energy splitting �HL between heavy- and
light-hole states (tens of meV in InAs/GaAs dots). The dipo-
lar hole-spin–nuclear spin Hamiltonian can then be written as

Ĥ
dip
hf ¼�0

X
j

Ah
j

1þ�2
jc ðrjÞj2

�
ÎjzŜ

h
zþ�

2
½ÎjþŜh�þ Îj�Ŝhþ�

�
;

(33)

where � ¼ 2j�j= ffiffiffi
3
p

is the anisotropy factor (Fischer et al.,
2008; Testelin et al., 2009). In the case of moderate
heavy-hole–light-hole mixing and assuming a constant

wave function c ðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=N�0

p
an approximate, simplified

Hamiltonian is obtained:

Ĥ
dip
hf ¼

2 ~Ah

N

�
ÎzŜ

h
z þ �

�
ÎþŜh� þ Î�Ŝhþ

2

��
: (34)

Here ~Ah is the average value of the dipole-dipole hyperfine
constant (Gryncharova and Perel, 1977; Testelin et al., 2009)

and Ŝh� denote the heavy-hole pseudospin 1
2 operators acting

on ~j 32i.
The Hamiltonians Ĥfc

hf for electrons and Ĥ
dip
hf for holes have

a similar form [compare Eqs. (6) and (34)], but there are
important differences:

(i) The ratio j ~Ahj= ~A is about ’ 0:1, as has been theoreti-
cally predicted by Fischer et al. (2008) followed by
experimental demostrations as in Figs. 44(c) and 45
(Eble et al., 2009; Testelin et al., 2009; Fallahi,
Yilmaz, and Imamoğlu, 2010; and Chekhovich et al.,
2011).

(ii) The amplitude of the flip-flop term is proportional to
heavy-hole–light-hole mixing, which varies from dot
to dot.

In the framework of the simple quantum box model, the
strength of the flip-flop process ~A for electrons directly
depends on the materials that form the QD, whereas the
dipolar flip-flop term for holes not only depends on the
chemical composition of the dot, but also on the valence-
band mixing �, which takes into account fine details of the
real QD spatial strain distribution and shape anisotropy.
In recent measurements, ~Ah was found to be negative for
In and Ga and positive for As in different dot systems made

out of III-V compounds (Chekhovich et al., 2011); a
slight admixture of valence d orbitals to the mainly p-type
valence states has been proposed to be at the origin of this
sign change.

FIG. 44 (color online). (a) Photo-induced circular dichroism

(PCD) signal as a function of pump-probe delay, when the

p-doped QDs are excited by a periodic train of ultrashort pulses.

(b) Normalized PCD amplitude at negative pump-probe delay

t ¼ �130 ps (i.e., reflecting the hole spin polarization) vs the

applied longitudinal magnetic field Bz, performed on a QD sample

with one hole per dot. The HWHM equals 2.5 mT. The solid line

is a fit using the model developed by Eble et al. (2010). (c) Solid

curve: normalized PCD amplitude at negative pump-probe delay

t ¼ �130 ps (i.e., reflecting the electron spin polarization) vs the

applied longitudinal magnetic field, performed on QDs charged with

one electron. The HWHM equals 47 mT. Similar measurement on

QDs charged with one hole (dashed curve) is added on the same

figure to directly compare the efficiency of hyperfine-induced

dephasing for electrons and holes. From Desfonds et al., 2010.
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A. Hole-spin dephasing due to hyperfine interaction

As the hyperfine interaction with the fluctuating nuclear
field is severely limiting electron-spin coherence, the hole
spin with negligible Fermi-contact hyperfine interaction
seems a more promising candidate for achieving long spin
coherence times. With this motivation in mind, detailed in-
vestigations lead to promising reports (Gerardot et al., 2008;
Brunner et al., 2009) under certain experimental conditions.
On the other hand, surprisingly short hole-spin dephasing
times due to nuclear spin fluctuations were also reported
(Eble et al., 2009). To clarify the limitations for hole-spin
coherence, the hole-spin dynamics in the model system of
singly positively charged InAs QDs is discussed next, reveal-
ing that dipole-dipole hyperfine interaction plays an impor-
tant role in decoherence of the resident hole spin at cryogenic
temperatures.

Figure 44(a) shows the PCD signals versus pump-probe
delay, obtained when no magnetic field is applied in an
ensemble of p-doped QDs containing a resident hole.
The experiments are performed under modulated �þ=��
helicity of the excitation laser pulse (fmod ¼ 50 kHz) in order
to avoid any dynamic nuclear spin polarization (here
hÎzi ¼ 0). A nonzero PCD signal at negative pump-probe
delays is observed, indicating that the spin polarization is
not fully relaxed within the TL ¼ 13 ns repetition period of
the laser pulses. This long-living component of the PCD
signal is directly associated with the net spin polarization of
the resident holes, the only species present in the sample after
the radiative recombination of Xþ trions (�r 
 800 ps). From
this experimental observation, one can understand how the
spin polarization of the resident holes in the dot is built-up by
a resonant pulsed excitation, in the following sequential way:
(i) the �þ circularly polarized pump beam photocreates spin
oriented trions Xþ with electron spin # . (ii) During the life-
time of the excited states, the efficient electron-nuclear
hyperfine interaction leads to a coherent coupling of their

spin projections along the light direction. (iii) Finally, the
spontaneous decay of the trion states by emission of polar-
ized photons leads to an unbalanced hole-spin population
with �h

* > �h
+ [as in the hole spin-pumping scheme of

Fig. 17(a)].
Figure 44(b) shows the experimental data for the PCD

signal at negative delays, PCD (0�), i.e., the hole-spin polar-
ization at 13 ns, as a function of the applied magnetic field.
Application of a small magnetic field Bz in the milli-Tesla
range has a dramatic impact on the hole-spin polarization.
The Lorentzian-like dependence with a half width at half
maximum (HWHM) of only 2.5 mT is interpreted as the
progressive magnetic field quenching of the hyperfine-
induced hole-spin relaxation, just as in the case of the electron
[see Fig. 9(a)], but at much lower field. For B ¼ 0 the hole-
spin dephasing time due to the interaction with nuclear spins
is of the order of 10 ns (Eble et al., 2009).

To give a first interpretation that involves only hyperfine-

induced dephasing it is convenient to treat Ĥfc
hf and Ĥ

dip
hf from

Eq. (34) [see Merkulov, Efros, and Rosen (2002) and Testelin
et al. (2009)] as semiclassical magnetic fields randomly
distributed from dot to dot. The orientation of the nuclear
field fluctuations �Bn responsible for electron-spin dephasing
is isotropic. In stark contrast, �Bh

n is highly anisotropic and
the corresponding Gaussian distribution of the nuclear field
Bh
n acting on holes at zero average nuclear field is

WðBh
nÞ / exp

�
� ðBh

n;zÞ2
2ð�Bh

n;kÞ2
�
exp

�
�ðB

h
n;xÞ2 þ ðBh

n;yÞ2
2ð�Bh

n;?Þ2
�
;

(35)

where �Bh
n;? ¼ ��Bh

n;k and �Bh
n;? ¼ ℏ=gzh�BT

h
�, directions

? and k with respect to the z axis (i.e., quantization and light
propagation axis). Th

� is the ensemble spin dephasing time,

arising from the random hole precession directions and
frequencies in the randomly distributed frozen nuclear field.
Following the same approach as Merkulov, Efros, and Rosen
(2002), adapted for the anisotropic interaction of hole
spins with nuclei by Testelin et al. (2009), the decay of the
z component of the hole pseudospin is given by18

Th
� ¼ ℏ

1þ �2

2�=
ffiffiffi
3
p

�
3N

4
P

" I
"ðI" þ 1ÞðAh

j Þ2
�
1=2

; (36)

where " ¼ In, As, or Ga. Using a heavy-hole–light-hole
mixing characterized by j�j ¼ 0:4, Eq. (36) yields a hole-
spin dephasing time of the order of 10 ns, comparable to the
one which was measured in the PCD experiment. As the
electron-nuclear spin dephasing time can be measured in
the same p-doped sample by photoluminescence dynamics
[see Fig. 9(a)], the ratio between the electron- and hole-
nuclear spin dephasing time can be extracted: it is found
for these dots that the dephasing time of the hole with nuclear
spins is about 10 times longer than the dephasing time of
the electron spins, but it is not negligible. Note that the
exact values of j�j are extremely dot and sample dependent.

FIG. 45 (color online). Measurement of the electron- and hole-

nuclear spin interaction in a neutral InP dot at Bz ¼ 6 T. The angle
of a �=2 plate is varied to change the polarization of the pump laser

resulting in a change of nuclear spin polarization. From Chekhovich

et al., 2011a.

18Note that in our simple approach this time diverges for �! 0,
but the dephasing time is still finite in this limit; see the theory of

Fischer et al. (2008) and recent experiments by Fras et al. (2011).
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The heavy-hole–light-hole mixing depends on the exact dot
shape and strain which can both vary significantly from dot to

dot, even in the same sample. j�j ¼ 0:4 used to fit experi-
ments as in Fig. 44(b) corresponds to a very strong mixing in
the sample investigated by Eble et al. (2009), whereas for
dots of the same material used in other studies (Gerardot

et al., 2008; Fallahi, Yilmaz, and Imamoğlu, 2010), the
mixing deduced from analyzing optical pumping experiments
is significantly smaller.

PCD measurements also allow revisiting the study per-
formed on electron-spin dynamics by PL experiments.

Figure 44(c) presents the PCD evolution versus longitudinal
magnetic field performed on an n-doped QD ensemble. The
interaction between nuclei and the electron takes place in the

ground state of the QDs after X� recombination. The external
magnetic field can efficiently cancel the effect of the hyper-
fine interaction on the carrier-spin dephasing time if its
magnitude becomes larger than the corresponding effective

nuclear field fluctuation. This field is of the order of several
tens of mT for electrons (see Figs. 10 and 11), as can be
seen in the comparison with the values for holes shown in
Fig. 44(c) (Desfonds et al., 2010): the relative strength of the

hole to electron hyperfine coupling deduced from these mea-
surements is on the order of 10%. In summary, the hole spin
confined to a QD does interact with the fluctuating nuclear

spins through dipole-dipole coupling. The strength of this
interaction depends on the degree of heavy-hole–light-hole
mixing and is a significant source of decoherence.

There are still open questions concerning the exact link
between valence-band mixing and the transverse components

of the hyperfine interaction: A strong in-plane hyperfine
field for holes and the resulting short hole-spin coherence
time is a priori linked to strong heavy-hole–light-hole mixing
(Testelin et al., 2009). Conversely, measuring strong heavy-

hole–light-hole mixing by analyzing the transverse hole
g factor, for example, does not automatically result in short
hole-spin decoherence times for the QDs investigated

(Brunner et al., 2009). This underlines that hole-spin dephas-
ing due to the hyperfine interaction is a recent research topic
(Fischer et al., 2008; Eble et al., 2009) that will surely
stimulate further innovative theoretical and experimental

investigations (Greilich et al., 2011; Greve et al., 2011;
Godden et al., 2012).

B. Overhauser effect for holes

In addition to a spin dephasing contribution, the nonzero
interaction between hole and nuclear spins can also lead to

the observation of the Overhauser effect for holes. An exist-
ing nuclear polarization can split pure heavy-hole spin states

(the Overhauser effect) due to the Ising term ð2 ~Ah=NÞÎzŜhz in
Eq. (34) [see Fischer et al. (2008), Fallahi, Yilmaz, and

Imamoğlu (2010), and Chekhovich et al. (2011)].
The dynamic nuclear polarization created through non-

resonant excitation of an InP dot was monitored by
Chekhovich et al. (2011) via the emission of the neutral
exciton bright states j *#i and j +"i and the dark states j *"i and
j +#i. Here the dark exciton states are weakly optically active
due to heavy-hole–light-hole mixing. It is therefore possible
to compare for the same dot the effect of a finite nuclear

polarization on (i) the electron spin by measuring the
energy difference between the j +"i and j +#i state and
(ii) interestingly, the hole spin by measuring the energy
difference between the j *"i and j +"i. Figure 45 directly
shows that the hyperfine constant in the investigated InP
QDs is about a factor of 10 stronger for electrons than for
holes, and the signs are opposite (note the different vertical
scales). The relative strength of the hyperfine interactions as
well as the relative sign of the electron and hole Overhauser
effect can vary for different nuclear spin species (Chekhovich
et al., 2011). In InAs dots the strength and the sign of
hyperfine interaction of the heavy hole with nuclear spins
has also been measured (Fallahi, Yilmaz, and Imamoğlu,
2010). By using an experiment based on the locking of the
QD resonance to the incident laser frequency (see
Sec. V.C.3), it was possible to measure very accurately the
Overhauser shift due to electron or exciton (including both
electron and hole contributions). A ratio ’ �0:1 of the heavy
hole and electron hyperfine interaction has been deduced a
value similar to the one measured in InP dots (Chekhovich
et al., 2011a). In both of these experiments the hole feels the
nuclear field which has been dynamically created. The rela-
tive contribution of electron and hole spins to DNP is an open
issue (Xu et al., 2009; Yang and Sham, 2010), as in most
optical experiments a single spin of either species is present
in the dot at some stage of the absorption-emission cycle. As
~A� ~Ah, DNP due to the electron will most likely dominate
when electrons are present during some stage in the dot.

VIII. PERSPECTIVES

The physics reviewed in this article has progressed
immensely over the past years due to the fruitful exchange
of ideas from distinct scientific communities working on
nuclear magnetism, electron-spin physics in nanostructures,
quantum optics, and quantum-dot photonics. For the latter,
experiments without applied magnetic fields are important for
potential applications. Here, for example, the impact of the
nuclear spin bath on the carrier-spin polarization and hence
emitted photon polarization via the optical selection rules has
recently been shown to play an important role in the context
of entangled photon pair emission (Stevenson et al., 2011).
Even at Bz ¼ 0 the screening of the nuclear field fluctuations
�Bn by an optically created Overhauser field Bn has been
shown to allow for tuning of the polarization states of both
charged (Lai et al., 2006) and neutral excitons (Belhadj
et al., 2009). The exact interplay between the Knight field
BK and quadrupolar effects due to strain and alloy disorder
that allows the creation of nuclear polarization is yet to be
clarified. A promising route will be the investigation of
strain free systems such as GaAs/AlGas droplet dots for
which quadrupolar effects are far less important. This latter
system has the additional advantage of containing dots truly
isolated from each other as no wetting layer is formed under
certain growth conditions (Sallen et al., 2011) permitting
studies of nuclear spin diffusion across the AlGaAs barrier
(Malinowski, Brand, and Harley, 2001) and comparison
with the physics of GaAs dots formed due to interface
fluctuations in GaAs/AlGaAs quantum wells (Gammon
et al., 2001).
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One challenge is to prolong carrier-spin dephasing times in

quantum dots by eliminating the effects of the fluctuating

nuclear field �Bn without changing its mean value. Here spin-

echo techniques in both quantum-dot optics (Press et al.,

2010) and transport (Bluhm et al., 2011) are promising routes

to decouple the electron spin from the nuclear spin bath. In

electron-spin resonance experiments the interplay between

electron-spin dephasing and dynamic nuclear polarization

can be expected to give rise to surprising, nonlinear behavior

and memory effects (Kroner et al., 2008).
An alternative approach is to try to polarize as many nuclear

spins as possible to finally achieve a net reduction in the

nuclear spin fluctuations �Bn once the nuclear polarization

is approaching 100%. So far the maximum nuclear polariza-

tion achieved in different material systems is about 60%

(Bracker et al., 2005; Urbaszek et al., 2007; Chekhovich,

Makhonin, Kavokin et al., 2010). Future experiments should

clarify if this nuclear polarization presents some fundamental

limit as dark nuclear states might form (Imamoglu et al.,

2003) or if complete nuclear spin polarization is accessible in

experiments in dots where each lattice nucleus has nonzero

nuclear spin (Feng, Akimov, and Henneberger, 2007). In the

regime of complete nuclear spin polarization, the possibility of

using the long-lived, well-isolated nuclear spin system as a

quantum memory (Taylor, Marcus, and Lukin, 2003; Witzel

and Das Sarma, 2007) can be explored.
Another approach is based on the recent observation of the

locking of the QD resonance to an optical (Latta et al., 2009;

Xu et al., 2009) or microwave driving (Vink et al., 2009)

field (see Sec. V.C). Here the achieved dynamical polarization

is far below 100% but the amplitude of the nuclear field

fluctuations �Bn can be reduced significantly under certain

conditions. Further reductions of the nuclear field fluctuations

are the motivation of further experimental and theoretical

work (Issler et al., 2010; Yang and Sham, 2010; Högele

et al., 2012) that aims to clarify the exact nature of the

interplay between Fermi-contact and dipole-dipole-type

interactions for electrons and holes with nuclear spins.
Themesoscopic nuclear spin system of one QD coupled to a

single-electron spin may be used to study exciting cooperative

effects such as phase transitions (Kessler et al., 2010, 2012).

The reason for the abrupt collapse of the nuclear polarization

experienced by an electron in a transverse magnetic field

shown in Fig. 40 is not understood (Krebs et al., 2010) and

one could speculate that collective phenomena play a role. If

this is realistic for quantum dots with strong quadrupolar

effects it has to be clarified, ideally trying to do similar experi-

ments in transverse fields in dots with vanishing quadrupolar

effects (Gammon et al., 2001; Belhadj et al., 2008).
The emission of polarized photons as a result of the

radiative recombination of electrons with well-defined spin

and (unpolarized) holes is important for the type of device

called spin light emitting diodes, often with QDs in the active

region (Li et al., 2005; Lombez et al., 2007b; Asshoff, Merz

et al., 2011). The carriers are injected electrically, and the

electron spin orientation is assured by the passage through a

ferromagnetic contact. Because of the robustness of the

electron spin even this highly nonresonant carrier injection

leads to substantial electron-spin polarization in the QD

ground state and first promising results show that this carrier

polarization leads in turn to measurable Overhauser fields
(Asshoff, Wust et al., 2011), paving an alternative way for
electrical control of nuclear spin polarization.

The fascinating physics of one carrier spin coupled to a
mesoscopic nuclear spin ensemble has been revealed through
optical investigations of semiconductor QDs. Sophisticated
transport measurements on gate-defined QDs have provided
an alternative approach to study the coupled spin systems,
resulting in an impressive level of control of spin coherence
and relaxation [see, for example, Petta et al. (2005), Hanson
et al. (2007), Bluhm et al. (2011), and Takahashi et al.
(2011)]. A promising approach for the future might be to
combine fast and convenient optical techniques to manipulate
spins in high quality gate-defined QDs.

LIST OF SYMBOLS AND ABBREVIATIONS

N number of nuclei in the dot
� spontaneous emission rate
�r ¼ 1=� radiative recombination time
ℏ!e

Z electron Zeeman splitting
ℏ!h

Z hole Zeeman splitting
ℏ!X

Z exciton Zeeman splitting
ℏ!n

Z nuclear Zeeman splitting
ℏ!e

OS electron Overhauser splitting
ℏ!h

OS hole Overhauser splitting
BK Knight field
Bn ¼ ðBn;x; Bn;y; Bn;zÞ Overhauser field
�Bn nuclear field fluctuations
B ¼ ðBx; By; BzÞ external magnetic field
Btot total magnetic field experienced

by electron
Bh
tot total magnetic field experienced

by hole
Aj hyperfine constant for nuclear

species j coupling to electrons
~A effective hyperfine constant for

coupling to electrons
Ah
j hyperfine constant for nuclear

species j coupling to holes
~Ah effective hyperfine constant for

coupling to holes
Anc
i noncollinear hyperfine coupling

of ith nucleus
" or # electron-spin state in z basis
* or + hole pseudospin state in z basis
write

P
jIj;z as jIzi nuclear spin z projection

Sz electron-spin z projection
Shz hole pseudospin z projection
J hole angular momentum
Jz hole angular momentum z

projection
T� electron-spin dephasing time in

randomly distributed frozen fluc-
tuation of the hyperfine field

Tdipole average precession time of a nu-
clear spin in the local field fluctu-
ations �BL
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T1e electron induced of nuclear spins
Td decay time of average nuclear

spin
T1d spin-flip time experienced by

electron due to flip-flops with
nuclei

�ec electron correlation time
�hc hole correlation time
�nc correlation time of nuclei
�es electron spin-relaxation time
�hs hole spin-relaxation time
gez longitudinal electron g factor
ghz longitudinal hole electron g factor
ge? transverse electron g factor
gh? transverse hole g factor
DNP dynamic nuclear (spin)

polarization
X0 neutral exciton
X� negatively charged exciton
Xþ positively charged exciton
�1 fine structure splitting of J ¼ 1

X0 due to anisotropic e-h
Coulomb exchange interaction

�2 fine structure splitting of J ¼ 2
X0 due to anisotropic e-h
Coulomb exchange interaction

�0 fine structure splitting of between
J ¼ 2 and J ¼ 1 X0 due to iso-
tropic e-h Coulomb exchange
interaction

� electron cotunneling rate
�� QD absorption linewidth
!X QD exciton transition frequency
!L laser frequency
�L Rabi frequency
�! ¼ !X �!L laser detuning from QD

resonance
!X QD exciton transition frequency
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Högele, A., S. Seidl, M. Kroner, K. Karrai, R. J. Warburton,

B. D. Gerardot, and P.M. Petroff, 2004, Phys. Rev. Lett. 93,

217401.

Hours, J., P. Senellart, E. Peter, A. Cavanna, and J. Bloch, 2005,

Phys. Rev. B 71, 161306.

Huang, C.-W., and X. Hu, 2010, Phys. Rev. B 81, 205304.

Imamoglu, A., D.D. Awschalom, G. Burkard, D. P. DiVincenzo, D.

Loss, M. Sherwin, and A. Small, 1999, Phys. Rev. Lett. 83, 4204.

Imamoglu, A., E. Knill, L. Tian, and P. Zoller, 2003, Phys. Rev.

Lett. 91, 017402.

Issler, M., E.M. Kessler, G. Giedke, S. Yelin, I. Cirac, M.D. Lukin,

and A. Imamoglu, 2010, Phys. Rev. Lett. 105, 267202.

Kaji, R., S. Adachi, H. Sasakura, and S. Muto, 2008, Phys. Rev. B

77, 115345.

Kalevich, V. K., et al., 2001, Phys. Rev. B 64, 045309.

Karrai, K., R. J. Warburton, C. Schulhauser, A. Högele, B.
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